
Qualitative Decision Models for
Structured Modeling Technology

Predki, B.

IIASA Interim Report
September 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33898867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Predki, B. (2004) Qualitative Decision Models for Structured Modeling Technology. IIASA Interim Report. IR-04-050

Copyright © 2004 by the author(s). http://pure.iiasa.ac.at/7398/

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

International Institute for
Applied Systems Analysis
Schlossplatz 1
A-2361 Laxenburg, Austria

Tel: +43 2236 807 342
Fax: +43 2236 71313

E-mail: publications@iiasa.ac.at
Web: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Interim Report IR-04-050

Qualitative Decision Models for Structured Modeling
Technology

Bartłomiej Prędki (Bartlomiej.Predki@cs.put.poznan.pl)

Approved by

Marek Makowski (marek@iiasa.ac.at)
Senior Research Scholar, Risk, Modeling and Society Program

September 2004

 ii

Contents

1. Introduction .. 1

2. Representing qualitative models........... 2

3. Case study... 4

4. Qualitative extension to SMT............... 7

5. Use of qualitative SMT 11

6. DRSMT software.................................. 19

7. Conclusions .. 25

 iii

Foreword

This paper presents the results the author achieved during his participation in the Young

Scientists Summer Program (YSSP) 2004.

However, the impact of these results is wider than it can be seen from this paper. This

is because of the synergy resulting from team work.

Three participants of the YSSP 2004: Bartłomiej Prędki, Cezary Chudzian, and

Vladimir Molchanov were members of the team working on the development of the

Structured Modeling Technology (SMT). The other two members of the team were

Michał Majdan (who spent five months at IIASA on leave from the National Institute of

Telecommunications, Warsaw, Poland) and me.

The development of SMT is a long-term challenging undertaking that requires

collaborative work of researchers that have experience not only in methods and tools for

advanced modeling but also knowledge and skills in DBMSs (Data Base Management

Systems), XML (Extensible Markup Language), and object-oriented programming of

Web-based applications.

Michał Majdan has designed the user interface to, and basic data structures of SMT. He

had been coordinating the design of elements developed by other colleagues in order to

be able to smoothly combine all elements into one system. This work has not been

documented yet.

The contributions of the other three members of the team have been described in three

Interim Reports (IRs), which constitute a kind of virtual set describing the collaborative

work. I briefly summarize the scope of each IR encouraging the reader to become

familiar with all of them:

• Bartłomiej Prędki (IR-04-050) has implemented an extension of SMT (originally

designed for algebraic models) by implementing a prototype handling of

decision rule models; he has adapted a suite of software supporting applications

of decision rules for analysis of qualitative data to work with SMT. Moreover,

he tested the concept using a medical case study developed in collaboration with

the Ottawa University.

 iv

• Cezary Chudzian (IR-04-051) has developed the key elements of SMT that

support a part of the modeling process composed of instance definition,

specification of preferential structure for various types of model analysis, and

efficient handling of underlying complex and large data structures (e.g., for

parametric optimization, and diversified sets of results, both composed of huge

amounts of data).

• Vladimir Molchanov (IR-04-052) has explored possibilities of using XML for

automatic documentation of the modeling process, and implemented a prototype

of automatic documentation of model specification, which is the most difficult

element of the documentation due to the complexity of the structure of the

symbolic specification and the requirement for supporting gradual modifications

of the descriptive part of the documentation (which is added to the part resulting

from the interactive model specification).

Finally, I would like to stress that it has been a pleasure to be the leader of the SMT

team during the Summer of 2004. Each member of the team not only has very good

professional skills but also abilities necessary for team work, strong dedication to

achieve good results, and to have fun during the short periods spent away from the

keyboard.

We plan to make the SMT publicly available in 2005. Therefore, I invite the readers to

not only become familiar with the IRs mentioned above, but also to visit

http://www.iiasa.ac.at/~marek in Spring 2005 to check on the further developments of

SMT.

Marek Makowski

 v

Abstract

This paper presents the decision rule extension to the Structured Modeling Technology

based on a case study. SMT was developed at the International Institute for Applied

Systems Analysis in Laxenburg, Austria. It is a tool for modeling complex algebraic

models. Some of the models require the use of qualitative data, so it is necessary to

represent such data. The proposed approach is based on the decision rule paradigm used

in machine learning and knowledge discovery.

It was verified on a real-life case study based on the modeling of a care map. Care map

is a multidisciplinary plan of best clinical practice for specified groups of patients with a

particular diagnosis that aids the coordination and delivery of high quality care. The

care map used in the work documented by this report was developed at the Ottawa

Hospital, Canada, for radical prostatectomy procedure. The research was based on the

data from about 125 patients, obtained from the same hospital.

SMT web application was modified to include models based on decision rules, which

allow storing of data in a form applicable for rule generation algorithms, as well as

storing decision rules as the results of model analysis.

Software application and class library was written for the rule generation phase, which

is able to access the data from the SMT application and store decision rules in its data-

warehouse. Decision rules are generated using external modules, based on the Rough

Set theory.

 vi

Acknowledgments

The research described in this paper has been made during my participation in the

Young Scientists Summer Program (YSSP) 2004 at the International Institute of

Applied Systems Analysis.

I would like to thank Dr Wojtek Michałowski from the School of Management, Ottawa

University, Canada, for his cooperation and Dr Marek Makowski for his supervision.

I would also like to thank Michał Majdan and Cezary Chudzian for their cooperation on

SMT modifications.

Finally, I would like to thank the Polish National Member Organization of IIASA for

the financial support which has made my participation in the YSSP possible.

 vii

About the Author

Bartłomiej Prędki received his M.Sc. in Computer Science from Poznań University of

Technology in 1996. The title of his thesis was “Application of the rough set theory in

the experiment concerning treatment of urological disease”. He is presently employed at

the Laboratory of Intelligent Decision Support Systems and is currently a final year

Ph.D. student at Poznań University of Technology. The title of his Ph.D. thesis is

“Induction of preferential information for relational model from the set of decision rules

in multicriteria choice problem”.

His main fields of scientific interest include decision support systems, machine learning

and knowledge discovery with specific interest in rough set theory.

 1

Qualitative Decision Models for Structured Modeling
Technology

Bartłomiej Prędki*

1. Introduction

Structured Modeling Technology (SMT) is a general application modeling tool

developed at the International Institute for Applied Systems Analysis in Laxenburg,

Austria [Makowski 2004]. It is designed to support model-based analysis of complex

decision problems that are not suitable for the general purpose tools available. It is built

using the basic concept of Structured Modeling methodology introduced by Geoffrion

[Geoffrion 1987] with the current computing technologies like data base management

systems, object oriented programming and web applications.

One of the reasons for creating the SMT is to meet the requirements of modeling

activities developed to support intergovernmental negotiations aimed at improving

European air quality which constitute the RAINS model.

SMT is based on a paradigm of separating the model specification from its data. The

Model specification contains semantic descriptions of model entities – variables or

parameters and the relations between them. Based on the model specification it is

possible to generate the data structures in the data-warehouse to store the model data.

An approach based on the divide, conquer and integrate paradigm has the following

advantages:

• possibility to amalgamate specifications for separate models,

• one repository used during the entire modeling process, that may include many

approaches to analysis of different problem instances along with automatically

generated documentation,

• possibility of data reuse for different model specifications and for defining the

different sets of data for the same model specification, thanks to the database

management system,

• possibility of recreating any given model analysis thanks to the data-warehouse

approach.

SMT was designed for modeling of very complex quantitative problems, but decision

support involves also qualitative data. This paper presents a qualitative decision model

extension to Structured Modeling Technology based on the case study for modeling

hospital caremaps in order to optimize the operations of the hospital.

*
 Institute of Computing Science, Poznań University of Technology, Poznań, Poland

 Bartlomiej.Predki@cs.put.poznan.pl

 2

2. Representing qualitative models

Every model is a representation of some knowledge about considered reality. In

quantitative models this knowledge is usually represented in the form of equations.

Because it’s not possible to store information about the qualitative data as equations,

also other forms of knowledge representation have to be supported.

One such form for knowledge representation for qualitative data is known as decision

rules.

Decision rules are one of the tools used in machine learning and knowledge discovery

domains. The basic assumption when using decision rules is that the data is described

using attributes. Attributes can be of different types, e.g. numeric attribute or categorical

attribute, where values are members of the set of labels (e.g. good, sufficient, bad). Such

attributes are called condition attributes. We also assume that there is at least one

attribute, the called decision attribute, that assigns each object to a decision class.

Decision rules are used to classify objects into decision classes, thus together with the

classification procedure they constitute the classifier, where rules are used as the

knowledge base. There is a possibility that classification obtained from the decision

rules will be wrong, this is called a misclassification. Very good overview of decision

rules generation approaches and classification techniques can be found in [Stefanowski

2001].

Decision rules represent knowledge in the form of “if … then …” clauses. The part

between “if” and “then” is called a condition part and what follows after “then” is

called a decision part.

For example, it may be possible to state the following decision rules:

if temperature=high then patient=ill (1)

if temperature=normal and cough=no then patient=healthy (2)

The condition part of the rule consists of so called “elementary conditions”, for example

in rule 1 there is one elementary condition “temperature=high”, where “temperature” is

the attribute name and “high” is one of its values. In rule 2 there are two elementary

conditions joined by the logical “and” operator.

An elementary condition consists of three elements – the name of the attribute, the

relation, and the attribute value. In general, relation can be one of the following: =, ≥, ≤,

>, < or a set member.

We assume that the condition part is always made up of the conjunction of the

elementary conditions (only the logical “and” operator is used). Logical “or”

(disjunction) is equivalent to using several decision rules with the same decision part.

In most cases the decision part of the rule consists of a single decision (outcome), which

is similar to the elementary condition, except when the considered attribute is a decision

attribute. If this is the case, such a decision rule is called an exact decision rule. There

can also be more possible decisions connected by the logical “or” operator. Such

 3

decision rules are called possible decision rules. All possible decisions in such a rule use

the same decision attribute.

There are two ways of acquiring knowledge:

• supervised learning,

• unsupervised, automatic learning.

The first process is very complex and time consuming although it usually provides very

good results. For example, one of the first expert systems based on decision rules for

supporting the selection of antibiotics treatment – MYCIN [Buchanan, Shortliffe 1984]

had 500 decision rules, all coming from expert physicians. It took almost 10 years to

make the final version.

In the second approach a set of data is obtained, for example from historical data, called

a training set. Based on this information several rule induction techniques can be used to

generate a set of decision rules.

Because there is a possibility of inconsistency in the training set (for example patients

with the same description by all condition attributes have different values of the

decision attribute), resulting from the limited description of analyzed reality, one of the

very successful approaches to rule generation is based on Rough Set theory.

The Rough Set theory was introduced by Pawlak [Pawlak 1982]. It allows for taking

the inconsistency into the data analysis process. It is done by using so called rough

approximations of decision classes.

For each decision class two rough approximations are calculated:

• lower approximation – contains only the objects that for sure belong to this

decision class,

• upper approximation – contains all objects that may belong to the given decision

class.

Having calculated the approximations, exact decision rules are induced from the lower

approximations of each decision class, and possible rules are induced either from the

upper approximations or from the boundary region between the classes.

There are three approaches to generating rules from rough approximations:

• local minimal covering algorithm, which generates the minimal (from heuristic

point of view) set of decision rules, that satisfy the correct classification of data

in a training set; the example of such an algorithm is LEM2 [Grzymała-Busse

1992],

• satisfactory rules algorithm, which generates the decision rules that meet some

predefined conditions; the example of such an algorithm is Explore [Stefanowski

2001],

• all rules algorithm, which generates all possible (not redundant) decision rules;

using Explore with specific parameters generates all decision rules.

Usually each decision rule has some additional information, based on the data it was

induced from. Typically this includes:

 4

• length of the rule – number of elementary conditions in the condition part of the

rule,

• support – number of objects in the learning set covered by the condition part of

the rule and compatible with its decision part,

• strength – quotient of the support to all objects in the training set,

• discrimination level – quotient of the support to the number of all objects

covered by the condition part of the rule in the training set,

• relative strength – quotient of the support to the number of all objects in the

compatible decision class.

One of the software packages implementing rough set theory is ROSE2, which is an

acronym for the Rough Set Data Explorer version 2. It was developed in the Laboratory

of Intelligent Decision Support Systems of the Institute of Computing Science at the

Poznań University of Technology [Prędki, Wilk 1999]. A limited version (10 attributes,

500 objects) of the software can be download from the web address: http://www-

idss.cs.put.poznan.pl/rose/index.html.

Because ROSE2 has modular architecture, rule generation methods used in this paper

will be based on the ones included in it.

There is also a freely available, open-source software package for machine learning

problems called WEKA, developed at the University of Waikato, New Zeland, which

can be obtained from the web page: http://www.cs.waikato.ac.nz/~ml/weka/. It is

written in Java, it has several rule generation algorithms built in and can be modified to

suit the users needs.

3. Case study

In this paper we present the qualitative extension to SMT based on the case study. It

considers modeling of a so called caremap for medical procedures.

In most of the public healthcare systems the amount of money is limited, but the needs

and expectations of the beneficiaries are constantly rising due to the aging of

population, development of new technologies, etc. Without any additional funding the

only improvement that is possible, is optimizing and streamlining the treatment of

patients.

One of the attempts to control costs of inpatient care is to reduce the average length of

hospital stay (LOS) without hurting patient care. The patient’s length of stay after

surgery appears to be one of the main components of this cost. If the LOS could be

reduced, hospital costs would be much lower. The implementation of a clinical caremap

is an attempt to introduce “best clinical practice” so that the hospital stays within

prescribed LOS. This in turn is determined on a basis of best practices in a given

clinical presentation and “adopted” in the hospital. Therefore, the implementation of

caremaps has a positive impact on managing the LOS. Moreover, the caremap promotes

quality patient care by incorporating existing standards, practice guidelines, and

research findings, and by providing a mechanism to monitor quality care based on

patient outcomes.

 5

The caremap (also called clinical pathways, care management, or care planning) is a

“multidisciplinary plan of best clinical practice for specified groups of patients with a

particular diagnosis that aids the coordination and delivery of high quality care”

[Ignatavicius, Hausman 1995]. It consists of four essential components: a timeline,

categories of care processes (e.g., assessment, treatment, activity, etc.), a patient’s

outcome criteria, and the variance record. As a patient-oriented, cost-effective care

management system, the caremap is increasingly being used. Despite the intent to define

the essential components of care, there still are variations in how care will be delivered

and how patients will respond. A patient’s outcomes do not always follow the relevant

caremap. Process variances will occur when the patient is not progressing at the

standard rate through the caremap. Furthermore, these variances can be positive or

negative. Positive variances occur when the patient progresses towards projected

outcomes earlier than expected. Negative variance occurs when the patient fails to meet

projected outcomes; either there is a delay in meeting the outcomes, or there is need for

additional interventions previously unplanned.

As improvements in the quality of care are achieved through continuously redefining

the caremap to reflect current best practices, variance analysis is a very important audit

tool. Any negative variances might influence the patient’s conditions; ultimately, they

might influence the patient’s LOS. Therefore, during the development of a caremap,

how to efficiently evaluate the impact of negative variances in the clinical caremap in

terms of LOS, is an important subject to consider.

Analysis of variances from the caremap and their impact on the patient’s LOS can be a

part of modeling process. Our goal is to use the Structured Modeling Technology for

optimizing the work of a hospital where knowledge based on caremaps will be used as

part of the model.

Our case study considers the caremap for radical prostatectomy procedure (complete

surgical removal of the prostate gland) developed at the Ottawa Hospital. This caremap

can be found in Appendix A. Based on the earlier analysis of variances in this caremap

[Li 2004] we have obtained data about 125 patients treated with this procedure in the

past.

The first step in modeling of the caremap is to identify the attributes that can be used to

describe patient’s state. Li has identified 15 attributes in the radical prostatectomy

caremap, which are shown in Table 1.

 6

Table 1 Attributes identified in the radical prostatectomy caremap

No
Attribute

name
Description Attribute values

Days of

validity

1 Unders patient’s mental state Abnormal, Normal N/A

2 VS vital signs Abnormal, Normal 1, 2, 3

3 Actw activity Ambulate, No 1, 2, 3

4 Nutriw nutrient input Fluid, Regular 1, 2, 3

5 Nutrio nutrient output Nausea, Normal, Vomit 1, 2, 3

6 Painr verbal pain score in

rest

Medium, Mild, Nopain 1, 2, 3

7 Resp respiratory functions Mild, Normal 1, 2, 3

8 JP Jackson-Pratt D/C, Large, Medium, Small 1, 2, 3

9 Hema evidence of hematoma Bt, No, Y 1, 2, 3

10 Urineo urine output Adequate, Inadequate 1, 2, 3

11 Bowels bowel sounds Absent, Present 1, 2

12 Painm verbal pain score with

mobility

Medium, Mild, Nopain 1, 2, 3

13 Temp body temperature Abnormal, Normal 2, 3

14 Wound wound healing Medium, Mild, Normal 2, 3

15 LOS length of stay numeric N/A

All of the identified attributes, except for the decision attribute LOS, are of the

categorical type. The aforementioned caremap states that the LOS for a patient after the

procedure is 3 days, 4 days in total. Two of the attributes (Unders, LOS) are not

dependent on the day after the procedure, others have different values depending on the

day.

Figure 1 shows the distribution of the values of attribute LOS in the obtained data.

 7

4

70

35

13

1 1 1
0

10

20

30

40

50

60

70

3 4 5 6 7 9 10

Figure 1 Distribution of the values of decision attribute Length of Stay (LOS)

It can be noted that out of 125 cases, 70 cases meet the expected LOS and 4 are even

shorter. Most of the extended length of stay are 5 to 6 days. Only in 3 cases patient

stayed for more then 6 days.

4. Qualitative extension to SMT

In order to extend the SMT application for modeling the qualitative data it was

necessary to make several modifications.:

• the collection of types of models that can be built was modified to include the

decision rule type model.

• the collection of entity types was modified to include a condition and decision

attribute, because we have decided to define attributes as entities in the model.

• the list of possible types was extended to include categorical data type.

• SMT data structures for servlets were extended to handle decision rules

By making such modifications, it is possible to store the data that is a training set for the

decision rules generation algorithm within the model instance. This data can be

periodically updated using the data update mechanism. We assume that data updates

will create a linear structure in time, without any branching.

In models of decision rule type, decision rules are stored as the results. Thus, we have

adopted the database structure for storing results to also handle decision rules.

Following is the detailed description of the structures in data-warehouse used for the

case study of modeling the radical prostatectomy caremap. The important difference

from the typical approach, is that most of the attributes identified in the caremap are day

dependent, where some, especially decision attribute LOS, are not. Thus it is necessary

to use the indexing mechanism in the SMT.

Two indices will be used:

• index i to identify the patients,

• index d for day dependent attributes to identify the day for which it is valid.

 8

Because of the use of two indices, there are two data tables generated by the SMT

application using the corresponding symbolic model specification. Although the data

tables are generated automatically by SMT, we are presenting their content here, to

illustrate the underlying data structures.

Table storing data for day-independent attributes is named following the schema:

“D_”+model_name+“_I”, where model_name is the selected model name and “I”

comes from the index name. Assuming that model name is “PROSTATE” then the table

will be named “D_PROSTATE_I”. Table 2 shows the data structure of this table for

prostatectomy caremap.

Table 2 Structure of the table for storing day-independent data

Column name Data type Description

DATA_ID Number used to identify the data update

I VARCHAR (20) value of index i; identifies the patient

UNDERS VARCHAR (128)

LOS VARCHAR (128)
values of attributes for patient identified by i

The table storing data for day-dependent attributes is named in the following way:

“D_”+model_name+”_DI”, where model_name is the selected model name and D and I

are indices. Depending on the sequence order of the indices their order may be reversed.

So for the “PROSTATE” model this table would be named “D_PROSTATE_DI” or

“D_PROSTATE_ID”. Table 3 shows the data structure of this table for the

prostatectomy caremap.

 9

Table 3 Structure of the table for storing day-dependent data

Column

name
Data type Description

DATA_ID Number used to identify the data update

D VARCHAR (20) value of index d; identifies the day for the

attribute

I VARCHAR (20) value of index i; identifies the patient

VS VARCHAR (128)

ACTW VARCHAR (128)

NUTRIW VARCHAR (128)

NUTRIO VARCHAR (128)

PAINR VARCHAR (128)

RESP VARCHAR (128)

JP VARCHAR (128)

HEMA VARCHAR (128)

URINEO VARCHAR (128)

BOWELS VARCHAR (128)

PAINM VARCHAR (128)

TEMP VARCHAR (128)

WOUND VARCHAR (128)

values of attributes for patient identified by i

on day d

(may be null if attribute is not valid for the

given day)

As mentioned earlier the decision rules are stored as a result of model analysis. Thus

they are stored in a table for results. It is named following the schema:

“R_”+model_name+“_DI”, where model_name is the selected model name and D and I

are indices. Depending on the sequence order of the indices their order may be reversed.

So for the “PROSTATE” model this table would be named “R_PROSTATE_DI” or

“R_PROSTATE_ID”. Table 4 shows the structure of this table, which is independent of

the data.

Table 4 Structure of the table for storing results

Column name Data type Description

ENTITY_ID Number used to identify the entity – attribute

D VARCHAR (20) value of index d;

I VARCHAR (20) value of index i;

OPERATOR VARCHAR (30) operator

 10

VALUE_NUMBER Number value if it is numeric

VALUE_STRING VARCHAR (30) value if it is string

RTASK_ID Number runnable task ID

Such a structure of the data table is sufficient for storing decision rules, but it is

necessary to explain how exactly it is done.

Each decision rule is stored in this table in two parts:

• the part containing all elementary conditions and decisions,

• the part containing all meta data describing rules, like rule strength, etc.

Each elementary condition is stored in one table row in the following way:

• ENTITY_ID – identifies the attribute in the elementary condition,

• D – indicates the day for the considered attribute; if equal -1 the day is

irrelevant,

• I – uniquely identifies the decision rule,

• OPERATOR – is made up of two characters: second character indicates whether

the elementary condition is part of the condition part of the decision rule (“c”) or

decision part (“d”), first character responds to the relation type in the elementary

condition in the following way:

• =, >, < are self-explanatory,

• “l” is less or equal,

• “m” is more or equal,

• “i” is one of the set of values.

• VALUE_NUMBER – may be the elementary condition value, if the attribute is

numeric, otherwise it is null,

• VALUE_STRING – the value of the elementary condition; may be null if

VALUE_NUMBER is not null,

• RTASK_ID – the associated runnable task identifier.

All meta data describing rules is stored in one row of the table in the following way:

• ENTITY_ID – is null,

• D – is null,

• I – identifies the decision rule,

• OPERATOR – is null,

• VALUE_NUMBER – is the value of the parameter,

• VALUE_STRING – is the name of the parameter,

• RTASK_ID – the associated runnable task identifier.

The part of the table containing one decision rule is shown on Figure 2.

 11

Figure 2 Part of the screen showing one decision rule stored in the results table

5. Use of qualitative SMT

The entire modeling process for the hospital management system may be divided into

the following stages:

1. Identification of all procedures in the hospital with available caremaps.

2. Definition of the main optimization model, for which some of the input variables

will be instantiated using decision rules for each caremap.

3. Definition of models for each caremap which are responsible for storing the

historical data and for rule induction.

This report describes only the work done for stage 3.

To define the model for the selected caremap it is necessary to follow certain rules:

• all attributes identified in the caremap are divided into two sets: attributes that

are time dependent (set Ad) and attributes that are time independent (set Ai).

• exactly two indices are defined in the model:

• i – used to identify the patient,

• d – used to describe the timescale in days.

• all attributes in sets Ad and Ai are defined as parameters in the model

• attributes from the set Ai are indexed only by index i,

• attributes from the set Ad are indexed by both indices – i, d

• we consider only one decision attribute responding to the patient’s length of

stay.

The screen of the SMT application after logon is shown on Figure 3. On the left side of

the screen the main application menu is found. At the bottom there is a status line with

several application buttons. All operations take place in the central window.

 12

Figure 3 Main SMT Web application window

After logging into the SMT web application tone can define a new mode of the caremap

by use of decision rules, by using the “New” button (as on Figure 3). The model

description window will appear as shown on Figure 4. Please note that the model class

should be selected as “Decision Rules”.

Figure 4 Model description window

The first step after the creation of the new model is to define indices. We define two

indices, named respectively d (for day) and i (for patient id). In order to do this it is

necessary to use the “Indices” command from the “Model specification” section in the

main menu. Screen for index definition is shown on Figure 5.

 13

Figure 5 Index definition window

After defining the indices d and i the screen should look like on Figure 6.

Figure 6 Indices window with two indices defined

When both indices are defined it is possible to input information about attributes used in

the caremap. Attributes are defined in the SMT model as entities, by using the “Entities”

command in the main menu. Figures 7, 8 and 9 show the screens during the definition of

the attributes. Figure 7 shows the attribute “Unders” from the prostatectomy caremap,

that is day independent, thus it is indexed only by index i. On the right there is a list of

all defined attributes (parameters).

Figure 7 Entity definition window with defined attribute that is day-independent

Figure 8 shows the definition of the attribute “VS”, which is day dependent, thus it is

indexed by both indices: d and i.

 14

Figure 8 Definition of entity which is a day-dependent condition attribute

Figure 9 shows the definition of the decision attribute “LOS”. As a decision attribute it

is day independent and indexed only by index i. Please note the different roles for the

attributes on Figures 6 through 8.

Figure 9 Definition of entity which is a decision attribute

After defining all attributes as parameters in the model it is necessary to generate the

data-warehouse structures. In order to do this the model must be locked, by going to the

model definition screen (Figure 10) and using the “Lock” button. Then the “Generation”

command in “Data Warehouse” becomes active.

 15

Figure 10 Window with model definition

After using the “Generation” command the user is asked for confirmation as on Figure 11.

Figure 11 Confirmation screen before data warehouse generation

Historical data concerning patients that were already released is put in the SMT data

warehouse using the data import mechanism. In this case it is necessary to prepare two

files: file with the attributes from the set Ai (Figure 12) and files with the attributes

from the set Ad (Figure 13).

Figure 12 Beginning of the CSV file containing data for day-independent attributes

Figure 13 Beginning of the CSV file containing data for day-dependent attributes

The first line in a CVS file has to contain the names of the parameters responding to the

attribute names plus the names of the indices used for indexing these parameters. Values

can be separated by any ASCII character (typically it is a comma or semicolon). Next

lines contain values for each patient and parameter. If some attributes are meaningless

(don’t have values) for given day, their responding parameters should be left blank.

After using the “Data import” command from the main menu, the data import window

is shown as on Figure 14. The user has to provide information about locations of both

 16

CSV files (“Choose” button) and enter the character used in them as a delimiter

(typically comma). The data import process starts after the “Save” button is pressed.

Figure 14 Data import window

In order to generate decision rules as the output of the considered model it is necessary

to define a new model instance and generate a runnable task. The definition of the new

model instance starts after selecting the “Definition” command in the “Model Instance”

submenu. The resulting screen, lists all available instances, as shown on Figure 15.

Figure 15 Instance selection window

When it is necessary to create a new model instance, pressing the “New” button will

open another screen, shown on Figure 16. Here the instance name and description are

defined.

Figure 16 Instance definition Window – basic information

 17

Because each instance has to based on the model specifications it is necessary to select

in the next step, one of the existing model specifications, as shown on Figure 17.

Figure 17 Instance definition window – model specification selection

Model instance joins the model specification with the data, so in the next step it is

necessary to select one of the data updates that will constitute the model instance, as

shown on Figure 18.

Figure 18 Instance definition window – data update selection

When the model instance is defined it is possible to define the new model analysis. This

is done by using the “Analysis” command from the “Model Instance” submenu. The

resulting screen shows all available model analysis tasks, as shown on Figure 19.

Figure 19 Model analysis window

If a new model analysis task is to be defined, after pressing the “New” button, a model

instance selection screen appears, as shown on Figure 20.

 18

Figure 20 Analysis task window – instance selection

After selecting the model instance it is necessary to select its type. For the considered

type of analysis it should be “Decision rules generation”, as shown on Figure 21.

Figure 21 Analysis task type selection

The last element to define, is an analysis name for the group of tasks, as shown on

Figure 22.

Figure 22 Decision rules analysis task description window

Newly defined analysis will show in the list now, as on Figure 23.

 19

Figure 23 List of defined analysis tasks

To generate runnable tasks it is necessary to use the “RTASKS GENERATOR”

command next to the chosen analysis task. The screen shown on Figure 24 will appear.

Figure 24 Runnable task description window

Thus the process of generation of runnable tasks for rule generation is finished.

6. DRSMT software

DRSMT (acronym for Decision Rules Structured Modeling Technology) consists in fact

of two parts:

• a library of classes designed to read/write data and decision rules in different

formats and to interface with rule generation software (namespace DRSMTLib)

• a simple, menu-driven, user interface for Microsoft Windows (namespace

DRSMTGen).

6.1. The Application

The Figure 25 shows the main screen after starting the application. The interface is

divided in two parts: menu and log window. Menu allows invoking the commands and

the log window is where all output information is presented to the user.

 20

Figure 25 Main screen of the DRSMT application

During the first run of the application several settings should be defined:

• SMT connection settings – server address, user name and password for the

server (Figure 26),

• working folder – folder in which all temporary files are stored,

• ROSE folder – folder containing the rule generation modules of the ROSE2

software package (typically c:\Program Files\ROSE2\),

• WEKA folder – folder containing WEKA software,

• WEKA command – command used in WEKA to generate decision rules.

Figure 26 Server settings window In DRSMT

All these settings are available in the Options menu. The settings are stored in the

machine’s registry. All operations on data are done using the “Data” menu.

 21

DRSMT is able to read data in the following formats:

• proprietary XML format (see Appendix C),

• CSV text format described earlier,

• SMT data-warehouse.

DRSMT is able to write data in the following formats:

• proprietary XML format,

• ISF format used by ROSE2 software,

• ARFF format used by WEKA software,

• CSV files for import to SMT (as described earlier).

DRSMT is capable of saving the data for importing through the SMT application data

import mechanism and reading the data from the plain CSV file, where attributes from

the set Ad have names followed by underscore and day number. The first line contains

the attribute names and the following contain data. Data should be separated using

semicolons.

Figure 27 Beginning of the CSV file for importing data into DRSMT software

Using the “Rules” menu it is possible to generate, read and write decision rules.

As stated earlier, three rule generation approaches are available:

• Local, minimal covering algorithm (LEM2) from ROSE2 system,

• all rules algorithm (EXPLORE) from ROSE2 system,

• algorithms available in WEKA software (support only for data export in ARFF

format and running WEKA commands).

For each approach three aforementioned types of rules can be generated.

DRSMT is able to write decision rules in the following formats:

• proprietary XML format (see Appendix D),

• SMT data-warehouse,

• HTML file for documentation.

DRSMT is able to read decision rules in following formats:

 22

• proprietary XML format,

• SMT data-warehouse,

• RLF format used by ROSE2 software.

When a rule generation module is run its output is captured and displayed in the log

window, along with the system messages with timestamp, as shown on Figure 28.

Figure 28 DRSMT screen after rule generation

Because DRSMT is a standalone application, all operations on data and decision rules

can be done either offline (without connection to SMT data-warehouse) or online.

For online access it is necessary to define, in the SMT web interface, an analysis task of

the decision rule generation type. Only if at least one such task is defined it is possible

to read data from SMT because DRSMT identifies the model and corrects data updates,

based on the information obtained from the analysis task.

To obtain a connection to the SMT data-warehouse an analysis task must be selected, by

using the “Select task” command from the “Data” menu. All analysis tasks of decision

rule type are enlisted and the user can select one of them. Based on this selection an

appropriate model is also selected. If the data is read from SMT it will only be read up

to the data update associated with the analysis task.

 23

Figure 29 Task selection window in DRSMT

If data is read it is always possible to generate decision rules, but only if the results for

the selected analysis task were not updated (rules haven’t been written into the data-

warehouse) it is possible to store the decision rules in SMT for that task. Otherwise a

new analysis task has to be defined. Such a procedural constraint is necessary to achieve

a unique correspondence between an analysis task and the results.

After selecting the analysis task there is a message concerning the state of the given

task. If the state is “READY” it is possible to write a new set of decision rules. If it is

“DONE” a set of decision rules has already been written for this task earlier.

It is possible to read the decision rules for any given task from SMT, although if the task

state is “READY” the resulting rule set will be empty.

When data is imported into the SMT data warehouse it is possible to induce decision

rules. At this stage it is necessary to use the DRSMT software on the client computer.

DRSMT is able to read the data straight from the SMT data warehouse. After reading

the data, the user can select one of the rule generation approaches:

1. Daily rule generation.

2. Meta rule generation.

3. Coalition rule generation.

In the first approach the data set is divided so that each partition contains only data from

the given day and earlier days. If all attributes were day-independent the data would

include an entire data set. Rules are generated for each partition set and they should be

used to classify patients on the given day of their stay in the hospital. Such an approach

is dictated when we would like to classify the patients for which only a limited set of

attributes is known at the time.

In the second approach meta rules are generated. By meta rules we understand that the

decision attribute for which rules are generated is not the main decision attribute, but for

each day every attribute from the next day becomes a decision attribute. Thus we obtain

decision rules that are able to predict the value of some attribute on the next day based

on the information from the current day.

In the third approach, based on the assumption that the decision attribute LOS (Length

Of Stay) is numeric, decision rules are generated for the coalition of decision classes.

This way it is possible to generate rules that in the decision part state that the patient’s

LOS will be at least or at most as the stated value.

For each approach any of the available rule generation algorithms can be used.

Currently it includes:

• full support for “local minimal covering” algorithm (LEM2) from ROSE2,

 24

• full support for “all rule generation” algorithm (Explore) from ROSE2,

• basic support (data export and runtime) for algorithms from WEKA.

After the rule generation process is finished all rules may be written into the SMT data

warehouse. They are stored in the table designed to store the results of various types of

analysis. Each rule is stored not only in its form but also with additional information,

like support, strength, etc.

DRSMT is also able to store and read data from the proprietary XML format files.

6.2. DRSMT library

As it was stated before, DRSMT software is in fact based on the library of classes. This

library consists of N classes which can be divided into X categories:

• classes for reading data, based on the abstract class InputDataReader,

• classes for writing data, based on the abstract class InputDataWriter,

• classes for rule generation, based on the abstract class Generator,

• classes for reading rules, based on the abstract class RuleReader,

• classes for writing rules, based on the abstract class RuleWriter,

• classes representing the data – Attribute and Case,

• classes representing the rules – Condition and Rule,

• main library class – DRSMT.

All classes are shown on the UML class diagram in Figure 30.

Figure 30 Class diagram of the DRSMTLib library

To enable the library to read or write new data or rule formats, or to use new rule

generation techniques it is necessary to derive new classes from the existing ones.

The entire class library is self documented in the code.

The DRSMTLib library is dependent on two external libraries:

 25

• Telperion.Utility library exposing some basic utility methods.

• Oracle.Data library used to access the SMT data-warehouse, downloadable from

www.oracle.com.

To use the DRSMT software the client machine has to have the .Net Framework version

1.1 installed. The setup program for the software is provided.

7. Conclusions

Structured Modeling Technology being developed in IIASA for algebraic models has

been extended to include models based on qualitative data, especially models using

decision rules as knowledge representation. It has been proven that SMT is able to store

model specification designed for rule generation, where the model data constitutes the

training set for decision rule induction algorithms and decision rules are stored as the

result. The extension of the SMT is as generic as possible to suit any kind of decision

rules. The entire concept was tested on a case study for modeling the caremap for

radical prostatectomy procedure.

Future versions of SMT will support the development of models that will use results

and especially decision rules of other models, as their model data.

In case of care map modeling it is necessary to provide structures to store data about

patients currently treated at the hospital and for providing the classifier that will read

decision rules and data, to provide predictions of their length of stay and possible

variations from the care map.

The decision rule paradigm may provide very useful functionality for Algebraic Models

(AM) developed for decision support.

We mention here only two areas of such functionality:

1. Data mining and knowledge discovery from the results of AM.

2. Support for selection of sets of data to be used for model parameters.

The paper reports the results of the clinical decision support research which is a part of

the collaborative research between the University of Ottawa and IIASA.

The results show advantages of expanding the Structured Modeling Technology with

rules-based modeling paradigm. Such expanded SMT was applied to a case study in the

area of clinical decision making using data obtained from The Ottawa Hospital in

Ottawa, Canada. Modeling of patient management process in a hospital is significant

undertaking and thus, due to a limited time available the reported research resulted in a

prototype system only.

In order to conduct a prospective evaluation of a system in a hospital, it is necessary to

continue the research by incorporating different medical presentations and considering

different types of the end users. This research will be conducted and supported within a

collaborative framework signed by the University of Ottawa and IIASA and it will

involve researchers and the graduate students from both institutions. It is important to

stress here that applicability of the expanded SMT is not limited or bounded to the

clinical area. Similar in scope and complexity decision support problems exist

especially in the area of sustainable development, aquatic systems and water

 26

management and a comprehensive decision support can be developed for respective

decision makers from these areas.

Finally for the future, it may be possible to extend SMT in such way, that it will not

only include the decision rule paradigm, but for example artificial neural network,

decision trees or Bayesian belief networks.

Bibliography

B.G. Buchanan, E.H. Shortliffe (eds.) (1984): Rule-Based Expert Systems: The Mycin

Experiments of the Stanford Heuristic Programming Project, Addison-Wesley, Reading,

MA.

A. Geoffrion (1987). An introduction to structured modeling. Management Science, 33,

pp. 547-588.

J.W. Grzymała-Busse (1992): LERS - a System for Learning from Examples Based on

Rough Sets, in R. Słowiński (ed.): Intelligent Desicion Support. Handbook of

Applications and Advances of the Rough Set Theory, Kluwer Academic Publishers,

Dordrecht, pp. 3-18.

D.D. Ignatavicius, K.A. Hausman (1995): Clinical Pathways for Collaborative

Practice. W.B. Saunders, Philadelphia.

M. Makowski (2004). Structured modeling technology. European Journal of

Operational Research (to appear).

M. Li (2004): Application of the Bayesian Belief Network Model to Evaluate Variances

in a Clinical Caremap: Radical Prostatectomy Case Study, Master Thesis, University of

Ottawa, Ottawa, Ontario, Canada.

Z. Pawlak (1982): Rough sets. International Journal of Information & Computer

Sciences, 11, pp. 341-356.

B. Prędki, Sz. Wilk (1999): Rough Set Based Data Exploration using ROSE system, [in]

Z.W. Raś, A.Skowron, (ed.) Foundations of Intelligent Systems, Lecture Notes in

Artificial Intelligence vol. 1609, Springer Verlag, Berlin, pp. 172-180.

J. Stefanowski (2001): Algorytmy indukcji reguł decyzyjnych w odkrywaniu wiedzy.

Seria rozprawy nr 361, Wydawnictwo Politechniki Poznańskiej, Poznań.

 27

Appendix A – Radical prostatectomy caremap

 28

 29

Appendix B – DTD definition for the XML file format for storing data.

<!DOCTYPE InputData [
<!ELEMENT InputData (Attributes,Cases,UniqueAttributes)>
<!ELEMENT Attributes (Attribute*)>
<!ELEMENT Attribute (Name,Day,Role)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Day (#PCDATA)>
<!ELEMENT Role (#PCDATA)>
<!ELEMENT Cases (Case*)>
<!ELEMENT Case (Day,Value)>
<!ELEMENT Day (#PCDATA)>
<!ELEMENT Value (#PCDATA)>
<!ELEMENT UniqueAttributes (Attribute*)>
<!ELEMENT Attribute (Day,Value)>
<!ATTLIST Attribute name PCDATA>
<!ELEMENT Day (#PCDATA)>
<!ELEMENT Value (#PCDATA)>
]>

Appendix C – DTD definition for the XML file format for storing decision
rules.

<!DOCTYPE Rules [
<!ELEMENT Rules (Rule*)>
<!ATTLIST Rules information PCDATA>
<!ATTLIST Rules date PCDATA>
<!ELEMENT Rule
(Strength,Support,Confidence,RelativeStrength,Discrimination,Elementar

y*)>
<!ATTLIST Rule Day PCDATA>
<!ELEMENT Strength (#PCDATA)>
<!ELEMENT Support (#PCDATA)>
<!ELEMENT Confidence (#PCDATA)>
<!ELEMENT RelativeStrength (#PCDATA)>
<!ELEMENT Discrimination (#PCDATA)>
<!ELEMENT Elementary (Left,Relation,Right)>
<!ATTLIST Elementary Role PCDATA>
<!ELEMENT Left (#PCDATA)>
<!ELEMENT Relation (#PCDATA)>
<!ELEMENT Right (#PCDATA)>
]>

