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Abstract

There are three general classes of threat to biodiversity at the gene level: 1) extinction,
which results in complete and irreversible loss of genes; 2) hybridization, which may
cause re-arrangement of co-adapted genes and loss of adaptability to local conditions,
and 3) reduction of genetic variability withinpopulations. While extinction avoidance is
a fundamental management objective and hybridization can usually be dismissed in
marine populations, the reduction of geneticvariability within populations is a plausible
threat and can occur in two ways. First, a decrease in population size may result in
inbreeding. Normally, marine fish have very large population sizes, and commercial
extinction is likely to occur long before populations are reduced to the level required for
losses of genetic diversity due to inbreeding. However, when populations are very
severely over-fished to small numbers, concerns associated with small population sizes
and disruptions of migration between populations may become prominent. In particular,
undetected populations within management units may be fished to this level before the
situation is properly evaluated and remedied. Second, a reduction of genetic variability
within populations may occur in a directed way, due to, e.g., selective fishing. Fishing is
expected to generate selection on life history traits such as age and size at maturation;
changes in life history traits influence thedynamics of fish populations, energy flows in
the ecosystem, and ultimately, sustainable yield. We discuss management objectives
designed to ameliorate genetic complications associated with small population size and
fisheries-induced selection, and outline a management approach that may be useful
when developing advice for maintaining genetic diversity.
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Maintenance of Genetic Diversity:
Challenges for Management of Marine Resources
Ellen Kenchington
Mikko Heino

1. Introduction
For many countries, the legal mandate for the preservation of biological diversity,
including genetic diversity, follows from the acceptance of the Rio Declaration, thereby
creating a demand for developing management strategies that recognize this issue.
Scientific justification for conserving genetic diversity within and among populations
stems from the need to: 1) maintain adaptability of natural populations in the face of
environmental change; 2) preserve the potential future utility of genetic resources for
medical and other purposes; and 3) minimize changes in life history traits (e.g., age- and
size-at-maturation, growth) and behaviour (e.g., timing of spawning) that unpredictably
influence dynamics of fish populations, energy flows in the ecosystem, and ultimately,
sustainable yield.
The impacts of commercial fisheries on genetic diversity have received considerable
attention in recent years in a wide variety ofmedia, including journals, books, reports,
conferences and workshops. Within ICES, the genetic effects of fishing have been
included in the terms of reference for the ICES Working Group on the Application of
Genetics in Fisheries and Mariculture (WGAGFM) in one form or another from 1995-
2000, and were briefly discussed in the ICES Working Group on Ecosystem Effects of
Fishing Activities (WGECO) report in 2000.This paper is derived from work the
authors conducted during the 2002 meeting of the WGECO (ICES 2002, chapter 10).
Section 2 provides a background and assessment of the problems associated with the
loss of genetic diversity through fishing practices using Northeast Arctic cod as an
example of a species that experienced a loss of genetic diversity within a population.
Section 3 suggests an appropriate course of action to protect genetic diversity based on
the best available scientific evidence, and Section 4 provides conclusions and
recommendations for establishing a process for protecting genetic diversity of exploited
stocks and those suffering fishery-induced mortality.
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2. Background
A gene is the fundamental hereditary unit that determines (or partially determines) a
trait. The DNA sequence of a specific gene may not always be exactly the same among
individuals. There may be some differences in the sequence, resulting in different
variants of that same gene. Such alternate variants of a specific gene are called alleles
and the number of different alleles can be used as measure of genetic variation. The
different alleles of a specific gene often occur in different frequencies in different
populations (allele or gene frequencies). The genetic variation of a species is therefore
distributed both within populations, expressed as the different allele combinations
between individuals (so called genotypes) and between populations (in the form of
differences in occurrence and frequency ofalleles between populations). Each measure
provides an indication of the genetic diversity of a population. Natural selection acts
within populations, while the genetic potential of the species to adapt to environmental
changes depends on the total genetic diversity represented among populations.
There are three general classes of threat to biodiversity at the gene level: 1) extinction
(population or species), which results in complete and irreversible loss of genes; 2)
hybridization which may cause re-arrangement of co-adapted genes and loss of
adaptability to local conditions, and 3) reduction in genetic variability within
populations. This third threat can occur in a directed manner, due to fisheries-induced
selection (e.g., Heino and Godø, 2002), or dueto decrease in population size resulting in
inbreeding (Laikre and Ryman, 1996).
Normally, marine fish have very large population sizes and the concern for loss of
genetic diversity can appropriately be directed to the loss of variation within populations
through selection caused by fishing. In most marine species, parents produce large
numbers of offspring and there is large scope for local selection. However, when
populations are very severely over-fished tosmall numbers, concerns associated with
small population size (e.g., number of actual breeders, inbreeding etc.) and disruptions
to migration between populations become prominent.
From a population perspective, it is immaterial whether or not the mortality induced by
fishing is incidental. Many by-catch and other non-target species are subject to
substantial fisheries-induced mortality, given the vast areas of seabed trawled each year,
and the unselective nature of most fisheries (Alversonet� al., 1994). Consequently,
fishing activities may also affect the genetic composition of non-target species.
The population structure of a species will determine what if any genetic impact results
from a fishing-induces loss of spatial components. More subtle changes, inferred from
phenotypic changes that are occurring irrespective of population abundance may be
more difficult to demonstrate empirically, but can be estimated through modelling
approaches. Consequently, objectives can be identified at a macro-level (e.g., number of
spawning components, relative abundance of components, percent change in life history
trait) to maintain genetic diversity under the Precautionary Approach. However, it will
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be more difficult to assign biologically meaningful reference points for these objectives.
Unlike population dynamics models for which all parameters can be reasonably
estimated and predictions evaluated, we cannot predict which aspects of genetic
diversity will be important in the future or which losses in the past have influenced
present day conditions.

Genetic variation among populations

Fishing is known to affect the spatial structure of populations. The result of this spatial
alteration on genetic diversity will depend upon the migration patterns between
populations. New animals may migrate from one population to another, and if they mate
within the new population, they have the potential to contribute new alleles to the local
gene pool. This is called gene flow. There are many theoretical types of genetic
population structure (cf. Smedbolet� al., 2002); these range from completepanmixia

where each individual has an equal probability of reproducing with any other individual,
to highly structured populations with complete reproductive isolation. Complete
panmixia was postulated for the European eel, but has since been refuted (Wirth and
Bernatchez, 2000), and it is unlikely that panmixia occurs in marine species (although it
is the null hypothesis for all genetic tests of population distinctness – see below). At the
other extreme, subdivided populations with reproductive isolation are also not typical,
except in situations of rare and very localized species with limited possibilities for larval
dispersal (cf. Nielsen and Kenchington, 2001; Smedbolet� al., 2002). While the genetic
structure of marine species is generally unknown, thestepping-stone� model and its
variants (Kimura and Weiss, 1964) are likely to be more relevant. In this model, a
number of genetically distinct populationsexist and are linked by gene flow. However,
unlike Wright'sisland� model(1931), the probability of gene flow from one population
to another is dependent on the degree of geographic separation between populations. It
is expected that genetic distance ( a metricof differentiation) between populations will
increase with geographic distance, i.e. there will be isolation by distance. A variant of
this model is the source-sink situation, where a stable population (source) contributes
migrants to smaller populations (sinks) thatonly exist due to the recurrent contributions
from the source population (cf. Smedbolet� al.2002). It is critical to evaluate the genetic
structure of a species in order to infer the genetic implications of the loss of
components. Unfortunately, complex population structure is occasionally associated
with species that demonstrate no obvious population discontinuities. Therefore, careful
consideration of genetic datais often necessary to elucidate population interactions. For
populations linked by gene flow, the organization of populations in time and space in
conjunction with the ratio of within and among population variation are important to
preserve to avoid negative genetic effects (Altukhov and Salmenkova, 1994). Fishing
may result in the decimation of populations producing fragmentation, disruption of gene
flow and local extirpation.
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Taylor and Dizon (1999) describe the statistical approach commonly used to test for
genetic structure among populations and discuss how this can result in management
failure through loss of local populations. Typically, these tests are designed to test the
null hypothesis, Ho, that populations have equivalentgene frequencies (panmictic),
while the alternative hypothesis, HA, is that populations are structured (not panmictic).
A standard critical value (α = 0.05) is applied, emphasizing the importance of not
concluding incorrectly that populations are genetically isolated, when, in fact, they are
panmictic (a low Type I error). However, application of the precautionary approach
might support the argument that it is a more serious error to incorrectly conclude that
populations are panmictic when, in fact, theyare reproductively isolated. In such cases
the statistical goal should be a low Type II error rate, even if this comes at the cost of a
higher Type I error rate. These authors advocate calculatingβ, the probability of failing
to reject the Null Hypothesis of panmixia when populations are actually isolated, as well

as setting the more traditionally controlledα. Their intent is to avoid an implicit
prioritization of one type of error at the expense of the other. In an example given in
their paper, Taylor and Dizon (1999) illustrate that by choosing anα = 0.05, aβ = 0.60
is unintentionally accepted, giving a result that is 12 fold (β/α) more likely to result in
incorrectly pooling populations than an error that will incorrectly split them. In some
cases it might be appropriate to equalize these errors (α = β), although this will
inevitably require large sample sizes and/or an increased number of markers. As many
genetic studies are undertaken without consideration of management questions, a
careful evaluation of the methodology is needed to fully appreciate the applied
implications of these studies.

Genetic variation within populations

Physical and life history traits (phenotype) are generated by the genetic makeup of the
individual, by the environment in which it lives (e.g., temperature, food availability) and
by the interaction between the genes and the environment. Data on fish populations
from many parts of the world have shown that removing large fish generally appears to
favour the promulgation of slow-growing, early maturing fish (see reviews by Smith,
1999; Law, 2000). The challenge is to ascertain whether these changes are irreversible
and a consequence of genetic alteration of the population or whether they are due to
selected removals or a suite of other environmental factors such as temperature and prey
fields. Put simply, is there a genetic difference between the fish removed and those left
behind (Law, 2000)? Law and Grey (1989) and Heino (1998) have modelled the impact
of a decline in age-at-maturation in Arcticcod and conclusions of work in progress
(Dieckmann et� al. 2002) suggests that the phenotypic response is consistent with
selection-induced deterioration of genetic diversity. However, empirical data for these
conclusions are generally lacking in marine species, despite the fact that the evolution of
life history traits is a field of great interest, both in population biology and genetics.



5

However, a recent paper by Haugen and Vøllestad (2001) clearly documents evolution
of grayling in Norway (Thymallus� thymallus) in response to 48 years (8 generations) of
intense and consistent selection caused by size-selective fishing (gill nets). The authors
conclude that size-selective fishing has caused a rapid evolution towards earlier age-at-
maturity, reduced length-at-maturity, faster early growth and slower late growth, and
increased size-specific fecundity. Further, significant changes occurred over a 10-year
period, well within the time scales of relevance to fisheries management. In this case,
when the selection intensity was relaxed, age and length at maturity and length-at-age
increased, indicating that the genes were still present in the population.
Population modelling is a powerful tool both forexploring the expected consequences
of current exploitation regimes, and for experimenting with different management
measures that might be adopted to mitigate unwanted selection pressures. It can also be
used to assess the scope of these problems, which can in turn be used in risk
assessments. One of the areas in which we are data deficient is in the estimation of the
proportion of phenotypic variance which is inherited. In terms of quantitative genetics,
this proportion is referred to as the heritability of a trait (h2), and traits with low values
of h2 change more slowly than those with higher values. Mean values of h2 have been
determined from broad surveys of both traits and species (Mousseau and Roff, 1987),
and salmonids produce estimates consistent with these values (cf. Law, 2000).
However, extrapolation from culture conditions to the wild can only be indicative,
because the specific environment defines the heritability of a trait. Calculations of
heritability from the wild are dependent on identifying kinship structure, an elusive
property in most marine species due to the large population sizes. Roff (1997) suggests
that in the absence of better information, heritabilities for life history traits in the range
0.2-0.3 can be assumed, which means that 20-30% of the observed variation is due to
the genes, while the remaining 70-80% is largely due to effects of the environment
interacting with expression of those genes. To compensate for the lack of information
on heritability, sensitivity analyses can be done using a range of heritabilities when
modelling quantitative genetics and phenotypic data.
In the absence of direct genetic evidence, the dependence of phenotypes on environment
can be characterized by a metric referred to as “reaction norms”. The reaction norm
predicts the phenotype that follows from a single genotype as a function of the condition
of the environment. The reaction norms themselves are presumed to be genetically
determined. Thus, change in a reaction norm is indicative of genetic change. The idea of
using maturation reaction norms can be traced back to Stearns and Crandall (1984),
Stearns and Koella (1986) and Rijnsdorp (1993). Probabilistic extension of the
methodology is necessary to make the reaction norm approach fully operational (Heino
et� al., 2002a). Identification of traits under genetic selection using reaction norms may
facilitate the identification of quantitative trait loci (QTLs) which could then be used to
validate the models.
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The special case of small populations

In all populations of a restricted size thefrequency of particular alleles changes
randomly from one generation to the next. This process, called genetic drift, may also
result in loss of genetic variation. By chance some of the alleles that exist in the parent
generation may not be passed on to their offspring. The smaller the population, the more
dramatic the fluctuation of allele frequencies, and the faster the loss of genetic variation.
Another consequence of small population size is inbreeding, i.e., the production of
offspring from matings between close relatives. If a population is small and isolated,
inbreeding is inevitable. In many species, inbreeding is coupled with reduced viability
and reproduction, reduced mean values ofmeristic traits, as well as increased
occurrences of diseases and defects, so called inbreeding depression.
The rate of genetic drift and inbreeding is not determined by the actual (census)
population size, N, but by a parameter denoted “effective population” size or Ne.
Typically, estimates of Ne are surrounded by large confidence intervals especially when
inferred from gene frequency data. In certain situations, Ne can be quite precisely
estimated from abundance surveys, e.g., withthe breeding population of Atlantic right
whale. Effective population size is nearly always less than N because generally not all
individuals in a population are reproductive at spawning time. Ne depends on such
factors as sex ratio, variance in family size (i.e., variability in numbers of offspring per
individual), temporal fluctuations in numbers of breeding individuals, overlapping
generations, etc. For example, for some species genetic variation will be reduced if the
sex ratio of breeders departs from 1:1. It is much better (genetically) to have a
population of 50 males and 50 females than to have one of 10 males and 90 females, yet
both have 100 breeders. Similarly, the maximum genetic variation is produced in the
population when all mating pairs produce equal sized families. In the case of the
northern elephant seal, dominant bulls establish a harem and monopolize females,
skewing the sex ratio through mating behaviour (Hoelzel 1999). Fishing practices that
select one sex over the other also may, over time, cause a reduction of genetic diversity
within populations.
Genetically small populations are unlikely to be of concern in marine fish with large
census population sizes. For these species, commercial extinction is likely to occur long
before populations are small enough to be inbred. However, hidden populations within
management units may be fished to this level before the situation can be appreciated.
Therefore, it is critical that the population structure of species be defined.

Case study of fisheries-induced selection on the northeast Arctic cod

The northeast Arctic cod (Gadus� morhua) is one fish stock where consideration of
genetic changes caused by fishing-induced selection have attracted attention. This stock
is very large, and even when stock abundance reached record-low levels in the 1980s,
the spawning stock consisted of tens of millions of fish. This description holds even if
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substructure is considered (Morket� al., 1985). Thus, in this example, loss of genetic
diversity in Northeast Arctic cod is considered in context of fisheries-induced selection
(cf. Law, 2000).
During the first quarter of the 20th century, intensive harvesting of Arctic cod took place
on the spawning grounds which are some distance from the feeding grounds. Under this
scenario, cod with delayed maturation had a reduced mortality risk, while gaining in
terms of increased size and, after maturation, increased fecundity. This historical
selection pressure for delayed maturation may be responsible for the late maturation
traditionally observed in this stock (Law and Grey, 1989) - the age-at-50%-maturity was
10 - 11 yrs before the 1940s (Jørgensen, 1990). Since around 1930 when the modern
trawler fishery began, harvesting became size-selective for larger fish, indirectly
favouring selection for earlier maturation. Effort was also transferred to the feeding
grounds. Borisov (1978) raised the concern that high fishing pressure might select for
earlier maturation in this stock. Indeed, the decline in age-at-maturation in this stock has
been particularly strong (Jørgensen, 1990), and the year-classes born in the 1980s have
a mean age-at-maturation of 6 - 7 yrs (Godø, 2000). Size-at-maturation has declined in
parallel, from 89 cm (1940 year-class)to 74 cm (1989 year-class) (Godø, 2000).
Assuming a cubic relationship between length and weight, this corresponds to a 42%
decrease in weight of the first-time spawning cod (assuming a constant fecundity-to-
weight ratio, the same decrease applies to fertility).
Analysis of the reaction norms for age- and size-at-maturation for this stock shows a
significant temporal trend towards higher probability of maturation at a certain age and
size (Heinoet� al., 2002b). A quantitative genetics model is currently being developed to
determine whether the observed rate of change is consistent with the selection pressures
that have been present, and the preliminary results from this model are presented in this
theme session (Dieckmannet� al., 2002).
Although there may be environmental effects that are not considered in the reaction
norm analysis, it is probable that the change in reaction norms of the northeast Arctic
cod has a genetic basis. However, the analysis also shows that phenotypic plasticity (in
form of the so-called 'compensatory response', i.e., maturation at earlier age correlated
with a higher growth rate) also explains an important part of the observed changes in
age- and size-at-maturation. Partitioning of response to genetic and phenotypically
variable components is not straightforward because these two factors are not fully
additive. However, it appears that change in the reaction norm explains a larger
proportion of the change in age- and size-at-maturation than change in growth does.
Theoretical studies indicate that decline in age-at-maturation could cause a major
decline in sustainable yield from the northeast Arctic cod (Law and Grey, 1989; Heino,
1998). It must be emphasized that these models were designed to make only qualitative
predictions and that the predictions ofyield should be interpreted cautiously.
Nevertheless, annual losses in sustainable yield of the order 105 tonnes appear to be
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possible. Thus, despite the uncertainty, these findings call for increased awareness of
the possibility of adverse effects on yield. Earlier maturation will also result in smaller
size-at-age after maturation, and, assuming that large fish are more highly valued than
small fish, diminish the market value of the catch. In addition, it is possible that earlier
maturation may further increase recruitment variability in this stock. The long spawning
migration imposes an energetic stress that would be relatively larger for smaller
individuals, and may affect egg quality in females. If feeding conditions before the
migration are poor, the energetic stress might become too high for the fish maturing at
small size, and they might either fail to reach the spawning grounds or delay spawning
altogether. Likelihood of recruitment failure under poor conditions could therefore
increase. On the positive side, it is unlikely that the stock could sustain the present-day
exploitation regime if its maturation reaction norm was similar to its state prior to
modern exploitation.
Management measures that would be necessary to mitigate selection pressures towards
earlier maturation in northeast Arctic cod are, at the broad level, theoretically well
understood (Law and Grey, 1989; Heino, 1998). The origin of this change in selection
pressure is the shift of exploitation pattern: from selective removal of mature cod to
unselective (with respect to maturity status) removal of both immature and mature cod.
Increasing fishing pressure on mature fish and decreasing fishing of immature cod
would diminish — and eventually revert — the selection on maturation given the large
population size of the stock. However, the exact levels of selective and non-selective
fishing mortality that would eliminate theselection pressure are not known, although
the existing modeling results indicate that the emphasis should be strongly on selection
for mature cod (Law and Grey, 1989; Heino, 1998). Size-selective harvesting strategies,
which allowed undersized fish to escape, could potentially prove to be an alternative
way of mitigating selection pressures towards earlier maturation. This possibility
currently remains unexplored, although the evaluation would be technically possible
and practically feasible, e.g. with the quantitative genetics model mentioned earlier
(Dieckmannet� al., 2002).
One further consideration is that selection pressures are not necessarily symmetric.
Fishing can create a very strong selection gradient for early maturation, whereas in the
absence of fishing, late maturity is only weakly selected for (Law and Grey, 1989;
Rowell, 1993; Heino, 1998). Decreasing fishing pressure assists in decreasing the
selection pressures but may not easily reversethem. Thus, trying to restore genetic stock
properties by reverting selection pressures is inherently more difficult than trying to
slow changes by decreasing the selection pressures. Thus, considerable uncertainty
surrounds the management implications. However, under precautionary approach to
fisheries (FAO 1996), "where there are threats of serious or irreversible damage, lack of
full scientific complexity shall be not used as a reason for postponing cost-effective
measures to prevent environmental degradation" (excerpt from the Principle 15 of the
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Rio Declaration of the UN Conference on Environment and Development, Rio de
Janeiro, 1992). Therefore, there appears to be a strong case for incorporating
consideration of genetic effects of fishing into the management of the northeast Arctic
cod.

3. Managing genetic diversity
In this Section, a scientific framework for the provision of advice on genetic diversity is
outlined. We propose a three-phase approach to the development of this advice:
identification of management objectives, identification of appropriate reference points
and/or definition of acceptable risk and development of a monitoring program (Fig. 1).
Considerations for defining management objectives for maintaining genetic diversity
within a species include:

1) genetic diversity among populations

2) population structure and relative abundance

3) within population genetic diversity

4) the current status of the species (endangered, threatened etc.)

The last consideration can be used to prioritize decision-making, which will become
important because the management actionsrequired when viable population sizes are
intact are different from those needed when populations are small.

Management objectives

Any management regime requires clear management objectives that can be
operationalized. When drawing examples from the literature, genetic diversity itself
(e.g., number of alleles or genotypes) is notdirectly “managed” but the elements that
influence it are. Thorpeet� al. (1995) have suggested that the first priority of
management plans should be to maintainpopulations in a natural setting to which
adaptation may have occurred, and in whichevolutionary forces may continue to act.
Taylor and Dizon (1999) describe two similar objectives used by the US Southwest
Fisheries Science Centre in La Jolla, California which are to: (i) maintain populations,
and (ii) maintain the full geographic range of a species. Both of these examples address
Consideration (1) and to a certain extentConsideration (3), however, they do not
directly address the potential loss of genetic diversity within populations due to
selective fishing or the relative abundance of populations. The latter is important in
maintaining migration patterns (gene flow) and population structure, both potential
consequences of exploitation. Examples ofmanagement objectives, which match those
considerations, are provided in Table 1.
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Figure� 1. Three phases of approach to the development of advice for maintaining genetic
diversity.

Table� 1. Examples of management objectives to address generic concerns related to the loss of
genetic diversity in marine species.

Consideration� Example� Management� Objective�

1. Genetic diversity among populations 1. Maintain number of populations

2. Population structure and relative
abundance

2. Maintain relative size of populations

3. Within population genetic diversity 3.1 Maintain abundance of individual
populations

3.2 Minimize fisheries-induced selection

With respect to selection-induced geneticimpoverishment,, the mitigation options can
be broken down further: (slow/stop/reverse) fisheries-induced selection on X. It is
necessary to specify which component of selection is being addressed (“X”), e.g.,
selection on maturation, sex, etc. Also, as discussed in section 2, the management
actions need to be specifically targeted if a reversal of selection pressure is desired, as
opposed to a slowing. This may involve gearmodification such as changes in mesh
size, separator panels, or square mesh panels to alter selection and allow fish to escape.

Identification� of� Management� Objectives�
• Addresses GeneticConsiderations
• Prioritize

Determination� of� Reference� Points�
• Addresses consequences of not taking action
• Defines limits or target reference points

Development� of� Monitoring� Program�
• Appropriate to management objectives
• Data analyses and interpretation
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Reference points?

The ICES framework for applying reference points to management objectives also can
be applied to genetic diversity objectives. However, while target reference points may
be established, reference points and limit reference points, as defined by ICES, are more
problematic. ICES defines reference points as “specific values of measurable properties
of systems (biological, social, or economic) used as benchmarks for management and
scientific advice” (ICES, 2001). Their purpose is to flag decision points and therefore
the consequences of not taking an action at a particular reference point should be clear.
One of the difficulties with determining minimum acceptable levels of genetic diversity
is that the aspect of genetic variability that will be important for a species to adapt to
environmental change in the future is unknown. We can deduce which genes under
selection, that is quantitative trait loci, maybe important, and very few of these have
been identified for any species. When phenotypic traits are used as a proxy of genetic
diversity, it is easier to quantify the outcome of following specific management advice.
Modelling has an important role in predicting the consequences of decisions, and in
particular models that incorporate population and quantitative genetics are powerful.
However, the specific actions, which will lead to a negative effect, are known, and these
can be avoided. For example, we know that in most cases, the loss of populations will
result in a loss of genetic diversity, although we cannot say that losing 1 of 5 is
acceptable but losing 2 is not. Target reference points are “properties of
stocks/species/ecosystems which are considered to be desirable from the combined
perspective of biological, social, andeconomic considerations” (ICES, 2001). For
genetic diversity, target reference points can be established. The biological target would
be no loss, modified by social and economic considerations (Table 2).
Limit reference points are “a value of a property of a resource that, if violated, is taken
asprima� facieevidence of a conservation concern. By “conservation concern”, ICES
means that there is unacceptable risk of serious or irreversible harm to the resource…”
(ICES, 2001). Loss ofalleles from a species represents anirreplaceable component of
genetic diversity. Theirrevocability of genetic loss combined with our inability to
assess the consequences of not taking action,result in greater potential risks associated
with any decision making process that allows for loss of diversity. Loss of alleles may
qualify as a conservation concern if the risk is judged unacceptable, however
determining the limits at which the resource is “harmed” will be problematic for the
reasons discussed above. In this case thelimit reference point may be very high and
close to the target reference point.
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Table� 2. Example of biological target reference points for proposed management objectives
with an example of a limit reference point (others to be determined (TBD)).

Proposed� Management�
Objective�

Example� Target� Reference� Point�
(Biological� Perspective)�

Example� Limit�
Reference� Point�

1. Maintain number of
populations

1. Maintain all populations 1. TBD

2. Maintain relative size of
populations

2. Maintain relative size of
populations within X% of each
other

2. TBD

3.1 Maintain large abundance
of individual populations

3.1 Maintain abundance of
individual spawning population
above X%

3.1 Ne >> 5,000
spawners

3.2 Minimize fisheries-induced
selection

3.2 No fisheries-induced selection 3.2 TBD

Because changes inallele� frequency may be irreversible or at best very difficult to
reverse, limit reference points will likely have to be set very conservatively because the
negative consequences of exceeding the limitreference point will be difficult if not
impossible to subsequently rectify. Nevertheless, limit reference points could be defined
for some objectives, especially those applicable to within population genetic diversity
(Table 2). For example, recent theoretical work suggests that successful breeding
population sizes of 1,000 to 5,000 are required for long-term population viability
(Lynch and Lande, 1998). If limit and/or target reference points can be established,
genetic risk assessment (e.g., Currens and Busack, 1995; Allendorfet� al., 1997) may
provide a framework for decision making in light of uncertainty and consideration of
other factors (e.g., biological, economic and social).

Monitoring genetic changes

Methods identified for monitoring geneticdiversity will depend upon the management
objective. An effective monitoring program requires three phases: Identifying
monitoring questions, identifying monitoring methods and the analysis and
interpretation of information for integration into management strategies and the
refinement of management objectives (Gaineset� al., 1999). Examples of monitoring
questions include: What is the geneticdiversity within a population or among
populations? How has habitat fragmentation affected the genetic structure of a
population or species (cf. Gaineset� al., 1999)?
Once these questions are established, the monitoring methodology can be determined.
This includes both sampling design and choice of markers as well as consideration of
derived indices. Genetic diversity can bemeasured at many different levels using a
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variety of markers. Markers that are ideal for identifying population structure (e.g., so-
called neutral markers such as nuclear microsatellite arrays) are not generally useful for
monitoring traits under selection. However,different types of markers or combinations
of markers can be used to monitor temporal changes in genetic diversity to address
specific questions related to the management objectives. With the development of high-
throughput equipment with low operating costs, genetic monitoring programs have
become affordable. An important constrainton addressing monitoring questions is the
lack of historical data. Even where tissue exists, it is often preserved in formaldehyde,
rendering the extraction of good quality DNAdifficult. Given this constraint, it is
recommended that tissue samples from research vessel survey catches be archived for
future genetic analysis. The amount of tissue needed for genetic work is very small and
hair, scales and otoliths (free from fixative) can be used.
In monitoring phenotypic traits, existing biological data from fisheries surveys is
generally adequate to identify potential cases where fishing may have caused selection.
However, it is important to consider directenvironmental effects to disentangle the
genetic component of variation. This requires either monitoring quantities that are
robust to environmental variations, or monitoring, in addition to phenotypic traits, the
relevant environmental variables that havea major influence on the phenotypic traits in
consideration. The former option is preferable when possible. Reaction norms are an
example of quantities that are robust to environmental variations. In particular, reaction
norms for age- and size-at-maturation are expected to be useful for monitoring changes
in maturation.

4. Conclusions
It is clear from the above discussion that managing genetic diversity in marine
populations requires serious attention. Evidence that fishing-induced selection is
causing genetic changes in fish stocks is currently accumulating (see other papers in
this theme session), and the conventional wisdom that marine populations are so large
that loss of genetic diversity due to small population size is being challenged. Moreover,
it is clear that loss of genetic diversity, be it due small effective population size or
directional selection, can have consequences that are undesirable from the human
perspective. These undesirable consequences range from potential loss of productivity
of marine resources (with easily quantified economic value) to loss of aesthetic or
cultural commodities.
�

�

�

�
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Table� 3.� The proposed process for the continued development of a mechanism for ICES to
provide for ‘genetic diversity’ in management advice. ACE = ICES Advisory Committee on
Ecosystems.

Task� Lead� party� (ies)� Example�
Timeframe�

1. Review and development of considerations for
maintaining genetic diversity

WGAGFM March 2003

2. Review and development of management
objectives to address genetic considerations

WGAGFM;
WGECO

spring 2003

3. Evaluation of reference points and/or
consequences of not addressing management
objectives

WGECO;
WGAGFM

spring 2003

4. Development of a list of quantifiable variables
who values, individually or in combination, identify
a significant threat to genetic diversity

WGECO;
WGAGFM

spring 2004

6. Case studies reviewed under the proposed
framework and strengths and weaknesses
determined

WGAGFM;
WGECO

spring 2004

7. Assessment of possible management responses
for protection of genetic diversity and provision of
commentary to ACE

WGECO;
WGAGFM

spring 2004

8. ACE formulates advice to ICES customers ACE September
2004

Although the appreciation of conserving localpopulations is widespread in management
of certain freshwater fisheries (i.e. migratory salmonid fishes), these ideas have not yet
spread to management of marine resources. Similarly, concerns for the consequences of
fisheries-induced selection were first raised in the context of freshwater fisheries, and
the quasi-domesticated nature of manysalmonid populations makes the issue of
selection much more immediate than in marine fish populations. However, we believe
that sustainable management of living marine resources requires management of genetic
diversity. While the first steps of the process, to develop management advice in the
ICES framework for preservation of genetic diversity, have already been taken in the
Working Groups on the Application of Genetics in Fisheries and Mariculture
(WGAGFM) and Ecosystem Effects of Fishing Activities (WGECO), this strategy is
still very much in its infancy. Possible further steps to advance the process are outlined
in Table 3.
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