
A Comparison of the Classification 
of Vegetation Characteristics by 
Spectral Mixture Analysis and 
Standard Classifiers on Remotely 
Sensed Imagery within the Siberia 
Region

Tan, S.-Y.

IIASA Interim Report
May 2003

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33898531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Tan, S.-Y. (2003) A Comparison of the Classification of Vegetation Characteristics by Spectral Mixture Analysis and 

Standard Classifiers on Remotely Sensed Imagery within the Siberia Region. IIASA Interim Report. IR-03-020 Copyright © 

2003 by the author(s). http://pure.iiasa.ac.at/7061/ 

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


 

International Institute for 
Applied Systems Analysis 
Schlossplatz 1 
A-2361 Laxenburg, Austria 

Tel: +43 2236 807 342
Fax: +43 2236 71313

E-mail: publications@iiasa.ac.at
Web: www.iiasa.ac.at

 

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the 
Institute, its National Member Organizations, or other organizations supporting the work. 

Interim Report IR-03-020 

A Comparison of the Classification of 
Vegetation Characteristics by Spectral 
Mixture Analysis and Standard 
Classifiers on Remotely Sensed 
Imagery within the Siberia Region 
Su-Yin Tan (suyin@crsa.bu.edu) 
 

Approved by 

Sten Nilsson 
Deputy Director and Leader, Forestry Project 

16 May 2003 

 

 



 ii

Contents 

1 INTRODUCTION 1 

2 BACKGROUND 2 

2.1 Digital Image Classifiers 3 
2.1.1 Supervised Classification 3 
2.1.2 Unsupervised Classification 5 

2.2 Spectral Mixture Analysis 7 

3 STUDY AREA 8 

4 SOFTWARE AND DATA SOURCES 11 

5 METHODOLOGY 12 

5.1 Spectral Mixture Analysis 12 

5.2 Supervised Classification 18 

5.3 Unsupervised Classification 18 

6 RESULTS AND DISCUSSION 19 

6.1 Spectral Mixture Analysis 21 

6.2 Supervised Classification 25 

6.3 Unsupervised Classification 26 

6.4 Evaluation of Classification Methods 27 

7 CONCLUSION 28 

REFERENCES 29 
 



 iii

Abstract 

As an alternative to the traditional method for inferring vegetation cover characteristics 
from satellite data by classifying each pixel into a specific land cover type based on 
predefined classification schemes, the Spectral Mixture Analysis (SMA) method is 
applied to images of the Siberia region.  A linear mixture model was applied to 
determine proportional estimates of land cover for, (a) agriculture and floodplain soils, 
(b) broadleaf, and (c) conifer classes, in pixels of 30 m resolution Landsat data.  In order 
to evaluate the SMA areal estimates, results were compared with ground truth data, as 
well as those estimates derived from more traditional image classification methods, 
including supervised and unsupervised classifiers.  The findings of this study show that 
the SMA method offers a more sophisticated method of image classification, providing 
improved estimates of endmember values and subpixel areal estimates of vegetation 
cover classes than the traditional approach of using predefined classification schemes 
with discrete numbers of cover types.  This technique enables the estimation of 
proportional land cover type in a single pixel and could potentially serve as a tool for 
deriving improved estimates of vegetation parameters that are necessary for modeling 
carbon processes. 
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A Comparison of the Classification of 
Vegetation Characteristics by Spectral 
Mixture Analysis and Standard 
Classifiers on Remotely Sensed 
Imagery within the Siberia Region 
Su-Yin Tan 

1 Introduction 

IIASA’s Forestry (FOR) Project is using remote sensing and geographic information 
systems (GIS) technologies to create a set of tools to assist in producing and 
maintaining databases that are spatially and thematically suitable for conducting full 
carbon accounting.  In line with this long-term goal, IIASA is collaborating in the 
SIBERIA II study, which is geared towards exploring multi-sensor concepts for 
greenhouse gas (GHG) accounting of Northern Eurasia.  The overall objective of 
SIBERIA II is to demonstrate the viability of full carbon accounting (including various 
GHGs) on a regional basis using the environmental tools and systems available today 
and in the near future (Schmullius et al., 2002).  The region under study lies within 
Northern Eurasia, approximately 300 million hectares in area and represents a 
significant part of the earth’s boreal biome, thus playing a critical role in terms of global 
climate.  A key objective of SIBERIA II is to make use of the developments made in 
European space technology and increased scientific expertise in remote sensing and 
processing of satellite images to produce more accurate quantitative data on the boreal 
biome.  This information can then be used as intermediate products for vegetation and 
climate models for carbon cycle predictions and evaluation of future global change. 

In general, remote sensing provides important coverage, mapping, and classification of 
land cover features, such as vegetation, soil, water, and forests.  A chief use of remotely 
sensed data is to produce a classification map of the identifiable or meaningful features 
or classes of land cover types in a scene (Jasinski, 1996).  As a result, the chief product 
is a thematic map with themes, such as land use, geology, and vegetation types.  In the 
field of remote sensing, image classification is a process in which pixels or the basic 
units of an image are assigned to classes.  By comparing pixels to one another and to 
those of known identity, it is possible to assemble groups of similar pixels into classes 
that match the informational categories of interest to users of remotely sensed data.  
Numerous methods of image classification exist and classification has formed an 
important part of not only remote sensing, but also of the fields of image analysis and 
pattern recognition.  In some instances, the classification itself may form the object of 
the analysis and serve as the final product.  In other instances, the classification may 
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form only an intermediate step in more elaborate analyses, such as land degradation 
studies, process studies, landscape modeling, coastal zone management, resource 
management, and other environmental monitoring applications.  Therefore, image 
classification forms an important tool for examining digital images.  Accordingly, the 
selection of which classification technique to employ can have a substantial effect on 
the results, whether the classification is used as a final project or as one of several 
analytical procedures applied to derive information from an image for further analyses. 

The traditional method for inferring characteristics about vegetation cover from satellite 
data is to classify each pixel into a specific land cover type based on a predefined 
classification scheme.  An alternative approach is to use a mixed pixel method or 
Spectral Mixing Analysis (SMA).  This method recognizes that a single pixel is 
typically made up of a number of varied spectral types (i.e., soil, water, vegetation) 
(Atkinson et al., 1997).  The resulting land cover maps can be used in conservation and 
biodiversity assessments, land resource management, and extrapolation of results from 
more locally-based studies of the human dimensions of global change (Townshend et 
al., 1994).  In particular, applications of SMA for monitoring carbon sequestration has 
only begun to be developed and this technique offers a potentially useful tool in using 
remote sensing to measure biomass and other vegetation characteristics that can be used 
in biosphere–atmosphere models, global change studies, and other applications. 

The objective of this research was to test the stability of a spectral mixture modeling 
method by applying the model to produce land cover maps of a study area within 
Northern Eurasia.  Classification results from applying the spectral mixture model was 
assessed by comparison with those produced by more common classification 
techniques, such as by the maximum likelihood classifier.  The SMA analysis was 
performed and evaluated, based on Landsat-7 data.  Therefore, in line with the aims of 
the SIBERIA II study, this research was able to test an image processing technique that 
could potentially serve as a tool for deriving improved estimates of vegetation 
parameters that are essential for modeling carbon processes. 

2 Background 

Image classification is defined as the process of creating thematic maps from satellite 
imagery (DeFries, et al., 1999).  The extraction of thematic information from remotely 
sensed images into the form of a thematic map is a key area of research into the 
applications of remote sensing data.  By definition, a thematic map is an informational 
representation of an image, which conveys information regarding the spatial distribution 
of a particular theme (Campbell, 1996).  Themes may be as diversified as their areas of 
interest.  Examples of themes include soil, vegetation, water depth, and atmosphere. 

The objective of image classification is to classify each pixel of an image into land 
cover categories.  In the case of crisp or hard classification, each pixel is assigned to 
only one class.  However, in fuzzy or soft classification, a pixel is associated with many 
land cover classes.  In general, classification techniques may be categorized by the 
training process on which it is based (supervised or unsupervised) or on the basis of the 
underlying theoretical model (parametric or non-parametric). 
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The term classifier refers loosely to a computer program that implements a specific 
procedure for image classification.  Many classification strategies have been devised 
over the years and from these alternatives, the analyst must select the classifier that will 
best serve the task or application at hand.  The optimal classifier depends on the 
situation at hand, since characteristics of each image and the circumstances for each 
study vary greatly.  Therefore, it is imperative that the spatial analyst understands the 
alternative strategies available for image classification in order to select the most 
appropriate classifier for a specific task.  For this reason, different digital image 
classifiers will be reviewed and evaluated before proceeding to describe the technique 
of spectral mixture analysis. 

2.1 Digital Image Classifiers 

Several classification algorithms (classifiers) have been developed and categorized as 
either supervised or unsupervised approaches, or based on parametric or non-
parametric models.  For example, the Maximum Likelihood Classifier (MLC) is a 
supervised parametric algorithm, whereas k-means clustering is considered to be an 
unsupervised parametric algorithm.  Both types of classifiers are commonly used in the 
classification of remotely sensed imagery. 

2.1.1 Supervised Classification 

Supervised classification procedures tend to require considerable interaction with the 
analyst, who must guide the classification by identifying areas on the image that are 
known to belong to each category.  These areas are referred to as training sites.  The 
training sites or samples of known identity are then used to classify pixels of unknown 
identity.  Examples of supervised classification methods include parallelepiped, 
maximum likelihood, minimum distance, and Mahalanobis distance classifiers. 

In general, supervised classification involves three distinct stages of training, allocation, 
and testing.  Training involves the identification of the training sites to be used by the 
classifier and such pixels of known class membership are usually gathered from 
reference data sources including ground truth data, existing maps, and aerial 
photographs.  These training sites are used to derive various statistics, such as the mean, 
variance, divergence measures, and covariances of spectral properties that typify each 
informational category or land cover class to be classified.  This information is input 
into the second stage of the classification.  In the allocation phase, the pixels of the 
image are allocated to the class with which they show the greatest similarity based on 
the derived statistics.  In the final stage, the overall accuracy of the classification 
procedure is determined.  This is accomplished by selecting a sample or group of testing 
pixels and comparing their class identities on both the classified image and the reference 
data.  The pixels of agreement and disagreement for each testing sample are represented 
in the form of an error matrix, which can be used to evaluate the classification accuracy. 

A variety of methods have been devised to implement the basic approach of supervised 
classification.  All of these methods use information derived from the selected training 
data as a means of classifying uncategorized pixels.  The method of parallelepiped 
classification, or sometimes referred to as box decision rule or level slice procedures, is 
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based on the ranges of values within the training data to define decision boundaries 
within a multidimensional data space (Colwell, 1983).  The spectral values of 
unclassified pixels are projected into data space and those falling within the regions 
defined by the training data are assigned to the appropriate categories.  The dimensions 
of the parallelepiped are usually defined based upon a standard deviation threshold from 
the mean of each selected class.  Although this procedure has the advantages of 
accuracy, directness and simplicity, the disadvantages of this method are also obvious.  
For example, spectral regions for informational categories may intersect or the training 
data may not encompass the complete range of values to be classified in an image. 

Another commonly used classifier is maximum likelihood classification. This method 
assumes that the statistics for each class in each band are normally distributed and 
calculates the probability that a given pixel belongs to a specific class (Settle and 
Briggs, 1987).  All pixels are classified or assigned to a specific category, unless a 
probability threshold is specified.  Therefore, each pixel is assigned to the class to which 
it has the highest probability (i.e., the “maximum likelihood”) of belonging.   

The minimum distance classification differs in that it uses the mean vectors of each 
region of interest and calculates the Euclidean distance from each unknown pixel to the 
mean vector for each class.  All pixels are classified to the closest region of interest 
class unless the user specifies standard deviation or distance thresholds, in which case 
some pixels may be unclassified if they do not meet the selected criteria. 

The Mahalanobis distance classification is a direction sensitive distance classifier that 
uses statistics for evaluating each class (Schowengerdt, 1997).  Although this classifier 
is similar to the maximum likelihood classifier, it assumes that all class covariances are 
equal.  As a result, this approach is a faster method of classification.  More specifically, 
all pixels are classified to the closest region of interest class unless the user specifies a 
distance threshold, in which case some pixels may be unclassified if they do not meet 
the threshold. 

Supervised classification methods have many advantages, relative to unsupervised 
classification.  Firstly, the analyst has control of a set, selected menu of informational 
categories tailored to a specific purpose and geographic region (Campbell, 1996).  This 
control is essential when the specific task is to compare one classification with another 
of the same scene at different dates, or if the classification must be compatible with 
those of adjacent regions.  Secondly, supervised classification is associated with specific 
areas of known identity as a result of selecting training areas.  As opposed to 
unsupervised classification methods, the analyst is not required to manually match 
spectral categories on the final map with the informational categories of interest.  
Finally, serious classification errors are detectable by examining training data to 
determine whether they have been correctly classified.  On the other hand, supervised 
classification also has numerous disadvantages.  In effect, the analyst imposes a 
classification structure upon the data based on predefined classes instead of finding 
“natural” classes in an image.  Furthermore, the defined classes may not match the 
natural classes that may exist in the data.  In supervised classification, training sites and 
classes are based primarily on information categories and only secondarily on spectral 
properties.  Another source of error is in the selection of training data, since these 
samples of pixels may not be representative of conditions encountered throughout the 
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image.  Moreover, supervised classification may not be able to recognize and represent 
special or unique categories not represented in the training data, possibly due to the 
small areas they occupy on the image or simply because they are not known to the 
analyst.  Finally, a priori class training can often be a time-consuming and tedious 
process.  For example, matching delineated training sites on maps and aerial 
photographs to the image to be classified may be problematic, especially if the area to 
be classified is large, complex, or inaccessible.  Nevertheless, previous experience has 
shown that supervised classification methods typically produce better maps than 
unsupervised classifications, provided that good training data are available 
(Schowengerdt, 1997).  The key factor in a supervised classification is the ability to 
identify a set of pixels that accurately represents the spectral variation present within 
each informational region. 

2.1.2 Unsupervised Classification 

As stated earlier, unsupervised classification involves the process of automatically 
segmenting an image into spectral classes based on the natural groupings found within 
the data set.  The objective is to group multiband spectral response patterns into clusters 
that are statistically separable.  In unsupervised classification, any individual pixel is 
compared to each discrete cluster to see which one it is closest to, in terms of spectral 
value. 

Typically, an unsupervised classification begins with the analyst specifying minimum 
and maximum numbers of categories to be separated by the classification algorithm 
(Colwell, 1983).  A set of pixels is arbitrarily selected as cluster centers.  The 
classification algorithm determines the distances between pixels and initial estimates of 
cluster centers are formed.  The statistical center or class centroid is determined for each 
class in order to define the exact center of the group.  In the next step, all the remaining 
pixels in an image are assigned to the nearest class centroid.  The final step involves 
testing the distinctiveness of the identified classes. 

The two most frequently used grouping algorithms are the K-means and the ISODATA 
clustering algorithms.  These two statistical routines for grouping similar pixels together 
are iterative procedures.  In general, both algorithms assign first an arbitrary initial 
cluster vector, then each pixel is classified to the closest cluster.  The new cluster mean 
vectors are calculated based on all the pixels in one cluster.  This procedure is repeated 
until the change between the iteration is small.  The change between iterations can be 
specified in several different ways, either by measuring the distances the mean cluster 
vector have changed from one iteration to another, or by the percentage of pixels that 
have changed between iterations. 

The ISODATA algorithm has some refinements to the general unsupervised 
classification procedure by the splitting and merging of clusters (Campbell, 1996).  It 
can also be considered a variation on minimum distance methods.  Clusters are merged 
if either the number of members (pixels) in a cluster is less than a certain threshold or if 
the centers of two clusters are closer than a certain threshold.  Clusters are split into two 
different clusters if the cluster standard deviation exceeds a predefined value and the 
number of members (pixels) is twice the threshold for the minimum number of 
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members.  The ISODATA and k-means algorithms are similar, except that the 
ISODATA algorithm allows for a different number of clusters while the k-means 
assumes that the number of clusters is known a priori.  It is also true that the ISODATA 
algorithm has some resemblance to supervised classification in that initial estimates of 
class means can be derived from available training data.  Therefore, this algorithm is 
sometimes considered to be a hybrid classifier rather than a clear example of either 
supervised or unsupervised approaches. 

The k-means algorithm is a common clustering method, which seeks to minimize the 
within cluster variability.  The first step of the algorithm involves specifying an initial 
mean vector (seed or attractor) for each of the k clusters.  Each pixel of the training set 
is then assigned to the class whose mean vector is closest to the pixel vector, forming 
the first set of decision boundaries.  The procedure is iterative, since a new set of cluster 
mean vectors is then calculated from this classification, and the pixels are reassigned 
accordingly.  In each iteration, the k-means will tend to gravitate towards concentrations 
of data within their currently-assigned region of feature space.  This procedure is 
repeated until there is no significant change in pixel assignments from one iteration to 
the next.   

Advantages of unsupervised classification can be summarized into three key points.  
Firstly, no extensive prior knowledge of the region of interest is required.  Compared to 
supervised classification, where detailed knowledge of the area was required to select 
training sites, unsupervised classification does not require detailed prior knowledge.  
The only stage when knowledge of the region is required is when interpreting the 
meaning of the results produced by the classification process.  Secondly, the opportunity 
for human error is minimized.  Many of the detailed decisions required for supervised 
classification are not required for unsupervised classification, so the analyst is presented 
with less opportunity for error.  Finally, unique classes are recognized as distinct units 
in unsupervised classification.  Such classes, perhaps of very small areal extent, may 
remain unrecognized in the process of supervised classification and could inadvertently 
be incorporated into other classes, generating error and imprecision throughout the 
entire classification. 

On the other hand, disadvantages and limitations arise primarily from a reliance on 
finding “natural” groupings in the image and difficulties in matching these groups to the 
information categories of interest.  Since unsupervised classification identifies spectrally 
homogeneous classes within the data, such classes do not necessarily correspond to the 
informational categories that are of interest to the analyst.  There is seldom a simple 
one-to-one correspondence between matching the spectral class with an informational 
class.  Furthermore, the analyst has limited control over the menu of classes and 
identities.  In the situation where an analyst must compare classifications for different 
dates or adjacent regions, the use of unsupervised classification techniques may be 
unsatisfactory, since a specific menu of informational classes cannot be generated. 

In summary, unsupervised classification tends to be too much of a generalization in that 
the spectral clusters only roughly match some of the actual classes.  Its value is mainly 
as a guide to the spectral content of a scene and can be used to aid in making a 
preliminary interpretation prior to conducting a supervised classification procedure. 
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2.2 Spectral Mixture Analysis 

Spectral Mixture Analysis (SMA) is an alternative to the traditional approach of using 
predefined classification schemes with discrete numbers of cover types to describe the 
geographic distribution of land cover (DeFries et al., 2000). In effect, SMA is a 
technique used to measure the percentage of spectra for each land cover type in a single 
pixel.  In previous studies, SMA has been successfully used to classify successional 
forest types and forest types of varying carbon sink strengths (Settle and Drake, 1993).  
Using SMA as an alternative to traditional classifiers has been recommended by 
previous studies, as it takes into consideration changing biological variables (DeFries et 
al., 2000).  The SMA process enables the classification of different forest types, 
although it still has difficulties in classifying species type and age class with confidence.  
Using ground-based data is especially useful with respect to increasing the accuracy of 
such classifications. 

SMA is based on the assumption that the reflectance spectrum derived from an air- or 
spaceborne sensor can be deconvolved into a linear mixture of the spectra of different 
ground components, frequently referred to as spectral endmembers (Bateson and 
Curtiss, 1996).  Various methods of SMA have been developed to improve the 
classification of mixed pixels and to detect and identify subpixel components and their 
proportions.  Most of the techniques have employed a linear mixing approach (Foody 
and Cox, 1994).  Linear mixing refers to additive combinations of several diverse 
materials that occur in patterns too fine to be resolved by the sensors.   

The linear mixture model assumes that as long as the radiation from component patches 
remains separate until it reaches the sensor, it is possible to estimate proportions of 
component surfaces from the observed pixel brightness. 

In effect, with a known number of endmembers and known spectra of each pure 
component, the observed pixel value in any spectral band is modeled by the linear 
combination of the spectral response of component within the pixel.  The linear mixture 
model can be mathematically described as a linear vector-matrix equation, 

 n 

DNi =   Σ(Rij x Fj) + Ei 
j=1 

i = 1,…,m (number of bands); 
j = 1,…,n (number of endmembers); 
DNi = spectral reflectance of the ith spectral band of a pixel; 
Rij = known spectral reflectance of the jth component; 
Fj = the fraction coefficient of the jth component within the pixel; 
Ei = error for the ith spectral band. 

The error terms account for the unmodeled reflectance and represent the unknown noise 
of observations.  The assumption of this relationship is that an exhaustive set of 
endmembers or classes is defined, so that, 

 n 

Σ Fj = 1 
j=1 

at each pixel.  This assumption poses a problem, since one can never be sure that a 
sufficient number of endmembers has been defined for a given set of data. 
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Nevertheless, SMA is a useful method of image classification; particularly for defining 
proportions of land cover types in pixels for coarser resolution satellite imagery.  
Whereas conventional image classification matches pixels to broad classes of features, 
SMA attempts to identify surfaces from their spectral data much more precisely than 
was previously possible.  In effect, this method of classification attempts to classify 
impure pixels and to quantify the proportion of each land cover type comprising a pixel.  
As a result, more precise estimates of vegetation characteristics, such as quantifying 
aboveground biomass, are made possible. 

3 Study Area 

Under the broad framework of SIBERIA II, the region under study lies within Northern 
Eurasia, representing a significant part of the earth’s boreal biome and playing a critical 
role in the global climate.  The project area location of SIBERIA II is shown in Figure 
1, a region spanning from 52 to 77 degrees north latitude and 80 to 119 degrees east 
longitude.  This territory represents a region of significant size (3,000,000 km2) for 
image classification purposes, which is one of the preliminary steps for regional GHG 
accounting to derive variables such as aboveground biomass, forest cover area, and 
forest composition.   

A small sample of the broad region of interest was subset for preliminary testing 
purposes.  This would result in a smaller sample of image pixels that would offer the 
advantage of ease in processing and would be inexpensive with respect to time and 
costs.  The subset area should also be representative of the forest area and vegetation 
types, as well as large enough to test a variety of classification techniques.   

In accordance to this rationale, this study was conducted on the Shestak test area (103.5 
E, 56.7 N), which is situated in the center of the Irkutsk Oblast, in the Angara river 
basin as shown in Figure 2.  The Angara basin is dominated by mixed coniferous and 
pine forests located at the merging of the Birjusa and Chuna rivers (Sakhatsky et al., 
2002).  The terrain is hilly and pine forests cover approximately a quarter of the area.  
The mixed coniferous forests vegetation type is typical of flat watersheds in the south of 
this region and of higher altitudes of landscapes between the Taseeva and Angara rivers. 

The vegetation types occurring in the study area were typical of Siberian forest cover.  
As aforementioned, the forest composition of the study area was dominated by pine 
forests, which occupied approximately 45% of the forest area (Sakhatsky et al., 2002).  
Smaller areas near the base of slopes and on sandy podzol soils were characterized by 
growth of pine forest.  Spruce forests occurred at lower elevations, occupying about 
12% of the area.  A smaller area of spruce forests was present on drained watersheds 
and slopes.  Fir forests tended to dominate drained and flat watershed areas, as well as 
humidified slopes on the western part of the region.  Aspen forests prevailed mainly at 
the bottom of slopes and flat watersheds, usually existing as the precursor or initial 
stage of regeneration of fir or pine forests.  Cedar forests of wet slopes were typical for 
small sites in areas of low relief.  Larch forests tended to cover an insignificant area of 
the forest and were usually restricted to places with frozen ground.  In the later stages of 
regeneration, birch forests were found in the western half of the region and occupied 
less than a quarter of the total forest area. 
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Figure 1: Siberia II research territory located in Northern Eurasia, with Shestak test 
area (circled used in this study. 

The particular test area was selected, since it offered a variety of land cover types for 
the purposes of image classification, detailed ground truth data were readily accessible, 
and a cloud-free satellite image was available.  Furthermore, the mixed forest 
composition of this area provided an interesting scenario for the application of SMA 
methods of land cover classification, since different tree species and vegetation types 
comprising an area exhibits different spectral characteristics.  In summary, the diversity 
of vegetation and land cover patterns made the Shestak study site an ideal sample of the 
broader Siberian forest region for testing a variety of vegetation mapping methods and 
implementing the SMA technique. 
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Figure 2: Research territory showing IIASA test areas (shaded red), containing test sites 
with forest inventory in GIS format.  The focus of this study was on a test site 
within the Shestak test area.  The corresponding Landsat scene in 30 m 
resolution is also shown with the delineation of the Shestak test area 
boundary. 
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4 Software and Data Sources 

This study considered one test area (Shestak) containing forest ground truth data and 
Landsat-7 coverage.  Ground truth data were encoded as forest inventory polygons and 
attributes in GIS format (i.e., species composition, forest density, land-cover/land-use).  
Landsat-7 ETM+ was available at 30 m resolution with six spectral bands (excluding 
the panchromatic band and thermal band) (1: .45–.52 micrometers (µm); 2: .53–.61 µm; 
3: .63–.69 µm; 4: .78–.90 µm; 5: 1.55–1.75 µm; 6: 2.09–2.35 µm).   

The Landsat-7 ETM+ scene used in this study was acquired on 8 August 2000 from 
path 135, row 21.  The scene was a level 1G product and was radiometrically and 
geometrically corrected (systematic). The resulting product is free from distortions 
related to the sensor (e.g., jitter, view angle effect), satellite (e.g., attitude deviations 
from nominal), and earth (e.g., rotation, curvature). Residual error in the systematic 
L1G product is less than 250 meters (1 sigma) in flat areas at sea level. The systematic 
L1G correction process does not employ ground control or relief models to attain 
absolute geodetic accuracy.  Cloud coverage over the area of interest was negligible. 

The quality of the Landsat images was relatively good and used for deriving the training 
sites for supervised classification.  The particular Landsat scene selected of the Shestak 
test area was selected for a number of reasons, including availability of near cloud-free 
data, availability of ancillary data to interpret the scene, and location in an area where 
significant land cover changes since the time of acquisition was not expected.  Although 
some land use activity was present, such as agricultural areas in the center of the image, 
this contributed to the diversity of vegetation cover types present in the image and 
enabled testing of the ability of the classification algorithm to discriminate amongst a 
variety of land cover types as well as forest tree types. 

The emphasis in this study was placed on the analysis of Landsat satellite imagery, 
because it is higher resolution data (i.e., relative to SPOT vegetation data) and the most 
commonly used imagery when referring to previous studies that employed classification 
and SMA methodology (Shimabukuro and Smith, 1991).  Utilization of Landsat 
imagery facilitated the testing of a variety of classifiers and SMA techniques for the 
purposes this study and such techniques can potentially be applied to other types of 
coarse to fine resolution satellite data. 

In this study, public domain image processing software, commercial image processing 
software, and GIS software were used to carry out the analysis.  The Image Processing 
Workbench (IPW) was used for most image processing purposes.  IPW is a UNIX-
based image processing system, which includes several UNIX filter programs that can 
be pipe-lined together to form complex image processing algorithms.  Due to the 
programming capabilities of IPW and the level of control that the user can exert over 
the manipulation of images, it offered an efficient method for processing the types of 
image data that were available to this study.  Another advantage of using IPW software 
for this analysis was the ease of adding programs to the existing SMA package by 
composing c shell scripts. 

The commercial image processing software, ERDAS Imagine 8.4 (ERDAS, 1997) was 
also used in this study.  This software was used mainly for importing data, 
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preprocessing purposes, and executing the unsupervised classification.  Data processing 
and analysis were also executed in an ArcView and Arc/Info GIS environment, which 
was used to organize, process, and display the data layers of available ground truth data 
for the Shestak test area.  All operations were carried out either in a Windows 
environment or on a Sun Sparc 2 workstation.  Other software packages were primarily 
used for statistical analyses, such as Microsoft Excel, version 9.0. 

5 Methodology 

This study considered one test site from the Shestak area containing forest inventory 
polygons and attributes in GIS format and complete Landsat-7 coverage for one season.  
By comparing the ground truth data with the satellite images by performing a simple 
overlay in ArcView, further geometric correction of the images were not deemed to be 
necessary.  This judgment was based on the examination of the alignment of forest 
stand boundaries, intersections of roads, boundaries of agricultural areas, and river 
tributaries between the satellite image and ground truth layer.  Although more accurate 
georeferencing could have been performed, this was not applied given the time 
constraints and the fact that the image was considered only as a “test site” for 
investigating classification methodology.  Therefore, geometric accuracy was not a 
central issue in this study and additional georeferencing was not necessary, although 
offset forest stand boundaries could potentially produce some error with respect to 
proportional cover estimations.  Furthermore, since the image was cloud-free, no 
atmospheric corrections were applied at this stage. 

A window of 312 × 359 pixels was clipped from the input Landsat image and used for 
the purposes of classification analyses in this study. This area represented in the GIS 
inventory is shown in Figure 3. 

5.1 Spectral Mixture Analysis 

The procedure used in this study was based on a linear mixture model to derive 
continuous fields of, (a) broadleaves (hardwoods), (b) conifers (softwoods), and (c) 
agriculture and floodplain soils (other vegetation and land cover types).  As previously 
mentioned, the linear mixture model is based on the assumption that the reflectance at a 
pixel is the sum of the reflectances of each component within the pixel weighted by the 
respective proportional covers.  It should be noted that improvements on this simple 
linear model have been proposed in the literature.  For example, Roberts et al. (1998) 
tested an approach that allowed the number and types of endmembers to vary on a per 
pixel basis.  Bosdiagianni et al. (1997) proposed to augment the model to include higher 
order moments that describe the distribution of the endmember values about the mean.  
The application of artificial neural networks (ANNs) to estimate the proportions of each 
component has also been suggested; since this nonparametric method does not make the 
underlying assumption that the reflectance is a linear sum of the reflectances from each 
component (Foody et al., 1997).  However, for the purposes of this study, the SMA 
procedure was restricted to the simple linear mixture model as a basic form of analysis 
and estimation of continuous fields from satellite data. 
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Figure 3: Forest regions within the Shestak research area from ground truth data shown 

in an ArcView GIS layer.  Forest composition is shown in three classes of 
hardwood, mixed forest, and softwood species mix. 

The SMA was performed on the partial Landsat scene of the selected Shestak test site.  
The procedure for deriving the continuous fields is described by DeFries et al. (1999) 
and involved the following steps (Figure 4). 

(1) Field data consisting of a series of test stands was obtained in the form of a region 
map separating the pixels of the image and identifying the pixels belonging to each 
forest test stand.  Field data also included the proportions of agriculture and 
floodplain soils, broadleaves, and conifers for each stand. 

The region-based analysis of forest structure was a key characteristic of the SMA 
technique described here.  During this early stage of the mapping process, the 
image was divided into a large number of small patches representing individual 
forest stands.  The resulting region map existed as an IPW image in which all pixels 
belonging to a given region had the same pixel value.  Due to the large number of 
regions in most images, region maps generally contain two bytes per pixel.  The 
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purpose of the region map was to define related sets of pixels, or regions, associated 
with the Landsat image layer (Woodcock et al., 1993). 

Forest stand boundary delineation was achieved by overlaying the ground truth data 
in GIS format over the subset Landsat scene.  The region map was generated by 
using the region tool in IPW that enabled the user to manually define test stand 
boundaries.  Since boundaries were drawn manually and geometric correction was 
not performed on the image, human error along with mismatch between the field 
data layer and satellite image may have produced slight inaccuracies in forest stand 
delineation.  It was expected that the misidentification of pixels to their respective 
forest stands would cause some error in estimating the proportions of each land 
cover type in the subpixel classification analysis.  However, this error was expected 
to have a minimal effect, since most forest stand boundaries were in close 
agreement and there was not a high degree of land cover heterogeneity or 
variability in the selected scene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Procedure used in this study to derive continuous fields. 

(1) Obtain field data for test stand delineation and generate a region map
separating pixels of the satellite image.  Ground truth data also provide
actual percentages of proportional cover for each vegetation type. 

(2) Determine endmember values of the
three continuous fields. 

Training data derived from Landsat scenes.

(3) Apply linear mixture model. 

(4) Estimates of percentages agriculture and floodplain soils, 
broadleaves, and conifers determined for each forest test stand. 

(5) SMA results compared with field data collected from the test stands. 
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(2) Endmember values of the three continuous fields were determined based on the 
selected training data from the Landsat scene. 

An endmember is defined as a pure material that is present or assumed to be present 
within an imaged scene (Moody, 1998). Examples would include asphalt, grass, 
water, etc.  Endmembers may be very general (i.e., grass) or very specific (i.e., 
healthy grass, stressed grass, etc.) depending on the application.  In this study, the 
purpose of performing an SMA analysis was to map different types of vegetation 
and land cover.  Three broad classes of endmembers were selected, namely 
agriculture and floodplain soil, broadleaves, and conifers. 

In general, accurate estimations of endmember values for each component in an 
SMA is essential in order to successfully apply the linear mixture model.  Several 
approaches are available, including values obtained from field or laboratory 
measurements (Adams et al., 1995), manual selection of endmembers based on 
principal components analysis (Bateson and Curtiss, 1996), and deconvolution of 
the mixture modeling equation to solve for the endmember values when the 
fractional cover is known (Oleson et al., 1995; Asner et al., 1997). 

Since fractional cover data were not available and spectral field data could not be 
collected within the given time frame, training data were used to determine 
endmember values.  Training sites were selected for each endmember, as shown in 
Figure 5.  The pixel area estimate and percent of image area for each training site 
are shown in Table 1. 

 

 

 

Figure 5: Training areas for determining endmember values of continuous fields, (a) 
agriculture and floodplain (left blue region), (b) broadleaf forest (yellow 
region), and (c) conifer forest (pink and right blue regions). 
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Table 1: Pixel areas and image proportions of training areas used for SMA and 
supervised classification. 

DN Pixels Percentage Cumulative Percentage 

0 107551 96.02 96.02 
1 1908 1.7 97.72 
2 1054 0.94 98.66 
3 1495 1.33 100 

(3) The linear mixture model was applied. With three endmembers or continuous fields 
to be estimated for each pixel of a 6-band Landsat image, the mixture model 
becomes: 

DN =    [(Ra1 x Fa) + (Rb1 x Fb) + (Rc1 x Fc)]  + 
  [(Ra2 x Fa) + (Rb2 x Fb) + (Rc2 x Fc)]  + 
  [(Ra3 x Fa) + (Rb3 x Fb) + (Rc3 x Fc)]  + 6 bands 
  [(Ra4 x Fa) + (Rb4 x Fb) + (Rc4 x Fc)]  + 
  [(Ra5 x Fa) + (Rb5 x Fb) + (Rc5 x Fc)]  + 
  [(Ra6 x Fa) + (Rb6 x Fb) + (Rc6 x Fc)]  
 a b c 

where DN is the spectral reflectance of a pixel in the Landsat 6-band composite 
image, Rij is the known spectral reflectance or endmember values for agricultural 
and floodplain soils, broadleaf, and conifer classes.  The six bands of the Landsat 
scene were represented by the parameter i and each of the three endmembers was 
represented by factor j.  Fj was the fraction coefficient of the jth component within 
the pixel or the fractional cover for agricultural and floodplain soils, broadleaves, 
and conifers. 

The technical procedure involved determining the mean spectral reflectance values 
for each band of the Landsat composite image by using an image multivariate 
statistics program (i.e., mstats IPW program).  By computing the basic multivariate 
statistics for the multiband satellite image, the mean pixel values, variances, and 
interband covariances were determined for each input band.  The next step involved 
formatting the endmember values into a particular format for use in the SMA 
program, by using an interactive program for creating individual ascii files for each 
endmember.  These files consisted of a line of endmember values for each spectral 
band in the corresponding image, containing six values in total.  In order to 
compare endmember values among Landsat bands, the endmember files were 
plotted as spectra. 

The spectral mixture model was applied by means of an SMA program in IPW.  By 
default, a modified Gram-Schmidt method was used to invert the endmember 
matrix that was created.  Since the fraction images were required to sum to one, 
coefficients were computed for n-1 endmembers.  The final fraction image was then 
computed by means of subtraction. 

(4) Estimates of percentages for agriculture and floodplain soils, broadleaves, and 
conifers were determined for each forest test stand. 



 17

The output of the SMA program consisted of fraction images (named with the 
endmember name with .fr extension).  One fraction image was produced for each of 
the three endmembers.  Such images or mixture maps contain the percent 
abundance or relative fraction of a specific material or endmember at each pixel 
location of the Landsat scene.  Such image maps are usually generated as a set of 
mixture maps for a defined set of scene materials or endmembers.  Ideally, the 
algorithms that generate mixture maps constrain the individual material fractions to 
the range of 0.0 to 1.0 and the fractions for a single pixel total to 1.0. 

By default, the SMA program rescaled the output fraction images to digital number 
(DN) integers from 0 to 255, in order for each fractional image to be presented in 
an intuitive manner.  The default range for fractional values was –1.0 to 1.55.  
Fractions less than –1.0 and greater than 1.55 were scaled to 0 and 255, 
respectively.  This scaling was chosen for three main reasons.  Firstly, this scaling 
increased the interpretability of each fractional image, as used by the original SMA 
implementation from the University of Washington (Quarmby et al., 1992).  
Secondly, fractions outside the above range are usually meaningless.  Finally, the 
precision of the input data does not justify using more than one byte for the output 
data. 

In order to compare the resulting proportional estimates of each continuous field 
from each forest test stand with the collected field data, the first step involved 
converting the output from the SMA program to the percent covers of the different 
endmembers.  However, the fractional files contain the estimates of the fractional 
coverage associated with each endmember and the values between 0 and 100 could 
be interpreted as percentages for that particular endmember.  Since the SMA 
program was implemented as an unconstrained version, with no constraints on the 
values of the fraction images, not all fractional values were between 0 and 100, 
with some values below or higher than 100.  In this case, values over 100 were 
considered outside the range of the endmembers and were stretched to 100.  For 
example, areas such as water received values above 100 for the conifer class, since 
they were outside the range of the means from the three endmembers. 

Since each endmember was evaluated separately and proportional cover estimates 
were determined independently, these values did not obey the constraint of the 
model that limits the sum of all fractions to a value of 1.0 in each pixel.  Therefore, 
each fractional value was rescaled to result in 100 percent cover for each pixel by 
dividing the total sum of the fractions by 100 and in turn, dividing each fraction 
estimate by this factor.  The re-scaling due to the sum-to-one constraint assumes 
that all endmembers in the image are known and each pixel is comprised only of 
the identified land cover types.  This condition of identifiability of the composition 
of mixtures is one of the basic assumptions made by the linear mixture model for 
the SMA. 

(5) The SMA results were compared with the field data collected from the test stands. 

In order to compare the results of the SMA to the available land cover data set from 
the ground truth information, look-up tables were derived from each fraction map 
and placed in an ascii file.  The ground truth data of actual proportions of each 
endmember were appended to the file for ease of comparison. 
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5.2 Supervised Classification 

In order to evaluate classification results of the SMA, the image was first classified by a 
traditional supervised classification method, namely the Maximum Likelihood 
classifier.   

In order to make results comparable to the SMA, the same informational categories or 
land cover types were used to classify the data.  The same training sites digitized for the 
SMA were also used.  The training sites were assumed to represent pixels of known 
identity and covered rather homogeneous regions of land cover.  Training sites were 
then linearly stretched into their respective classes. 

Supervised image classification began with computing statistics for the user-selected 
training sites of land cover classes and the results of the statistical summary were used 
to classify the image.  The mstats IPW program was used to compute basic multivariate 
statistics (per band means, variances and interband covariance) for the input image.  The 
statistics file that was generated was then input into a bayes algorithm to classify the 
image.  This procedure constituted the Bayesian Maximum Likelihood method of image 
classification.  This is the most common supervised classification method used with 
remote sensing image data, applying a discriminant function for maximum likelihood 
classification, based on the assumption of a normal distribution representing each 
training class.  This function is computationally expensive, since it involves two matrix 
multiplications for each pixel and for each class.  The dimension of the matrix increases 
with each image band added to the classification. 

The bayes IPW program allows for the specification of a single non-classification 
threshold, so that pixels whose discriminant functions for all classes that are lower than 
the threshold are not classified.  This specified threshold parameter (-t) is a chi-square 
parameter and the inverse of a distance measure.  Therefore, the threshold parameter 
had a significant effect on the proportion of the image that was classified.  For example, 
when the threshold was set to zero, each pixel in the image was assigned to a class.   

5.3 Unsupervised Classification 

Clustering is a method of unsupervised image classification in which statistically similar 
pixels are grouped together into classes.  These clusters replace the training sites used in 
supervised image classification.  The ustats (IPW) program was used to generate a 
statistics file containing statistics for each designated cluster.  The class statistics 
generated by ustats could then be used with a bayes algorithm to classify the Landsat 
image.  This method required the determination of the input spectral bands, the desired 
number of output clusters, the cluster threshold radius, and which pixel value, if any, 
should be omitted from the clustering routine. 

Firstly, the number of spectral classes for the image was decided.  Following the general 
rule of 10 spectral classes for each land cover class in an image, the image was divided 
into 30 spectral classes.  The advantage of obtaining a large number of spectral classes 
was an improved ability to distinguish differences in the spectral appearance of single 
land cover classes.  However, the disadvantage usually involves the time-consuming 



 19

and tedious task of labeling the large number of spectral classes that are produced, since 
each spectral class must be identified with its informational class.  Although spectral 
subclasses are treated as distinct units during digital classification, spectral subclasses 
comprising a land cover class must be labeled and subsequently displayed under a 
single symbol for the final image or map to be useful. 

Secondly, a cluster threshold radius value (or the maximum distance from the cluster a 
pixel can be in spectral space and still be merged with the cluster) was selected.  This 
value is usually determined by some trial-and-error and the process was largely a 
subjective operation.  In general, by reducing the threshold radius, the homogeneity of 
the resulting clusters tended to increase, while the total number of pixels included in 
clusters was reduced.  The larger the –r parameter, the more general the classes defined 
and fewer classes are typically needed.  Initially, an –r value of 10 was used, however, 
this resulted in too little coverage in the image.  As a result, larger radius parameters 
were tested.  Finally, an –r value of 20 was judged to be adequate, resulting in less than 
1 percent of the image defined as unclassified and almost all surface features in the 
image were included in the classification.  For the purposes of this analysis, the 
minimization of unclassed pixels was thought to be desirable in order to produce a more 
informative land cover map of the Shestak test site.  Therefore, the final map produced 
included 30 spectral classes with a threshold radius of 20. 

Classes were manually labeled into the three land cover categories that had previously 
been used in the supervised classification and as endmembers in the SMA.  The labeling 
process was accomplished primarily by analyzing the locations of pixels in each spectral 
class and determining which land cover class was most likely represented.  Although 
some classes resulted in pixels that occurred in more than one land cover class, the 
pixels were simply labeled according to the class in which the majority of pixels 
occurred.  For the most part, land cover categories were well represented in the image 
that was produced. 

6 Results and Discussion 

The study area was subset from the Landsat satellite image as shown in Figure 6.  The 
corresponding forest stands for the test area were drawn and shown as a region map in 
Figure 7.  As one can see, the test stand boundaries were highly irregular and stand 
areas were variable.  A total of 73 test stands were present in the scene and the region 
map proved be a useful means of identifying to which test stand the pixels of the 
satellite image belonged. The six band Landsat black and white composite image is 
shown in Figure 8.  
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Figure 6: Landsat scene of the Shestak test area. 

 

 

Figure 7: Region map of the subset region showing which pixels of the Landsat image 
belong to which respective forest test stand.  A total of 73 test stands were 
identified in the area (stands 1 to 30 labeled). 
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Figure 8: The six band Landsat black and white composite image.   

6.1 Spectral Mixture Analysis 

The primary results of interest were separate images for each of the endmembers 
containing an estimate of the fraction of that endmember in each pixel.  Assuming the 
linear mixing model and that the spectral signatures of the endmembers could be 
derived from the training data (Table 2), the three fraction maps provided information 
on the abundance of the particular land cover type in each pixel of the image.  The 
fraction maps for agriculture and floodplain soils, broadleaves, and conifers resulting 
from the mixture model are shown in Figures 9, 10, and 11.  Digital Number (DN) 
values varied directly with proportional land cover; the proportions were displayed such 
that a DN range of 0–255 was equal to 0–100 percent (black to white).  Therefore, high 
proportions of the endmember were indicated by higher DN or darker greytones, 
whereas low proportions of the endmember were indicated by lower DN or lighter 
greytones.   

Table 2: Areal estimations of the three land cover classes from ground truth field data. 

Land Cover Class DN Pixels Percentage 
Agriculture and Floodplain Soils 1 13933 12.56 
Broadleaf Forest 2 53512 48.24 
Conifer Forest 3 43484 39.20 

The three individual fraction maps were combined to form a final color composite 
image shown in Figure 12 (Table 3).  The three endmembers were matched with a color 
filter and identified as, (a) agriculture and floodplain soils shown in red, (b) broadleaves 
shown in green, and (c) conifers shown in blue.  It was evident that the SMA results 
were beneficial in the sense that the technique recognized the fact that image pixels 
typically contain several different materials.  “Mixed pixels” were represented by 
intermediate hues (i.e., orange, violet) of the endmember pure spectra and shades varied 
according to the proportions of each individual endmember present in each pixel.  The 
main advantage of this technique was that target materials occupying from a whole to a 
small fraction of an image pixel could be detected.  Therefore, the SMA provided a 
more accurate representation of the vegetation cover, since pixels are seldom comprised 
of a single land cover, but usually consist of a combination of several surface materials. 
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Figure 9: Fraction map for the agriculture and floodplain soils endmember (high 
proportion = darker tones; low proportion = lighter tones). 

 

Figure 10: Fraction map for the broadleaf forest endmember (high proportion = darker 
tones; low proportion = lighter tones).. 
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Figure 11: Fraction map for the conifer forest endmember (high proportion = darker 
tones; low proportion = lighter tones). 

 

Figure 12: Color composite of the fraction maps for the three endmembers.  
Agriculture and floodplain soils are shown as blue, broadleaf forest as red, 
and conifer forest as green.  Since the SMA is a subpixel classifier, each 
pixel is comprised of a mixture of endmember values and their 
corresponding color scheme.  Intermediate hues represent “mixed” pixels 
(high proportion = darker tones; low proportion = lighter tones). 
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Table 3: Areal estimations of the three land cover classes from SMA. 

Land Cover Class DN SMA 
Pixels 

SMA 
Percentage 

Ground 
Truth 

Percentage 
Agriculture and Floodplain Soils 1 14654 13.21 12.56 
Broadleaf Forest 2 55620 50.14 48.24 
Conifer Forest 3 40655 36.65 39.20 

A useful way of looking at the endmember values is to plot them as spectra.  In Figure 
13, the endmember values are plotted for each of the six Landsat bands, enabling the 
comparison of spectra values amongst endmembers.  As expected, spectral values for 
each land cover type varied between image bands.  However, bands 3 and 4 were 
particularly useful for monitoring and detecting vegetation, since these bands record in 
the red and near infrared spectral regions, respectively.  These spectral regions are 
important for chlorophyll absorption, providing important indicators of plant structure, 
biomass, health and vigor that are useful for plant-type discrimination.  Endmember 
values were distinct and differences were most apparent in bands 3, 4, and 5.  As 
expected, the conifer class exhibited significantly low spectral values in bands 3 and 6, 
typically known to appear darker in most Landsat images.  Broadleaf forest was 
moderate in range, but also had lowest spectral values occurring in bands 3 and 6, and 
highest spectral values in bands 1 and 4.  In contrast, agriculture and floodplain soils 
appeared the brightest among the land cover classes, resulting in the highest spectral 
values (80–100 range) in both bands 4 and 5.  Significant differences between 
endmember spectral values were desirable in order to distinguish among different land 
cover classes in the Landsat image. 

1 2 3 4 5 6
Light

Moderate

Dark

Landsat Bands

Endmembers

Spectral Plot of Endmember Values for Six Landsat Bands of the 
Shestak Test Site

0-20 20-40 40-60 60-80 80-100Endmembers Spectral Values:

 

Figure 13: Spectral plot of endmember values for the six Landsat bands for the three
endmembers.  “Light” constitutes the agriculture and floodplain soils class,
“moderate” constitutes the broadleaf forest class, and “dark” constitutes the
conifer forest class.  Endmember spectral values are shown according to the
color scheme indicated in the legend. 
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6.2 Supervised Classification 

The results of the supervised classification are shown in Figure 14 and the areal 
estimations of each land cover class are presented in Table 4.  Areal estimates were 
relatively close to ground truth values. The three land cover and vegetation classes of 
agriculture and floodplain soils, broadleaves, and conifers were shown as red, green, 
and blue, respectively.  The strategy of Maximum Likelihood classification used the 
training data as a means of estimating means and variances of the classes, which were 
then used to estimate the probabilities of all pixels belonging to the class.  As a result, 
each pixel of the image was assigned to only one of the three discrete classification 
classes. 

These results were generated from the IPW processing system.  With respect to the 
threshold tolerance level, a –t value of 10 was chosen as the final threshold value.  This 
threshold resulted in most of the image being classified and few pixels remained 
unclassified.  Overall, this classification was judged to be adequate in terms of 
traditional approaches of using predefined classification schemes, since most classes 
occurred in areas of the scene where they were thought to actually occur.  Although 
active vegetation classes were well defined, there were still major disadvantages 
associated with such hard classification schemes, as opposed to soft classification 
schemes offered by the SMA technique. 

Although both the SMA and supervised classifier (i.e., Maximum Likelihood) used the 
identical training site information, the results were remarkably different and 
demonstrated the fundamental differences between both techniques.  The SMA method 
was able to assess each pixel of the image individually and provide fractional estimates, 
thus providing more accurate areal estimates of all three land cover and vegetation type 
classes than those resulting from the Maximum Likelihood classifier.  It is also 
important to note that the results of both methodologies could have been modified or 
further improved by editing the training data used to generate the classification results. 

Table 4: Areal estimations of the three land cover classes from supervised classification. 

Land Cover Class DN 
Supervised 

Pixels 
Supervised 
Percentage 

Ground 
Truth 

Percentage 

Agriculture and Floodplain Soils 1 10222 9.13 12.56 
Broadleaf Forest 2 51512 45.99 48.24 
Conifer Forest 3 50274 44.88 39.20 
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Figure 14: Classification map produced by the supervised Maximum Likelihood 
classifier.  The agriculture and floodplain soils class is shown in violet, 
broadleaf forest is shown in brown, and conifer forest is shown in light 
green. 

6.3 Unsupervised Classification 

A k-means type of clustering analysis was implemented from the IPW processing 
system.  Since threshold levels were specified to include 30 spectral classes with a 
threshold radius of 20, the initial map produced 30 spectral classes with relatively small 
clusters.  Clusters were then labeled by hand into one of the three endmember classes.  
The final unsupervised classification image is shown in Figure 15 and areal estimates 
are shown in Table 5.  As previously mentioned, the advantage of obtaining a large 
number of spectral classes was an improved ability to distinguish differences in the 
spectral appearance of single land cover classes.  However, the trade-off exists in the 
difficulty in labeling the large number of spectral classes that are produced.  Overall, the 
main difference between the supervised and unsupervised classification products was 
that the unsupervised classification tended to produce an image with a more “speckled” 
appearance.  Also, the unsupervised image included unclassified pixels, whereas the 
supervised approach did not result with unclassified pixels, due to the high threshold 
parameter that was specified.  In the unsupervised classification, the unclassified pixels 
were scattered and distributed throughout the image, especially near the boundary of 
most vegetation classes.  The presence of unclassified pixels was an indicator of a 
higher level of uncertainty associated with this method of classification.  Nevertheless, 
like the supervised approach, the unsupervised classification technique was relatively 
successful in generating a classification map, although it offered an “all or nothing” 
classification scheme and could not provide fractional estimates, unlike the SMA 
approach.  
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Figure 15: Classification map produced by the unsupervised classifier (using k-means 
cluster analysis).  Agriculture and floodplain soils is shown in pink, 
broadleaf forest is shown in blue, and conifer forest is shown in light 
green.  Unclassified pixels were present in the image and shown in red. 

Table 5: Areal estimations of the three land cover classes from unsupervised 
classification. 

Land Cover Class DN Pixels Percentage Ground Truth 
Percentage 

Unclassified 0 1079 0.96  
Agriculture and Floodplain Soils 1 10256 9.16 12.56 
Broadleaf Forest 2 68829 61.45 48.24 
Conifer Forest 3 31844 28.43 39.20 

6.4 Evaluation of Classification Methods 

SMA is a physically-based image analysis process that supports repeatable and accurate 
extraction of quantitative subpixel information.  This analysis process assumes that the 
spectral variability in a multispectral image can be modeled by mixtures of a small 
number of surface materials with distinct reflectance spectra (endmembers).  In this 
study, the SMA was based on a linear mixing model.  Unlike supervised and 
unsupervised image classification, the SMA did not rely on the detection or 
identification of pixel clusters with similar reflectance spectra.  Rather, it was able to 
consider each pixel individually and assess the presence and proportion of select 
endmembers.  The SMA produced fraction images that were pixel-by-pixel measures of 
the percent composition for each endmember in the spectral mixing model.  Fraction 
images produced with SMA appeared to be an effective means of mapping vegetation 
cover and distinguishing between different vegetation and land use covers (i.e., 
agriculture), as well as forest tree species.  The results showed that the SMA technique 
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was able to generate more accurate areal estimates of the endmember classes, matching 
closer to the field data estimates.  Since supervised and unsupervised methods were 
based on predefined classification schemes, classifying entire pixels, this caused a 
“rounding-off error” to occur, often producing too high or low estimates of land cover 
classes due to the inability to distinguish subpixel covers.  The SMA technique proved 
to maintain higher accuracy in classification and provided a more realistic 
representation of the landscape as it estimated continuous fields of land cover, as 
opposed to the patchy and discrete nature of traditional classification techniques. 

There were several improvements that could be made to the methodology for deriving 
continuous fields as described in this paper.  First, the training data selected to be used 
for estimating endmember values could be further improved.  Also, the method of 
training data selection only indicates a discrete land cover type and not the proportion of 
vegetation within the training area with different vegetation characteristics.  In order to 
truly represent proportional land cover, it should be recognized that the training sites 
also do not contain 100 percent pure spectra.  Therefore, it must be assumed that the 
final values of proportional land cover were also inaccurate, since the analysis was 
based on inaccurate training data and erroneous assumptions for calibrating the mixture 
model. 

Problems with assuming the linear mixture model for subpixel classification were also 
previously identified.  Although the application of the linear mixture model offers the 
advantages of simplicity and ability to apply the model over large areas using existing 
training data, the model may also make overly simplified assumptions.  For example, in 
linear spectral mixing, a pixel is represented by two or more surfaces that occur in 
patches that are large relative to the sensor’s resolution and it is assumed that 
proportions of the components can be estimated because mixing occurs in a linear 
manner.  However, linear mixing does not apply to cases where the composite occurs at 
a scale that is fine relative to the resolution of the sensor (Zhu and Evans, 1994).  Since 
mixing would occur before radiation reaches the sensor, the components of the 
composite would not be able to be estimated using the linear mixing method described 
here.  However, one should note that nonlinear mixing is likely only to occur when 
component surfaces arise in highly dispersed patterns.  Due to the nature of the 
landscape and scene characteristics of the Siberian forest, the linear mixture model was 
judged to be adequate for the purposes of this study.  However, it should be noted that 
other calibrated models do exist and may be more appropriate to be applied to scenes of 
other localities with different image characteristics. 

7 Conclusion 

This research investigated the use of SMA to map vegetation types of a test area in 
Siberia, using a portion of a single-date Landsat Enhanced Thematic Mapper (ETM) 
image.  Results complement the findings of a small number of previous studies that 
support the use of SMA in mapping forest composition and areal estimates due to its 
ability to produce fractions representative of subpixel components directly related to 
forest tree type and relative area.  Although the analysis used a spectral unmixing 
technique based on the assumptions of the linear mixture model, the mixture 
proportions and areal estimates that were collected corresponded well with the available 
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field data.  This suggested that the SMA technique based on the linear mixture model 
was an adequate means of vegetation mapping for the purposes of this study.  
Furthermore, areal estimates from the SMA had higher accuracy when compared to 
results from traditional supervised and unsupervised classifications that used discrete 
classification schemes.  Higher accuracy in estimating forest composition and 
proportional cover provides higher quality data for use in other application studies and 
input into ecosystem models, including carbon models or models for GHG accounting.  
Areas of further research could be in applying the SMA technique to other types of 
satellite imagery to compare results for different resolution levels.  For example, data 
from the Moderate Resolution Imaging Spectroradiometer would provide improved 
spatial and spectral resolution.  These data would allow refinement to the simple method 
described in this paper.  Improvements to the SMA methodology used in this analysis 
could also be further explored, such as allowing for multiple endmembers, improving 
the determination of endmember values, and further testing and validation of the results 
of this study. 

References 
Adams, J.B., D.E. Sabol, V. Kapos, R.A. Filho, D.A. Roberts, M.O. Smith and A.R. 

Gillespie (1995). Classification of Multispectral Images Based on Fraction 
Endmembers: Application to Land-Cover Change in the Brazilian Amazon.  
Remote Sensing of Environment, 52, 137–154. 

Asner, G.P., C.A. Wessman and J.L. Privette (1997). Unmixing the Directional 
Reflectances of AVHRR Sub-Pixel Landcovers. IEEE Transactions on 
Geoscience and Remote Sensing, 35, 868–878. 

Atkinson, P.M., M.E.J. Cutler and H. Lewis (1997). Mapping Sub-Pixel Proportional 
Cover with AVHRR Imagery.  International Journal of Remote Sensing, 18, 917–
935. 

Bateson, A. and B. Curtiss (1996). A Method for Manual Endmember Selection and 
Spectral Unmixing.  Remote Sensing of Environment, 55, 229–243. 

Bosdogianni, P., M. Petrou and J. Kittler (1997). Mixture Models with Higher Order 
Moments.  IEEE Transactions on Geoscience and Remote Sensing, 35, 341–353. 

Campbell, J.B. (1996). Introduction to Remote Sensing.  Second Edition, The Guilford 
Press, New York, New York, USA. 

Colwell, R.N. (1983). Manual of Remote Sensing.  Second Edition, American Society of 
Photogrammetry and Remote Sensing, Falls Church, Virginia, USA. 

DeFries, R.S., J.R.G. Townshend and M.C. Hansen (1999). Continuous Fields of 
Vegetation Characteristics at the Global Scale at 1 km Resolution.  Journal of 
Geophysical Research, 104, 16911–16925. 

DeFries, R.S., M.C. Hansen and J.R.G. Townshend (2000). Global Continuous Fields of 
Vegetation Characteristics: A Linear Mixture Model Applied to Multi-Year 8 km 
AVHRR Data.  International Journal of Remote Sensing, 21, 1389–1414. 

ERDAS (1997).  ERDAS Field Guide. Fourth Edition, ERDAS Inc., Atlanta, Georgia, 
USA. 



 30

Foody, G. and D. Cox (1994). Sub-Pixel Land Cover Composition Estimation Using a 
Linear Mixture Model and Fuzzy Membership Functions.  International Journal 
of Remote Sensing, 15, 619–631. 

Foody, G., R.M. Lucas, P.J. Curran and M. Honzak (1997). Non-Linear Mixture 
Modelling Without End-Members Using An Artificial Neural Network.  
International Journal of Remote Sensing, 18, 937–953. 

Jasinski, M.F. (1996). Estimation of Subpixel Vegetation Density of Natural Regions 
Using Satellite Multispectral Imagery.  IEEE Transactions on Geoscience and 
Remote Sensing, 34, 804–813. 

Moody, A. (1998). Using Landscape Spatial Relationships to Improve Estimates of 
Land-Cover Area From Coarse Resolution Remote Sensing.  Remote Sensing of 
Environment, 64, 202–220. 

Oleson, K.W., S. Sarlin, J. Garrison, S. Smith, J.L. Privette and W.J. Emergy (1995). 
Unmixing Multiple Land-Cover Type Reflectances from Coarse Spatial 
Resolution Satellite Data.  Remote Sensing of Environment, 54, 98–112. 

Quarmby, N.A., J.R.G. Townshend, J.J. Settle, M. Milnes, T.L. Hindle and N. Silleos 
(1992). Linear Mixture Modelling Applied to AVHRR Data for Crop Area 
Estimation.  International Journal of Remote Sensing, 13, 415–425. 

Roberts, D.A., M. Gardner, R. Church, S. Ustin, G. Scheer and R.O. Green (1998). 
Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember 
Spectral Mixture Models.  Remote Sensing of Environment, 65, 267–279. 

Sakhatsky, A.I., A.Y. Khodorovsky, I.J. Bujanova and I. McCallum (2002).  
Classification of Space Images for Forest State Identification Within the Siberia 
Region: Part 1.  Interim Report IR-02-029.  International Institute for Applied 
Systems Analysis, Laxenburg, Austria. 

Schmullius, C., S. Voigt, S. Nilsson, T. LeToan, S. Quegan, A. Luckman, H. Balzter, 
W. Wagner, U. Wegmüller, W. Cramer, G. Chernjavsky, E. Vaganov, L. 
Vashchouk and V. Rozhkov (2002). SIBERIA II Brochure: Multi-Sensor 
Concepts for Greenhouse Gas Accounting in Northern Eurasia. Remote Sensing 
Section, Department of Geoinformatics, Friedrich-Schiller-University Jena, 
Germany. Available on the Internet: http://www.siberia2.uni-jena.de. 

Schowengerdt, R.A. (1997). Remote Sensing: Models and Methods for Image 
Processing.  Second Edition, Academic Press, New York, New York, USA. 

Settle, J. and S.A. Briggs (1987). Fast Maximum Likelihood Classification of 
Remotely-Sensed Imagery.  International Journal of Remote Sensing, 8, 723–734. 

Settle, J. and N.A. Drake (1993). Linear Mixing and the Estimation of Ground Cover 
Proportions.  International Journal of Remote Sensing, 14, 1159–1177. 

Shimabukuro, Y.E. and J.A. Smith (1991). The Least-Squares Mixing Models to 
Generate Fraction Images Derived from Remote Sensing Multispectral Data.  
IEEE Transactions on Geoscience and Remote Sensing, 29, 16–20. 



 31

Townshend, J.R.G., C.O. Justice, D. Skole, J.P. Malingreau, J. Cihlar, P. Teillet, F. 
Sadowski and S. Ruttenberg (1994). The 1 km Resolution Global Data Set: Needs 
of the International Geosphere Biosphere Programme.  International Journal of 
Remote Sensing, 15, 3417–3441. 

Woodcock, C.E., J. Collins, V. Jakabhazy and S. Macomber (1993). Technical Manual: 
Forest Vegetation Mapping Methods Designed for Region 5 of the U.S. Forest 
Service.  Boston, Massachusetts, USA. 

Zhu, Z. and D.L. Evans (1994). U.S. Forest Types and Predicted Percent Forest Cover 
from AVHRR Data.  Photogrammetric Engineering and Remote Sensing, 60, 
525–531. 

 


