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Coevolutionary Dynamics and the

Conservation of Mutualisms

Judith L. Bronstein

Ulf Dieckmann

Régis Ferrière

1 Introduction

The vast majority of studies in conservation biology focus on a single species at a time. However,

many of the anthropogenic threats that species face occur via disrupted or enhanced interactions

with other organisms. According to one recent analysis, interactions with introduced species,

such as predators, parasites, and pathogens, are the eighth leading cause of species endangerment

worldwide; they are the primary cause of endangerment in Hawaii and Puerto Rico (Czech and

Krausman 1997). Altering interactions not only has ecological effects, but also it can generate

selective pressures and evolutionary responses, which may either favor or disfavor the evolutionary

persistence of species and interactions. An increased focus on interspecific interactions will thus

enlighten our efforts to conserve species and, more pointedly, our ability to understand when

species will and will not respond evolutionarily to conservation threats. Such a focus is also

critical for efforts to conserve communities as units, because interactions are the crucial and poorly

understood link between threatened species and threatened species assemblages.

Different types of interspecific interactions are subject to, and generate, somewhat different

ecological and evolutionary threats. Predator and pathogen introductions can lead to reduction, lo-

cal exclusion, or extinction of native species (Savidge 1987; Schofield 1989; Kinzie 1992; Stead-

man 1995; Louda et al. 1997). Rapid evolution in the enemies and/or the victims may also result

(Dwyer et al. 1990; Singer and Thomas 1996; Carroll et al. 1998). Conversely, the disappearance

of enemies (or the introduction of a species into a habitat that lacks enemies) can have conse-

quences that extend across the population, community, and ecosystem (Thompson 1996; Fritts

and Rodda 1998). The effects of altering competitive interactions appear to be qualitatively simi-

lar, although smaller in magnitude (Simberloff 1981; Williamson 1996). Introducing competitors

can reduce populations of native species, with the possible effects being local exclusion, extinc-

tion, or evolutionary change of one or both species (Schofield 1989; Moulton 1993; Cohen 1994;

Dayan and Simberloff 1994).

Antagonistic interactions have been relatively well studied from the evolutionary, ecological,

and conservation perspectives. In contrast, our understanding of mutualisms – interactions that are

mutually beneficial to both species (Box 1) – is at a much earlier stage of development (Bronstein

1994, 2001a). The ecological effects of disrupting mutualism are known from only a handful

of case studies, which have largely involved a single form of mutualism, plant–pollinator inter-

actions (see the excellent reviews by Bond 1994, 1995; Allen-Wardell et al. 1998; Kearns et al.

1998). The evolutionary consequences of such disruptions remain virtually unexplored. This gap

in knowledge is of particular concern because mutualisms are now believed to be a focus around

which diversity accumulates, on both ecological and evolutionary time scales (e.g., Dodd et al.

1999; Wall and Moore 1999; Bernhard et al. 2000; Smith 2001).
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Box 1 Mutualistic interactions

Mutualisms are interspecific interactions in which each of two partner species receives a net benefit.

Well-known examples include interactions between plants and mycorrhizal fungi, plants and polli-

nators, animals and gut bacteria, and corals and zooxanthellae (Herre et al. 1999; Bronstein 2001a).

Mutualisms generally involve the exchange of commodities in a “biological market”: each species

trades a commodity to which it has ready access for a commodity that is difficult or impossible for

it to acquire (Noë and Hammerstein 1995; see also Douglas 1994). For instance, plants provide car-

bon to their mycorrhizal fungi in return for phosphorus, and plants provide nectar to many animals

in return for pollen transport. Although a great deal is known about the natural history of diverse

mutualisms, relatively little effort has yet been invested in the study of ecological and evolutionary

similarities among them (Bronstein 1994). This is particularly surprising in light of their perceived

importance in nature. All organisms are currently believed to associate with mutualistic species at

some point in their lives. Furthermore, mutualisms are thought to lie at the core of major transitions

in the history of life, including the origin of the eukaryotic cell and the invasion of land.

To understand mutualism in an evolutionary conservation context, it is important to distinguish it

from related phenomena with which it is often confused. Mutualism is an association between dif-

ferent species; it involves somewhat different evolutionary forces and poses different conservation

challenges than does cooperation within species (Dugatkin 1997). Not all mutualisms are symbioses

(intimate physical associations; Douglas 1994); many involve free-living organisms that associate

for only part of their lives. Free-living organisms are likely to be vulnerable to somewhat different

anthropogenic threats, which raises the interesting problem of how these mutualisms persist when

one, but not both, of the partners is at risk. Conversely, not all symbioses are mutualistic. Hence,

this chapter does not consider how anthropogenic change might affect the evolution of diseases

(which are antagonistic symbioses). Finally, not all mutualisms have long evolutionary or coevo-

lutionary histories. For instance, pairs of invasive species can sometimes form highly successful

mutualisms (Simberloff and von Holle 1999). Evolution may well occur after the association has

formed, however (Thompson 1994). Such evolution can change the specificity of the interaction

(from more specialized to more generalized, or vice versa), as well as its outcome (from mutualistic

to antagonistic, or vice versa).

The large majority of mutualisms are rather generalized: each species can obtain the commodi-

ties it requires from a wide range of partner species (Waser et al. 1996; Richardson et al. 2000).

Furthermore, many mutualisms are facultative, in the sense that at least some of the commodity can

be obtained from abiotic sources. However, many extremely specialized mutualisms do exist: they

are species-specific (i.e., there is only a single mutualist species that can provide the necessary com-

modity), and may be obligate as well (i.e., individuals cannot survive or reproduce in the absence

of mutualists). Box 3 provides details of one such specialized mutualism. Note that the degree of

specificity is not necessarily symmetrical within a mutualism. For instance, many orchid species

can be pollinated by a single species of orchid bee, whereas these bee species visit many different

orchids, as well as other plants (Nilsson 1992). The evolutionary flexibilities that result from these

asymmetries in specificity remain almost entirely unexplored.

We begin this chapter with a discussion of processes that foster the ecological and evolutionary

persistence of mutualisms. We go on to discuss the sequence of events that can endanger species

that depend on mutualists, in the context of some prominent forms of anthropogenic change. With

this background, we outline three scenarios for the possible outcomes when the mutualists of

a species of interest become rare – linked extinction, ecological resilience, and evolutionary re-

sponse – and distinguish the likelihood of each outcome based on whether the mutualism is rel-

atively specialized or generalized. As we show, simple evolutionary models can generate quite

useful predictions relevant to the conservation of mutualisms and other species interactions. Fur-

thermore, we show that modeling pairwise associations can form an excellent first step toward

addressing the fascinating, but much less tractable, problem of coevolution at the community

scale.
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2 Factors that Influence the Persistence of Mutualisms

The persistence of mutualisms has long been a puzzle. From the ecological perspective, the pos-

itive feedback inherent to mutualisms led May (1976) to characterize mutualisms as an unstable

“orgy of mutual benefaction”. Yet, at the same time, dependence on mutualists also raises the

likelihood of Allee effects (see Chapter 2 in Ferrière et al. 2004), in which the low abundance

of one species can doom its partner to extinction. From the evolutionary perspective, the ma-

jor threat to mutualism is the apparent selective advantage that accrues to individuals who reap

benefits from partner species without investment in costly commodities to exchange with them

(Axelrod and Hamilton 1981; Soberon Mainero and Martinez del Rio 1985; Bull and Rice 1991;

Bronstein 2001b). Slight cheats that arise by mutation could gradually erode the mutualistic in-

teraction, and lead to dissolution or reciprocal extinction (Roberts and Sherratt 1998; Doebeli and

Knowlton 1998). Although cheating has been assumed to be under strict control, recent empiri-

cal findings (reviewed by Bronstein 2001b) indicate that cheating is rampant in most mutualisms;

in some cases, cheaters have been associated with mutualisms over long spans of evolutionary

time (Després and Jaeger 1999; Pellmyr and Leebens-Mack 1999; Lopez-Vaamonde et al. 2001).

Recent theoretical advances have increased our understanding of the ecological and evolutionary

persistence of particular forms of mutualism (e.g., Holland and DeAngelis 2001; Law et al. 2001;

Yu 2001; Holland et al. 2002; Morris et al. 2003; Wilson et al. 2003).

Below, we introduce and discuss a simple general model to describe the ecological and evolu-

tionary dynamics of a two-species, obligate mutualism in a constant environment, first proposed

and analyzed by Ferrière et al. (2002). Details of the model are presented in Box 2.

Ecological persistence

The ecological component of the model extends standard Lotka–Volterra equations for mutu-

alisms. Each mutualistic species is characterized by:

• Its intrinsic growth rate;

• The rate at which it provides commodities to partners (e.g., services such as pollination and

rewards such as nectar, see Box 1);

• Parameters that measure the strength of intraspecific competition for the commodities that

partners provide in return, as well as for other resources.

The direct cost of producing commodities impacts the intrinsic growth rate of each species, an

effect modeled by discounting a baseline intrinsic growth rate by a cost function for a specific

commodity.

The model predicts that the ecological persistence of a mutualism is determined by three types

of factors (Box 2):

• Individual life-history traits: the baseline intrinsic growth rates and the shape of the com-

modity cost functions.

• Interaction traits: the specific rates of commodity provision, and the strength of intraspecific

competition for commodities provided by partners and for other resources.

• Species abundance: an Allee effect occurs that results in thresholds on each species’ popu-

lation size below which mutualism cannot persist.

Individual and interaction traits combine in a complex manner to determine the ecological via-

bility of mutualisms and the minimum thresholds that each population size must exceed for the

association to persist. Yet, in general, for fixed individual and competition parameters, ecological

viability is achieved provided the rates of commodity provision are neither extremely low nor too
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Box 2 Ecology and evolution of specialized mutualisms: a simple model

We describe the obligate and specialized mutualistic interaction between species X (density NX )

and species Y (density NY ) by a simple Lotka–Volterra model,

dNX

dt
= [−rX (x) − cX NX + y NY (1 − αNX )]NX , (a)

dNY

dt
= [−rY (y) − cY NY + x NX (1 − β NY )]NY . (b)

The mutualistic traits x and y are measured as per capita rates of commodities traded (a visitation

rate by a pollinator, for example); thus, x NX and y NY represent the probabilities per unit time that

a partner individual receives benefit from a mutualistic interaction. Intraspecific competition for

commodities provided by the partner species is expressed by the linear density-dependent factors

(1 − αNX ) and (1 − β NY ), as in Wolin (1985). The terms −cX NX and −cY NY measure the

detrimental effect of intraspecific competition on other resources. The mutualism being obligate,

the intrinsic growth rates −rX (x) and −rY (y) are negative, and rX (x) and rY (y) increase with x and

y, respectively, to reflect the costs of mutualism.

Ecological dynamics. A standard analysis of the thus defined ecological model shows that the

situation in which both species are extinct, NX = 0 and NY = 0, is always a locally stable equi-

librium. Depending on the trait values x and y, two inner equilibria may also exist in the positive

orthant, one being stable (a node) and the other being unstable (a saddle). The transition between

the two cases (zero or two equilibria in the positive orthant) is caused by a saddle–node bifurcation.

The corresponding bifurcation curve is the closed, ovoid curve depicted in Figures 1a to 1c, which

separates a region of trait values that lead to extinction from the domain of traits that correspond to

viable ecological equilibria.

A mathematical approximation of mutation–selection processes. By assuming that ecological

and evolution processes operate on different time scales and that evolution proceeds through the

fixation of rare mutational innovations, the rates of change of traits x and y on the evolutionary time

scale are given by (Dieckmann and Law 1996)

dx

dt
= εX N∗

X

∂ fx

∂x ′

∣

∣

∣

∣

x ′=x

, (c)

dy

dt
= εY N∗

Y

∂ fy

∂y ′

∣

∣

∣

∣

y′=y

. (d)

Parameters εX and εY denote evolutionary rates that depend on the mutation rate and mutation step

variance (see Box 11.3 in Ferrière et al. 2004 for further details); N∗
X and N∗

Y are the equilibrium

population densities of resident phenotypes x and y (these factors occur because the likelihood of

a mutation is proportional to the number of reproducing individuals); fX (x ′, x, y) and fY (y ′, x, y)

are the invasion fitnesses (defined as per capita rates of increase from initial rarity; Metz et al. 1992)

of a mutant phenotype x ′ of species X and of a mutant phenotype y′ of species Y in a resident

association x, y.

Evolutionary dynamics under symmetric versus asymmetric competition. Competition between

two individuals is symmetric if the detrimental effect of their competitive interaction is the same

on both individuals; otherwise, their competition is asymmetric. With symmetric competition, we

have ∂ fX = −r ′
X (x)∂x and ∂ fY = −r ′

Y (y)∂y. Therefore, from any ancestral state, the process of

mutation and selection causes the monotonic decrease of the traits x and y toward zero. Thus, all

evolutionary trajectories eventually hit the boundary of ecological viability. Asymmetric competi-

tion between two phenotypes of species X that provide commodities at different rates is modeled

by replacing the constant competition coefficient α with a sigmoid function of the difference in the

rate of commodity provision (Matsuda and Abrams 1994c; Law et al. 1997; Kisdi 1999). With

such a function, a large positive difference implies that α approaches its minimum value, whereas

a large negative difference results in a value of α close to its maximum. The absolute value of

the slope of this function at zero difference then provides a measure of the degree of competitive

continued
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Box 2 continued

asymmetry. Likewise, we can define an asymmetric competition function β for species Y . The

first-order effect on fitness induced by a small difference ∂x in the rate of commodity provision

is then equal to ∂ fX = [−r ′
X (x) + α′y N∗

X N∗
Y ]∂x , where N∗

X and N∗
Y are the population equi-

libria that are solutions of −rX (x) − cX NX + y NY [1 − α(0)NX ] = 0 and −rY (y) − cY NY +
x NX [1 − β(0)NY ] = 0, and α′ =

∣

∣α′(0)
∣

∣ is the degree of competitive asymmetry. Likewise, we

obtain ∂ fY = [−r ′
Y (y) + β ′x N∗

X N∗
Y ]∂y, with β ′ =

∣

∣β ′(0)
∣

∣. The intersection point of the isoclines

∂ fX /∂x = 0 and ∂ fY /∂y = 0 defines a so-called evolutionary singularity (Geritz et al. 1997; Chap-

ter 11 in Ferrière et al. 2004). To investigate the existence and stability of this point, we performed

an extensive numerical bifurcation analysis with respect to the degrees of asymmetry α′ and β ′;
these parameters have the convenient property that they do not influence the ovoid domain of traits

(x, y) that ensure ecological persistence. In general, there is a wing-shaped region of parameters

α′ and β ′ in which the evolutionary singularity exists as a stable node within this domain (see gray

area in Figure 1d). Interestingly, the effect of changing the evolutionary rates εX and εY is confined

to the “tips” of this wing-shaped region – neither the front edge nor the back edge is affected by

these parameters, whereas increasing (decreasing) the ratio εX/εY shifts the tips toward the upper

left (lower right).

high. At the boundary of the set of commodity provision rates that permit ecological persistence,

the system undergoes a catastrophic bifurcation and collapses abruptly.

Evolutionary persistence

The model described here (Ferrière et al. 2002) provides a general explanation for the evolution-

ary origin of cheaters and the unexpected stability of mutualistic associations in which cheating

occurs. To identify factors that promote the evolutionary persistence of mutualism, we incorpo-

rate an evolutionary dimension within the ecological model by assuming that the partners’ rates

of commodity provision can be subject to rare mutation. The resultant coevolutionary dynamics

follow the selection gradients generated by the underlying ecological dynamics (Box 2; Hofbauer

and Sigmund 1990; Abrams et al. 1993; Dieckmann and Law 1996; Chapter 11 in Ferrière et al.

2004), and can have a dramatic impact on the long-term persistence of the association. If individ-

uals compete with equal success for the commodity provided by the partner species, regardless of

how much those competing individuals invest in mutualism (symmetric competition), long-term

evolutionary dynamics will always drive the association toward the boundary of the ecologically

viable region of the trait space, irrespective of the ancestral state; this results in evolutionary sui-

cide (Chapter 11 in Ferrière et al. 2004). The mutualism erodes because cheating mutants that

invest less in mutualism are under no competitive disadvantage and thus are always able to in-

vade, which ultimately drives the partner species to extinction. However, as a rule, competition

in nature is asymmetric (Brooks and Dodson 1965; Lawton 1981; Karban 1986; Callaway and

Walker 1997). Clearly, if any competitive asymmetry within either species gives an advantage to

individuals that provide fewer commodities, the evolutionary suicide described above would be

unavoidable. By contrast, individuals often discriminate among partners according to the quantity

of rewards they provide, and associate differentially with higher-reward producers (e.g., Bull and

Rice 1991; Christensen et al. 1991; Mitchell 1994; Anstett et al. 1998). Such a competitive pre-

mium, in effect, generates a selective force that can counter the pressure to reduce the provision

of commodities.

Three outcomes are then possible (Figure 1d), depending on the strength of the asymmetry:

• At intermediate degrees of competitive asymmetry, the mutualistic association evolves to-

ward an ecologically viable evolutionary attractor (Figure 1a). Two things can happen at
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Figure 1 Competitive asymmetry and the evolutionary persistence of mutualism. The ovoid domain delin-

eates the adaptive rates x and y of commodity provision by each species that make the mutualistic associ-

ation ecologically viable. Each oriented curve depicts an evolutionary trajectory that starts from a different

ancestral phenotypic state. (a) Convergence toward an evolutionary attractor that is ecologically viable

(filled circle). Specific degrees of competitive asymmetry are α′ = 0.035 and β ′ = 0.035. (b) Evolutionary

suicide through selection of ever-reduced mutualistic investments (α′ = 0.01 and β ′ = 0.01). (c) Evolu-

tionary suicide by runaway selection for ever-increased mutualistic investments (α′ = 0.20 and β ′ = 0.40).

(d) Dependence of the adaptive dynamics regime on the degrees of competitive asymmetry in species X

and Y , as measured, respectively, by
√

α′ (horizontal axis) and
√

β ′ (vertical axis). The gray area shows

the convergence to an evolutionary attractor that is ecologically viable; the blank area shows evolutionary

suicide. The curves (continuous and dashed) that delineate the wing-shaped gray area are bifurcation curves

obtained from the numerical analysis of Equations (c) and (d) in Box 2 (see Ferrière et al. 2002 for further

details). Points (a), (b), and (c) correspond to the panels (a), (b), and (c). Parameters: rX (x) = 0.01(x +x2),

rY (y) = 0.01(y + y2), cX = 1, cY = 2. Source: Ferrière et al. (2002).

this point: either selection stabilizes the mutualism or it turns disruptive. In either case, the

association persists in the long term.

• If the asymmetry is too weak in either species, a selective pressure that favors a lower provi-

sion of commodities predominates in that population. As the total amount of commodities

offered to the partner species decreases, the selective pressure induced by competitive asym-

metry in the partner weakens, and selection to reduce the provision of commodities takes

over on that side of the interaction also. Extinction is the inexorable outcome (Figure 1b).

• If the asymmetry is too strong on either side, the selective pressure that favors the provision

of more commodities predominates, which causes runaway selection until the costs incurred

are so large that the association becomes non-viable. Again, extinction is the outcome

(Figure 1c).

Thus, ecological stability alone cannot provide a sufficient condition for the evolutionary persis-

tence of a mutualism subject to natural selection. According to the analysis above, evolutionary

suicide is expected to be a general property of mutualisms that involve too little or too much

asymmetry in intraspecific competition for commodities provided by partners.
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3 Anthropogenic Threats to Mutualisms

The ability of mutualisms to persist both on a short-term ecological time scale and on a longer-term

evolutionary time scale, therefore, is closely related to the partners’ life histories, behaviors, and

abundances. Hence, any form of anthropogenic change that impacts these variables will threaten

mutualisms. Below we address the known effects on mutualisms of two of the most serious an-

thropogenic threats, habitat fragmentation and biological invasions.

Habitat fragmentation

One of the more striking effects of human land use, and one that has increased dramatically in

recent decades, is habitat fragmentation. Fragmentation, a phenomenon treated in depth in Part D,

creates small populations from large ones by weakening or severing their linkage through disper-

sal. At the species level, problems caused by habitat fragmentation include increases in genetic

drift, inbreeding depression, and demographic stochasticity (Chapter 4 in Ferrière et al. 2004).

As discussed in Chapter 14 in Ferrière et al. 2004, diverse adaptive responses to fragmentation

can be expected. Habitat fragmentation is of major concern beyond the species level also, since

organisms can experience the effects of fragmentation indirectly, via its effects on the species with

which they interact either positively or negatively.

Habitat fragmentation can impact all the factors that promote the ecological and evolutionary

persistence of mutualisms. Reductions in the population size of one species caused by fragmen-

tation can lead to failure of their mutualists as well, with a resultant local ecological instability.

Aizen and Feinsinger (1994), for example, documented that the loss of native bee pollinators from

forest fragments in Argentina reduced the seed production of about 75% of plant species within

those fragments; reproduction of some species ceased almost entirely. Habitat loss and edge ef-

fects may reduce habitat quality for mutualists, and thus mutualist population sizes as well (Jules

and Rathcke 1999). Intrinsic life-history traits and behaviors of mutualists may also be disrupted

by fragmentation. For instance, habitat patches may become so isolated that mobile species be-

come unable or unwilling to travel between them (Goverde et al. 2002); this affects the degree to

which they provide mutualistic services and potentially alters the mode and intensity of intraspe-

cific competition for these services. Ultimately, persistent isolation of local populations caused

by fragmentation may lead to evolutionary changes in life-history traits linked to mutualism (e.g.,

Washitani 1996), although many other outcomes are also possible (see Sections 4 and 5).

Biological invasions

If the loss of partners can raise a major ecological threat to mutualisms, the reverse phenomenon

– the addition of new species – can be at least equally problematic. A useful rule of thumb is that

roughly 10% of the introduced species become established and 10% of these become troublesome

Argentine ant
Linepithema humile

pests (Williamson and Brown 1986), commonly in the context of in-

terspecific interactions in their new habitat.

Biological invasions pose a number of threats to mutualisms.

Predatory, parasitic, and pathogenic invaders can greatly reduce na-

tive populations or alter their life-histories and behaviors, with strong

ecological impacts on the mutualists of those natives. For example,

the Argentine ant, a particularly successful invader worldwide, can

decimate populations of ground-dwelling insects (Holway 1998). In

Hawaii, these ants substantially reduce insect-pollinator abundance,

with potentially disastrous consequences for the persistence of native plants (Cole et al. 1992).

Invaders can sometimes outcompete and displace native mutualists, generally to the detriment of
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their partner. Bond and Slingsby (1984) documented how the Argentine ant replaced native ant

species as the seed disperser of South African Proteaceae, which has led to a reduced seedling

establishment. Its preference for seeds that bear relatively small food bodies (elaiosomes) has re-

sulted in a shift in local plant communities toward dominance by species with seeds that contain

the preferred rewards (Christian 2001). Perhaps the most important case of mutualist replacement

is the honeybee, intentionally transported by humans worldwide, but often a rather poor pollinator

compared to the native insects they displace competitively (Buchmann and Nabhan 1996; Kearns

et al. 1998). Invaders may ultimately induce evolutionary modifications in interactions within and

between species. Such effects have not yet been demonstrated for mutualisms, although they are

well-documented for certain other kinds of interaction (e.g., Singer et al. 1993).

Not all introduced species have negative impacts, however. Certain invaders join native mutual-

ist assemblages with no measurable negative effects on the residents, and probably some positive

effects (Richardson et al. 2000). Furthermore, invaders can fill the gap created when a native

Honeybee
Apis mellifera

mutualist has been driven to extinction, saving its partner from a similar

fate. For example, an introduced opossum is now an effective pollina-

tor of Freycinetia baueriana, a New Zealand liana that has lost its bat

pollinator (Lord 1991). In the same vein, Janzen and Martin (1982)

argued convincingly that numerous tree and shrub species in Central

America still exhibit traits for seed dispersal by gomphotheres, large

herbivorous mammals extirpated about 10 000 years ago, quite possibly

through overhunting by humans (Martin and Klein 1984). Yet many of

these plants thrive today, dispersed effectively by introduced livestock

not too different ecologically from their extinct, coevolved dispersers.

Other anthropogenic threats

Other anthropogenic threats to mutualism are well known, but have been investigated less, so

that their impact on factors that promote the ecological and evolutionary persistence of these in-

teractions remains unclear. For example, agriculture clearly poses numerous problems for native

plant–pollinator interactions. One problem of particular evolutionary interest is introgression from

genetically engineered crop plants into related wild species (Snow and Palma 1997), which can

alter the floral traits that attract pollinators (Lee and Stone 1998). Pollutants impact many mutu-

alisms: the effects of automobile exhaust on lichen symbioses (Lawrey and Hale 1979), agrochem-

icals on pollinators (Buchmann and Nabhan 1996), and acid rain on endophytic fungi (Helander

et al. 1996; Lappalainen et al. 1999) are particularly well documented. Finally, it has been rec-

ognized increasingly that global change impacts diverse species interactions (Kareiva et al. 1993).

For example, elevated levels of CO2 have both direct and indirect effects on mutualisms between

plants and their root symbionts (Thomas et al. 1991; Diaz 1996; Staddon and Fitter 1998).

Which mutualisms are most at risk?

A major goal of conservation biology is to turn isolated case histories, like those summarized

above, into testable predictions as to which species can be expected to be most vulnerable to

anthropogenic change. One prediction has been cited repeatedly: organisms that are obligately

dependent on a single species have the most to lose from the disruption of that mutualism. In

contrast, organisms dependent on a broader array of species, or that succeed to some extent without

mutualists at all, are believed to be somewhat buffered from the effects of such disruption. In

the following two sections we consider first how specialized mutualisms, and then how more

generalized mutualisms, are expected to respond to anthropogenic change.
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4 Responses of Specialized Mutualisms to Threats

To summarize so far, we have seen that any force of anthropogenic change that drives down

the numbers of one species can reduce indirectly the success of organisms dependent upon that

species. What are the likely consequences for species with narrow or strict dependences on threat-

ened species? (A classic example of a species-specific, obligate mutualism commonly thought to

be at great risk from anthropogenic change is the interaction between fig trees and their fig-wasp

pollinators, described in Box 3.) We consider three scenarios here:

• An ecological vortex in which both species dwindle to extinction;

• Ecological resiliency that buffers organisms from a fate similar to their mutualists;

• Evolutionary responses that rescue organisms from their mutualists’ fate.

Rarity of coextinction?

We have already cited several examples in which anthropogenic impacts to one species have re-

duced indirectly the success of its mutualists. Interestingly, however, there is no documented case

in which such joint failure has led to a linked extinction, at either the local or global scale. The

Mauritian dodo
Raphus cucullatus

case of the dodo and the tambalacoque tree is often cited in this con-

text, but mistakenly. The dodo, a bird endemic to Mauritius, was

hunted to extinction in the 1700s; this has supposedly driven to near

extinction an endemic tree with seeds that could be dispersed by

the dodo only (Temple 1977). However, more recent investigations

show that over the past 300 years new individuals have been recruited

into the tree population, which implicates another disperser or dis-

persers. Furthermore, morphological evidence suggests that the dodo

was probably more of a seed predator than a mutualistic seed dis-

perser (Witmer and Cheke 1991).

What explains the apparent rarity of coextinction? We can offer

three possibilities. First, it is perhaps only very recently that ecolog-

ical conditions conducive to this phenomenon have appeared. This

seems highly unlikely. Although the current biodiversity crisis is ap-

parently generating a higher extinction rate than any previous mass extinction event (Wilson 1992),

probably 99% of all species that have ever existed on Earth are now extinct, which indicates that

the risk of coextinction is certainly not a new problem. It may well be a growing problem, however.

Second, and much more likely, an absence of evidence may not be evidence of absence: coex-

tinction may actually occur, but be extremely difficult to detect. To determine the underlying cause

of any extinction is problematic, in part because, as discussed in Part A of this book, many factors

interact to doom populations once they are critically small. Also, the ability of paleontological

data to reveal linked extinctions is limited: the fossil record rarely offers evidence as to why a

given species has disappeared, and its temporal resolution is nearly always too crude to test an

ecological hypothesis such as this. Our best hope to document coextinction may be to observe it in

the field while it is happening, although if we see it, it is likely that we would attempt to prevent it.

The final possibility as to why coextinctions have not been documented is that mutualisms

might be more resilient to change than we have given them credit for. The evolutionary past may

have endowed mutualisms with some capacity to respond, ecologically or evolutionary, to current

and future challenges – even in situations that, logically, we might expect would doom them. We

wish to stress that we do not intend to trivialize the risk of coextinction. However, by investigating

the kinds of mutualisms that seem to have evolved some ecological or adaptive resilience against

coextinction, we can better focus our most intensive conservation efforts on those that do not.



– 10 –

Box 3 Is the fig-pollinator interaction a threatened mutualism?

The mutualism between fig trees (about 750 Ficus species) and their pollinator wasps (family

Agaonidae) has long served as a model for the intricate adaptations and extreme specialization that

coevolution can produce. Most fig species are pollinated exclusively by a single species of fig wasp,

which in turn is associated with a single fig species. The female wasps pollinate fig inflorescences,

then deposit their eggs in certain flowers. Their offspring feed on the developing seeds. When the

wasps are mature, they mate; the females collect pollen and then depart in search of an oviposi-

tion site. Trees within a fig population generally flower in tight within-tree synchrony, but out of

synchrony with each other, which forces the wasps to depart their natal tree. Hence, figs sacrifice

some proportion of their seeds to guarantee that their pollen will be dispersed effectively among

individuals (Bronstein 1992; Anstett et al. 1997a; Weiblen 2002).

Figs are thought to be of exceptional conservation significance, yet subject to exceptional threats

from anthropogenic change (McKey 1989; but see Compton and McCormack 1999). Their signifi-

cance is linked to their unusual phenology. Since trees flower out of synchrony with each other, they

also fruit out of synchrony; this provides one of the only year-round food sources for vertebrates in

tropical habitats (Shanahan et al. 2001a). Their vulnerability, however, is an outcome of this same

phenology. Fig wasps are tiny and fragile, and live a day or two at most as adults. During this

brief period, they must transit large distances in search of their single mutualist species. Simula-

tion models indicate that fairly high numbers of trees must be present within their flight range to

give them any chance of locating a flowering individual (Bronstein et al. 1990; Anstett et al. 1995,

1997b). Habitat alterations that reduce their chances further – removal of fig trees, fragmentation of

their habitats, pesticide spraying, etc. – are likely to lower the success of fig fruiting, with potentially

disastrous consequences for vertebrate populations.

However, a number of very recent discoveries about this mutualism suggest that it exhibits more

resilience than once thought:

� First, its level of specificity is lower than commonly believed: some figs have different pol-

linator species in different parts of their range, or even multiple pollinators at a single site

(Rasplus 1996).

� Second, figs have remarkable adaptations to attract pollinators from long distances (Gibernau

and Hossaert-McKey 1998), as well as adaptations that allow the inflorescences to persist for

weeks while waiting for pollinators to arrive Khadari et al. 1995).

� Finally, fig wasps regularly travel far longer distances than they were once given credit for

(Nason et al. 1998).

These traits help account for situations in which fig–pollinator mutualisms have been re-established

rapidly after major disruptions (Bronstein and Hossaert-McKey 1995; but see Harrison 2000). They

may also explain why, although species-specific pollination is certainly an important limit to range

extension [since figs cannot occur where their pollinator is unable to persist or disperse (Kjellberg

and Valdeyron 1990)], figs can also be surprisingly effective colonizing species (Shanahan et al.

2001b), as well as aggressive invaders in some habitats (McKey 1989).

Past adaptations that promote ecological resiliency

Generalization (Section 5) is often considered as a characteristic that buffers mutualisms from an-

thropogenic change. When specialized mutualisms are examined closely, however, it is discovered

that they, too, exhibit adaptations that confer some resiliency. (Some of these are summarized in

Box 3, for the fig pollination mutualism.) The explanation for the existence of these traits seems

fairly straightforward: even in the absence of anthropogenic change, most natural environments

are extremely variable. Surely, the only highly specialized and/or obligate mutualisms that have

been able to persist to the present day are those able to persist in the face of variability. Below we

consider three kinds of adaptations that help specialists survive in fluctuating environments: an

ability to wait, an ability to move, and an ability to generalize. [See Bond (1995) for an expanded
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discussion of these and other such traits.] We then consider the degree to which these traits can

rescue species from anthropogenic change.

We can find no examples of mutualism in which each of the two species has a single opportunity

in its life to attract the single partner upon which it depends. In the face of anything other than an

extremely constant environment and high population sizes of mutualists, such a relationship seems

doomed to failure. Rather, at least one of the two species has the opportunity to acquire mutualists

either continuously or at repeated intervals. In either case, that organism possesses some ability

to persist for a while without mutualists (although it possibly experiences reduced success while

it waits). For instance, certain flowers can persist in a receptive state for days or weeks until

pollinators arrive (Primack 1985; Khadari et al. 1995), and orchid seeds do not germinate until

they are invaded by their obligate beneficial mycorrhizae (Dressler 1981). Finally, many organisms

can experience at least minimal success even when mutualists are entirely absent. That is, their

mutualisms may be specialized, but they are not obligate. For example, plants may reproduce

largely by self-pollination during intervals when pollinators are absent, though the offspring that

result are likely to be genetically inferior to those produced in the presence of mutualist pollinators.

Organisms that can wait for mutualists are, as a rule, relatively immobile. Mobile species

exhibit other suites of traits that increase the success of their mutualisms. Certain organisms,

both terrestrial and aquatic, show remarkable abilities to track species-specific volatile substances

released by physically distant, immobile mutualists (Ware et al. 1993; Brooks and Rittschof 1995;

Elliott et al. 1995; Takabayashi and Dicke 1996). Larger and more cognitively advanced species

learn where mutualists are likely to be found, and can shift to new areas when this distribution

changes (Bronstein 1995).

Finally, specialists often have greater potential to associate successfully with the “wrong” mu-

tualist than we usually realize, because the switch only occurs (or is only obvious) when the “right”

Fig wasp (on fig)
Courtella wardi

mutualist is rare or absent. For example, many bees, termed oligolec-

tic species, visit only one or a very few plant species for pollen. When

flowering of the usual host fails, many of these bees can shift suc-

cessfully to plant species with which they are almost never associated

under normal conditions (Wcislo and Cane 1996). At a very low, but

detectable, frequency native fig wasps visit fig species that have been

introduced without their own pollinators (McKey 1989; Nadel et al.

1992); if the native and exotic figs are related closely enough, both

partners within the mismatched relationship are able to reproduce,

although generally at reduced rates (Hossaert-McKey, unpublished

data).

What is the significance of these adaptations for life in environments that vary naturally, in a

conservation context? They allow organisms with specialized mutualisms to cope with anthro-

pogenic change at the mesoscale (i.e., change that is relatively local and relatively short in dura-

tion). They eliminate the risk of failing catastrophically in response to a brief absence of partners,

and they permit populations to persist for some time when mutualists are in decline. On the other

hand, this situation cannot necessarily continue for protracted periods. Fitness is likely to decline

eventually and, with it, population sizes; as populations decline, inbreeding and other detrimental

genetic effects follow. Ultimately, the degree of resiliency offered by these traits depends on:

• The nature and spatiotemporal scales of human disturbance, particularly with reference to

the nature and scales of variation that the species of interest has experienced historically.

• The species’ ability to evolve further in response to environmental change.
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Evolutionary responses

There is abundant evidence that anthropogenic change initiates evolutionary responses within

species involved in antagonistic interactions. For example, native animals can evolve to feed effi-

ciently on novel food items (Singer et al. 1993) and to resist novel pathogens (Dwyer et al. 1990).

Hawaiian honeycreeper

(Iiwi)
Vestiaria coccinea

Phenomena like these have barely been investigated in mutualistic in-

teractions, although it seems probable that they exist. In the only such

study that we know, Smith et al. (1995) demonstrated that a Hawaiian

honeycreeper (whose coevolved nectar plant was driven to extinction)

has evolved a bill shape within the past 100 years that allows it to feed

from a more common native species.

The model introduced in Section 2 yields some insights into the eco-

logical and evolutionary dynamics of specialized mutualisms in a slowly

changing environment. Although a comprehensive analysis lies beyond

the scope of this chapter, a graphic interpretation of Figure 1d suffices

to illustrate the potentially dramatic consequences on the viability of

a mutualism’s evolutionary response to environmental change. Environ-

mental change that affects the degree of competitive asymmetry in one or the other species is likely

to lead to “evolutionary trapping” (Chapters 1 and 11 in Ferrière et al. 2004): as the coefficient

of asymmetry in one species slowly decreases or increases, the association tracks an evolutionary

attractor that eventually becomes unviable. This can be seen in Figure 1d: given that the asym-

metry coefficient is fixed for one species, there is a bounded range of asymmetry coefficients for

its mutualist species that permits evolutionary stabilization at an ecologically viable equilibrium.

When environmental change causes this parameter to hit the limits of its range, coextinction oc-

curs through rapid evolutionary suicide of the kind depicted in Figure 1c (when the asymmetry

coefficient hits the upper threshold), or in Figure 1b (when the asymmetry coefficient reaches the

lower threshold). Interestingly, the range of asymmetry coefficients that one population may span

without compromising the evolutionary persistence of the whole association is larger if the degree

of competitive asymmetry and/or the level of genetic variability in the partner species is low.

At present, empirical data that would allow direct assessments of whether potentially disas-

trous evolutionary trajectories are occurring or will occur are lacking. However, we can offer one

suggestion of a likely situation in which such a development may have already started. It has

recently been shown that elevated CO2 levels and global warming can alter flowering phenology

and flower nectar volumes in certain plant species (Erhardt and Rusterholz 1997; Ahas et al. 2002;

Fitter and Fitter 2002; Inouye et al. 2002; Dunne et al. 2003). Phenologies of different species

appear to be shifting to different degrees, and in different directions: for example, Fitter and Fitter

Emerald toucanet
Aulacorhynchus prasinus

(2002) report that while 16% of British flowering plants are flowering sig-

nificantly earlier than in previous decades (with an average advancement

of 15 days in a decade), another 3% of species are flowering significantly

later than they once did. This is likely to result in novel groups of plant

species blooming simultaneously, between which individual pollinator

species are becoming able to choose for the first time. Plants that are cur-

rently highly preferred and relatively specialized nectar resources may

progressively become disfavored by their pollinators, as more rewarding

plant species previously matched with other pollinators come into com-

petition for the first time. Conversely, previously disfavored plants may

slowly gain competitive advantage among newly coflowering species that are even less rewarding.

It would thus seem wise to initiate studies of changing mutualisms within changing communities

now, so as to be able to predict and possibly prevent incipiently suicidal evolutionary trajectories.
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5 Responses of Generalized Mutualisms to Threats

In generalized mutualisms, species gain benefits from multiple partner species rather than a single

one. For example, in contrast to the obligate species-specific mutualism between figs and fig

wasps (Box 3), figs are involved in facultative and highly generalized mutualisms with the birds

and mammals that disperse their seeds. There are at least three ways in which generalization can

buffer mutualisms from a changing environment:

• Rarity or extinction of one species is unlikely to drive the reproductive success of its mutual-

ist to zero, because other beneficial partners are still present. Even in relatively undisturbed

habitats, one commonly sees great year-to-year and site-to-site variation in the diversity

of mutualist assemblages (e.g., Horvitz and Schemske 1990; Jordano 1994; Alonso 1998);

quite commonly the success of individual species that benefit from these assemblages does

not track that variation closely.

• Loss of one partner can spur increases in the abundance of alternative partners that might

previously have been excluded or suppressed competitively; these alternative partners can

be equally effective, or even more effective, mutualists (e.g., Young et al. 1997).

• Finally, the fairly generalized traits involved in the attraction and reward of diverse mutu-

alists can function to attract and reward partners that may have no common evolutionary

history with that species. One such adaptation is the elaiosome, a small lipid-rich body at-

tached to certain seeds, which has evolved multiple times and which appeals to diverse seed-

dispersing ants worldwide (Beattie 1985). Invasive plants with elaiosomes are commonly

dispersed by native ants (Pemberton and Irving 1990), while native plants with elaiosomes

can be dispersed (although often comparatively poorly) by invasive ants (Bond and Slingsby

1984; Christian 2001).

Despite such buffering, there is no doubt that in recent years generalized mutualisms have suf-

fered major impacts from anthropogenic change. Three examples of the disruption of generalized

plant–pollinator mutualisms should suffice to make this point:

• Aerial spraying of herbicides in Eastern Canada during the 1970s catastrophically decreased

populations of generalist bee pollinators. Subsequent reproductive failures in both native

and crop plants have been well documented (Thomson et al. 1985).

• Shrinking and increasingly isolated plant populations may fail to attract pollinators, which

leads to Allee effects that draw populations downward toward extinction (Groom 1998;

Hackney and McGraw 2001).

• Invasive plants can outcompete native species for pollination services, which results in the

local decline of native populations. For example, purple loosestrife, a weed introduced to

North America, has been reducing both the pollinator visitation and subsequent seed set of

a native congener (Brown et al. 2002).

What kinds of evolutionary dynamics in response to anthropogenic change can be expected in

generalized mutualisms like these? To address this question, it becomes clear that one must adopt

a perspective that goes beyond the purely pairwise approach that has characterized most theoreti-

cal work on mutualism (Stanton 2003). Here we introduce a simple adaptive dynamics model to

illustrate the disturbing potential for evolutionary ripple effects to cascade through more complex

ecological communities. More generally, we can look upon this model as a contribution toward

elucidating the importance of community context when addressing questions in evolutionary con-

servation biology (Chapter 17 in Ferrière et al. 2004).
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1 2

3 4

Figure 2 A pairwise mutualistic community. The strengths of mutualistic interactions (continuous lines)

between four species depend on their level of coadaptation. Dashed lines depict competitive interactions.

In this model, the mutualistic interactions can evolve, such that species 2 and 3 can gradually switch be-

tween their primary (species 1 and 4, respectively) and secondary mutualistic partners (species 3 and 2,

respectively).

Flexible mutualistic coadaptation

We focus on an ecological community that comprises two pairs of mutualistic species. This setup

is chosen because switches between alternative mutualistic partners are important (as highlighted

in Section 3), and also in an effort to keep matters tractable. In Figure 2 species 1 and 2, as well

as species 3 and 4, are coupled through mutualistic interactions. In addition, species 2 and 3 can

also engage in mutualism, as can species 1 and 4; thus, all four species potentially are generalists,

within the bounds of this simple community structure. We can think, for example, of species 1

and 3 as two plants and of species 2 and 4 as two pollinators: species 2 can then pollinate both

plants, and species 3 can be pollinated by both pollinators. The alternative couplings (i.e., 2 with

3, and 1 with 4) are, however, less efficient than the primary couplings (i.e., 1 with 2, and 3 with 4)

in enabling the mutualistic exchange of commodities such as pollen and pollination. Intraspecific

competition is present in all four species, and we also consider interspecific interactions between

species 1 and 3 on the one hand, and between species 2 and 4 on the other. Representing this basic

setup in terms of Lotka–Volterra systems leads to the model described in Box 4.

Coevolutionary responses to environmental disturbances

We can now utilize this four-species model to explore the evolutionary and coevolutionary impli-

cations of changing environmental conditions. We start from a situation in which all the species

are adapted so as to be maximally efficient in exchanging commodities with their primary partners,

and thus much less efficient when associated with their alternative partners. We then change a sin-

gle parameter of the model, equivalent to reducing the carrying capacity of species 1 by a factor

of 10. This effectively models a situation in which anthropogenic change has altered species 1’s

environment in a way that makes it less suitable for these organisms. In response, we can observe

one of the following three dynamical patterns of community reorganization (Figure 3):

• Primary reorientation and primary extinction. The reduction in species 1’s carrying capac-

ity makes it a much less attractive mutualistic partner for Species 2, so species 2 adapts

to maximize its coupling with its alternative partner, species 3. We refer to this initial

evolutionary response to the imposed environmental change as primary reorientation, and

use analogous terms to refer to the subsequent events. Now that the benefit of mutualism

received by species 1 from species 2 has been withdrawn, species 1 becomes extinct (Fig-

ure 3a). Notice that this extinction is not a direct consequence of the imposed environmental

change, but, instead, is caused by the evolutionary dynamics that are triggered by the im-

posed environmental change.

• Primary reorientation, primary extinction, and secondary reorientation. After the imposed

environmental change has reduced the abundance of species 1, species 2 specializes on

species 3. Further evolutionary change may then ensue. In particular, because of its re-

orientation, species 2 becomes a more attractive partner for species 3, which may induce
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Box 4 Modeling eco-evolutionary responses of generalized mutualisms to threats

A simple adaptive dynamics model for an ecological community that comprises two pairs of mu-

tualistic species (Figure 2) can be constructed as follows. Using a basic Lotka–Volterra model

architecture (Box 2), the per capita growth rates in species i = 1, ..., 4 are given by ri +
∑

j ai j Nj

with intrinsic growth rates ri and population densities Ni . The symmetric community matrix a con-

tains elements a11 = −c11, ..., a44 = −c44, which describe intraspecific competition, and elements

a13 = a31 = −c13, a24 = a42 = −c24, which describe interspecific competition. We assume that

species 1 and 4 do not interact, a24 = a42 = 0. The remaining six elements of a describe mutualistic

interactions and are determined as follows.

Each species possesses an adaptive trait xi , bounded between 0 and 1, that describes its degree of

adaptation to its primary partner (i.e., of species 1 to species 2, of species 2 to species 1, of species 3

to species 4, and of species 4 to species 3), while 1 − xi describes the degree by which species i is

adapted to its secondary partner (i.e., of species 2 to species 3 and vice versa; species 1 and 4 have

no secondary partner). In the case of plant–pollinator interactions, the adaptive traits could represent

morphological or phenological characters. The strength of mutualistic interactions is ai j = ci j mi j ,

where j is either the primary or secondary partner of species i and ci j = cj i scales the strength of

their interaction. We assume that the level of coadaptation, which describes how well the relevant

adaptations in species i and j match, is given by mi j = ei j xi j x j i + (1 − ei j )[1 − (1 − xi j )(1 − x j i)].
Here, xi j is the degree of adaptation of species i to species j , which equals xi if j is the primary

and 1 − xi if j is the secondary partner. The parameters ei j = ej i measure how essential mutual

adaptation is to the strength of the mutualistic interaction. When ei j is high, the first term in mi j

dominates, such that both xi j and x j i have to be high for the interaction to be strong. By contrast,

when ei j is low, the second term in mi j allows the interaction to be strong if only one species is

adapted to the partner, regardless of how well the partner itself is adapted. Variations in the resultant

levels of matching are illustrated in the figure below.
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A high level of matching may already be present if just one partner is sufficiently adapted, panel (a), or it may

more strictly require both partners to adapt to one another, panel (c). Such a continuum is described by the

model parameters 0 ≤ ei j ≤ 1; the three cases shown correspond to ei j = 0 (a), ei j = 0.5 (b), and ei j = 1 (c).

High levels of coadaptation are indicated in white, and low levels in black.

species 3 to switch from specializing on species 4 to specializing on species 2 (Figure 3b).

This causes the newly formed alliance between species 2 and 3 to thrive, and allows it to

dominate the community.

• Primary reorientation, primary extinction, secondary reorientation, and secondary extinc-

tion. The ripple effects of the initial environmental change may propagate even further

through the community. After species 2 and 3 have maximized their level of coadapta-

tion, species 4, now that it has essentially lost its mutualistic partner species 3 to species

2, may perish (Figure 3c). This illustrates how environmental change that directly affects

only one species can cascade relatively easily through a community and induce ecological

and evolutionary change in species that are several interaction tiers away from the original

perturbation.
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Figure 3 Coevolutionary ripple effects of environmental disturbances. The panels show how adaptive trait

values (left column) and population densities (right column) change over evolutionary time. At the mo-

ments in time indicated by the dotted lines, an abrupt environmental change reduces the carrying capacity

of species 1 by a factor of 10. Before that, selection favors full adaptation of all species to their primary

mutualistic partners, whereas after the disturbance alternative coevolutionary responses can unfold. (a) Re-

orientation of species 2 to species 3 with the resultant extinction of Species 1. (b) The reorientation of

species 2 and extinction of species 1 triggers reorientation of species 3 to species 2. (c) The reorientation of

species 2, extinction of species 1, and reorientation of species 3 eventually lead to the extinction of species

4. Parameters: (a) r1 = −0.1, r2 = r3 = r4 = 1, c11 = 0.5 changing to c11 = 5, c22 = c33 = c44 = 1,

c13 = c24 = 0, c12 = c23 = c34 = 0.4, e12 = e23 = e34 = 0.8; (b) same as (a), except for c34 = 0.2; (c)

same as (a), except for g4 = 0.15 and c24 = 0.1. All evolutionary trajectories are based on the canonical

equation of adaptive dynamics (Dieckmann and Law 1996).

Much remains to be studied before we will truly understand the likelihood and implications of

coevolutionary cascades in threatened ecological communities. Yet the simple model considered

here already cautions against ignoring the potentially wide-ranging consequences of such cascades

to the structure and stability of ecosystems exposed to environmental change. Since many mutu-

alistic interactions link pairs of species relatively tightly, they present a good starting point for

these explorations. However, we can be quite certain that the likelihood and severity of coevolu-

tionary cascades will not be fundamentally different when we extend our view to competitive or

exploitative ecological interactions.

6 Concluding Comments

Only recently have mutualisms been subject to the same level of attention from evolutionary biol-

ogists as antagonistic interactions have received (Bronstein 2001a). As a result, it is not surprising

that our understanding of how they might respond evolutionarily to anthropogenic change remains

rudimentary. This is alarming, because mutualisms appear to be both an ecological and evolu-
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tionary nexus for the accumulation of diversity within ecosystems. Further studies of the fate of

mutualisms in response to environmental change are therefore essential if the goal is to conserve

higher units of biological organization.

Both empirical and theoretical studies are needed. On the theoretical side, there is a dire need

for more detailed explorations of eco-evolutionary models of the type tentatively introduced and

analyzed in this chapter. A better understanding of the adaptive dynamics that result from mu-

tualistic interactions (Section 2) will provide crucial insights with which to probe deeper into

the corresponding evolutionary and coevolutionary responses to environmental threats (Sections 4

and 5). Modeling such environmental threats more specifically, rather than merely through their

effects on compound parameters (as done here), will be vital to understand the long-term con-

servation implications of habitat fragmentation, biological invasions, and genetic introgressions.

Eventually we will need to consider models that describe complex webs of interactions realisti-

cally, to allow us to assess the dangers of both ecological and coevolutionary ripples cascading

through entire communities. No doubt, many surprises are still lurking in the intricate interplay

of mutualistic, competitive, and exploitative interactions [see, e.g., the so-called Red King effect,

whereby slower evolution leads to a greater selective advantage (Bergstrom and Lachmann 2003)].

To the extent feasible, we should anticipate such surprises by means of careful modeling studies,

rather than letting them jeopardize expensive and conservation-critical efforts in the field.

On the empirical side, we need information on where, when, and how mutualistic interactions

are under natural selection in the context of anthropogenic change, and what the likely outcomes

(increased generalization; partner shifts; extinction?) appear to be. In this regard, it is impor-

tant to point out that, to date, the large majority of field studies, as well as nearly all the broad

conceptual work on the conservation of mutualism, focus on a single type, plant–pollinator mu-

tualisms. Pollination is undoubtedly of critical importance: perhaps 90% of angiosperms are

animal-pollinated, and it has been estimated that half the food we consume is the product of biotic

pollination (Buchmann and Nabhan 1996). However, the responses of a variety of other mutu-

alisms critical to community functions are virtually unknown. For example, the health of some

entire marine ecosystems, including coral reefs and hydrothermal vents, depends on mutualistic

bacterial and algal symbionts, some of which are clearly sensitive to human activities (Smith and

Buddemeier 1992; Knowlton 2003). Thus, in seeking a deeper understanding of the evolutionary

conservation biology of mutualisms, it will be essential to take a broader natural history perspec-

tive than current knowledge allows.
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