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Abstract

The implication of risks for justifying lonterm investment remains a controversial
issue. For example, how can we justify mitigation efforts for a 200-year flood that may,
in fact, occur in one year or in 300 yeaBi8count rates obtaed from capital markets

are linked to assets with di§pans of a few decades and, as such, may significantly
underestimate the results afng-term mitigations. In thipaper, we show that the
explicit treatment of extreme catastrophic events and relatedtaincéme horizons

and risks induce dynamically adjusted discaates, conditional on the degree of social
commitment to mitigate risk. In particular, the standard time consistent geometric
(exponential) discount factoese induced by an event wititme horizonscharacterized

by a “memoryless” geometric (exponentigdjobability distribution. A set of such
events induces declining time inconsistent discount rates that are dominated by least
probable extreme events. In general, rifkas discount ratesyhich alter the optimal
mitigation efforts that in turn, change thisk. We show that the induced discount
factors can be analyzed by solving stochastic optimization problems. Our simulation
results indicate that the misperception of timeonsistency associated with induced
discounting may dramatically effect- delay or provoke— the possibility of a
catastrophic collapse.
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Induced Discounting and Its Implications
to Catastrophic Risk Management

Tatiana Ermolieva, Yuri Ermoliev, Cameron Hepburn,
Sten Nilsson and Michael Obersteiner

1 Introduction

The Intergovernmental Panel on Climatea@je (IPCC) Third Assessment Report
indicates the degree oéxtreme uncertainties underyg climate change policy
assessment. In particular, @n@inties are inevitably largehen policies involve very
long time horizons of a century or more.cBuime horizons pose serious challenges to
standard ideas about irstenents and discounting.

How can we justify investments into mitigation efforts, which may possibly turn into
benefits over long and uncertain time horizons in the future? This is a key question in
catastrophic risk management. The discogntinsupposed to impose time preferences

to answer this question. There are sevpoaisibilities for choosing discount rates (see,

for example, the discussion in Akefrl¢1991), Arrow and Lind (1970), Newell and
Pizer (2001), and Portney anfeyant (1999)). One possibility is to use the rates
obtained in capital markets, where investments are discounted with respect to both time
and risk. The standard gmetric discount factord(t) is usually connected with a

constant rater of returns from capital markets, i.ed(t) =1/(1+r)' =e ™. Since
returns in capital markets are linked to assets with a lifespan of a few decades, this
choice dramatically reducesethmpacts that investmentsveabeyond these intervals.
Another serious problem (Newell and Piz2001; Weitzman, 1999) arises from the use

of the expected valueEr and the discount factoe™ that implies additional
significant reduction of future values aontrast to the exgoted discount factoEe™
sinceEe™ >>e ™.

Ramsey (1928) argued that to apply a positive rate to discount values across generations
is “ethically indefensible”, which often leads to the tendency (see, e.g., the discussion in
Ainslie (1992) and Newell rad Pizer (2001)) of applyindow “intergenerational
discounting” over longer horizons. However, the use of discount factors other than
geometric discount factors produces “time inconsistent” preferences affected by slowing
down long-term projects. This inconsistermmogy lead to “unforeseen” collapses for a
society (Hepburn, 2002) that does not apéte time-inconsistent preferences.

In this paper, we deal with discounting and time preferences that are induced by the
explicit treatment of long-term goals, uncertainties, extreme events and risks. Namely,



we analyze the implication of uncertain time horizons. The concept of random time
horizons associated with the occurrence of the most distractive catastrophic event, so-
called stopping times, is a key feature tbé catastrophic risk models proposed in
(Ermolieva, 1997; Ermolieet al., 2000a, b; Ermolievat al., 2001). This concept is

also strongly connected with “life chantesomponents of social time preferences
(Akerlof, 1991), which attracted surprisingliftle attention in recent research. For
environmental problems, time horizons for balancing costs memkfits, i.e., the
lifespans of investments amgten linked to the lifespansf pollutants and related
extreme events, e.g., such notions as 1@0;yar 500-year floods exist. The explicit
introduction of uncertaiiies associated with occurrencalsextreme events implicitly
induces a time preference, which may have a time inconsistent character defined by
time dependent discoumates. Section 2 analyzesetimplications of random time
horizons on discounting. In particular, tharglard geometric (@onential) discounting

is induced by an event that is characterized by a random time horizon with a geometric
(or exponential) “memoryless” probability distribution. The random time horizon
associated with the first event from a set of possible events induces dynamically
declining discount rates that are dominated least probable extreme events. The
explicit introduction of risk management decisions induces endogenous discounting that
may, in a sense, equally emphasize the future and the present. Section 3 summarizes
some implications of induced discounting and its time inconsistency on long-term
strategic decisions. Section 4 describestachastic optimization) catastrophic flood
management model that is used to illustrate these implications by numerical
experiments in Section 5. The long-tetmcertain horizons of the model allow the
evaluation of threats regarding misperceptions of the time inconsistency for three
possible societies (“naive”, “sophisticated” and “committed”) discussed in economic
literature (Akerlof, 1991; Hepburn, 2002; Marglin, 1963). We illustrate how different
types of societies effeet delay or provoke— the possibility of catastrophic collapse.

The conclusions are presented in Section 6.

2 Induced Discounting
2.1  Standard Discounting

First of all, let us consider the simplest situation. Assume that an extreme event, such as
a flood or an earthquake, may occur in time intervad</],... with probability p. This

is often defined as al(p)-year event, say, a 100-year flood. In fattp is the

expected “waiting” time until the event occurs although the event, for example a 100-
year flood, may occur in two weeks or in 300 years. In this case we can speak of a
random time horizon induced by the eveBésides the uncertainties concerning the
occurrence time, there may also be uncertainties regarding the probabjlite.,

scenarios of other potential events. For eplamfor the case study in the upper Tisza
river (Ermolievaet al., 2001) a catastrophe was associated with the break of one of nine
existing dikes that may occur only after a 100-year, a 150-year, and a 1000-year flood
situation characterized by different discharge curves.



Risk management destons generate a stream of random valuest = 01,..., which

may be composed of uncertain codtgnefits and risks indicators. Lat be the
occurrence time of the first event (salled stopping time, see Ermolieva, 1997,
Ermolievet al., 2000a, b), and l&¥, be the expected (conditional) value function given

that the event occurs dt For a given probabilityp, g =1- p, the expected
(unconditional) value function at random timds:

V= EV; = pVy + pgV; + pq2V2 +...= ptgoqtvt , (1)

i.e., the explicit introduction of an uncertdime horizon induces standard geometric
discounting. On the other hand, let, be another value function. The evaluation

28U,
t=0

= - 1

2 AU =pY dV,=EV,, V, ==U;, q=B, p=1-B, (2)

t=0 t=0 Y

with a geometric discounting, 3, ..., B8, ..., can be viewed as the expected value

function EV;, V, :iut at the random stopping time associated with the first
P

occurrence of e(l/ p) -year event,p =1-. For example, it may be associated with the
expected 1/ p)-year lifespan of an economic agent or (hbp) -year lifespan of assets
linked to investments with theonstant stream of returi , t = 01,....

If we know that the event cannot occur at the initial time interval, e.g., the evaluation
takes place at the end of the initial time pdrithen equation (1) is transformed into:

V =Vg + pVy + paV, + paiVa + ... (3)

I.e., the induced discounting is similar in character to quasi-hyperbolic discounting. The
discount factors in equation (1) are furthaodified by adding details of possible
extreme events. For example, assume tr(al a) -year event may trigger more severe
catastrophic scenarios. Say, a 100-year flgitghtion itself may not cause significant
losses unless one of the existing dikes kseas a result, the discounting is now
induced by the event of probabili}; p, where &, is the probability of triggering a

severe catastrophe- a dike break— once the event occurs &t The probabilityd,

may depend on the decisions to increase the reliability of dikes, e.g., on different
maintenance schedules. In this paper de not analyze these types of induced
discounting, as this requires a lengthy disaurssif feasible decisions and their effects.

Remark _1: Only geometric or exponential discountingg® =e"dt =gt
A =-Ing= p, defines a homogeneous time consistent preference. This means that the



evaluation of a project today will have the same discount factors as the evaluation of the
same project after any time interval in the future:

ARV L VAN (VA (VAR (4)

t=0

As our discussion illustrates, this is the direct consequence of the “memoryless” feature
of geometric and exponential probability distitions. For other discount factors with

time dependent rates, the so-called time inconsistency arises requiring appropriate
adjustments of discount factofor projects undertaken later rather then earlier. The
time inconsistency for stochiés models is understood in a rather natural way as the
effects of learning. For stochastic models, thereforecare call this phenomenon as
temporal heterogeneity.

An important case is when the random valés defined as the sum of other random
t

valuesf,, f,, ..., f, generated in periods=01,...t, i.e.,V, :Z f, . Considerv,, i.e.,
k=0

a random sum of random values. For examplecan represent the accumulated risk

reserve of a catastrophe fund until the first catastrophe. The induced discount factor at
time t for the evaluatiorV = Ev, is now equal to the probability of “tailsf-”(r > t):

Proposition 1: Let E|v,| exist and the everfr <¢ depends only onf,, f,, ..., f..
Then

where Ef; is the conditional expectation given that the event occurs at

The proof follows from the Kolmogorov-Prochorov theorem, i.e., from the following
rearrangements:

00 o t
Ev, = YE(v|t=t)= 3 YE(f, |1=K)=
t=0 t=0k=1

where symbolE([J A) denotes the conditional expectation under given exent

For geometric probability distributioR(t =t) = pq" we have

P(t=t)=pg' + pg™*+...= pg' @ +q+g° +..) = pqt—1:L =q'.
-q



Thus, geometric (expongal) distribution of T induces again the standard geometric

(exponential) discountingev, = > q f, . For other distributionghe misperception of
t=0

induced discounting defined by tails of distributions according to equation (4) may lead
to significant underestimations. This is eaid from the following important situation.

2.2  Sets of Potential Events; Declining Discount Rates

Consider the case when stopping timeis associated with a first event from a set of
potential events, say floods, earthquakesyiodstorms, which may occur at different
locations. Typically, extreme events are characterized by a finite set of scenarios, say,
50, 100 or 1000-year floods. In a more general case, they may also be characterized by
infinite sets of scenarios, e.g., similarly to the Guttenberg-Richter law connecting the
probability distribution of magnitudes with expected occurrence times of earthquakes.
In other words, we have a set c(i/ p) -year earthquakes, where itself is

characterized by scenarios with a given probability distribution.

Assume that there is a set of not necessarily mutually exclusive avetts,n, and
stopping times (time horizons), ..., 7,,, associated with these events. lretbe the
moment of the first event, i.er,= minrz, . Assume also that the eveintmay occur for
the first time att with probability p;(t ). For example, for the geometric distribution

pi (t) = p; qit, g =1-p;, t=01..., where p; is the probability for eveni to occur at
any time t. If p; depends ont, p, then p;(t) = @~ Pio)d~ Pi)---A~ Pit-1) Pyt -

t _
Assuming the existence dfm% > Pik-1 = p; for t - o, and that probabilitiesp;,
k=0

t=01..., are small enough, we can take approximatg|{t) = pite_'oit for a large
enought since

t
In@~ pio)A~ Pig).. A~ Pit—1) = _kZ_:lpik—l-
For a finite numben of events, the evaluation of equation (1) is transferred into

V= gip(ﬁ < mi.nr,-]pi OVt - (5)
{=1i=1 j#i

Equation (5) essentially mod#s the standard geometricclunting. Nevertheless, it is

easy to show that the actual discounting tetodbe defined by the smallest discount
rates. The following proposition is similar tfee main conclusions (Weitzman, 1999).

Proposition 2: Assume thatp, (t) = a; (t)e™, o, <a;(t)<ai, A;,a; >0, e.g., for

it

the geometric distributiorp; (t) = p; qit =p e M we have Ai ==Inqg; = p; (for small



J
J#1

(for t —» o) to the standard exponential discounting with the smallest discount factor

defined by such an extreme eventthat )\i* =minA;. For the geometric distribution
|

p;). The induced discount factcﬁei p(t), 6; = P[Ti <mint ] in equation (5) tends
i=1 i

(A; ==In(1- p;)), the induced discounattor is dominated (for — o) by min p; .
|

This fact follows simply from the equation

2 (N +Xi (t)),

*

iZi

Gi oF (t) e—()\i—)\i. )t
6.0 (1)

Sp=

where x; (t) = and N is the number of such that A; =A..

Indeed, from )\i. <A;, and ai.(t)zgi- >0, it follows that x; (t) - Q Therefore,

> (N+¥; (1)) - N, and thus the induced discount factor in equation (5) decreases for
iz

t » o, i.e., for large enough it becomes close to exponential discounting defined by
A

Remark 2: (Invariance of initial discounting.) The geometric discounting in equation (2)
can be associated with/(1-[3) -year event. If the evaluation (2) is adjusted to a new
1/&-year event, then from the proposition, it follows that the long-term discount factor
is defined by random time horizon associated vvnitfiln{(l—B),EJ;l -year event. If
d<1-f, then from the proposition, it follows that the evaluation (2) is dominated by
d-year extreme event, i.e., it is in a sens@riant with respect to the initial standard

geometric discountin@'.

2.3  Endogenous Discounting

The induced discounting becomes an espec@iyplex issue when it is affected by
decisions. We already briefly discussed thiSection 2.1 with respect to factass, the
probability of a dike break. Let us return again to equation (1). The random time
horizon 7 often depends on the growtate of different proesses and the likelihood of
these processes to abruptly pass certain thresholds. This is a typical situation for
insurance, where the rate of growth idimed by the inflow of premiums and the
thresholds are defined by uncertain losses. A similar situation arises in the analysis of

environmental targets. Assie that a random process represents the growth process
and the threshold is defined by a rand@n Let us define the stopping time as the
first time momentt when 7z is below C;. By introducing appropriate risk reduction
decisions it is possible to regulate “survival” constraints, i.e., the probability



P(m, 2C,), t = 01,2,..., or the probabilityP(t > T), (6)

e.g., such that the collapse may occur once in a 10000 years within the fixed planning
time horizonT , i.e., P(m, = C,)=1-y, t = 012,...T, y = 0.0001

Let us now consider catastrophic ever :{nt<Ct}. Then equation (1) is
transformed into:

V=Ev, =Y PAJEMIA), ™

where E(v; | A ) is the conditional value function given thét occurs, which can be

called a survival function. As we can seenfrequation (7), the induced discount factor
at time t is the probability that the collapse occurs at timeAccording to the goals

defined by equation (6), this discounting canrbégulated, e.g., within a constant level
y during the time horizonT . We will use this fact in Section 5 to illustrate the

advantage of the so-called committed society to be aware of the probability defined by
equation (6) despite a seemingly small

3 Long-term Strategies: Implications
of Induced Discounting

The justification of a particular investmgistiving) strategy has usually been addressed
within the utility maximization framework. A social planner chooses a saving plan for a
future period of time so as to maximize the utility evaluated at the present moment. The
most crucial issue is that the socialrpiar has to choose time preferences weights or
discount factors. Samuelson (1937) assumed time consgeentetric (exponential)
discount factors that we dependent only on thieme distance between the present and

the future, not on the particular points in time.

The choice of discounting remains a controversial issue. As Section 2 illustrates, the key
issue here is the explicit treatment of uncertainties and risks. In other words, instead of
postulating exogenous time and risk preferes taken from capital markets, it is
possible to impose implicit (induced) discounting by explicitly specifying goals,
extreme events, and risks. This gives rigea number of challenging problems, in
particular, the need for the explicit treatm®f catastrophic risks and long-term time
preferences, which may go beyond the matunf assets in existing capital markets.
From Remark 2, it follows that the proper evaluation of a project may be dominated by
time inconsistent discounting induced by extreme events, rather than initial standard
geometric discounting. For example, a 4fiscount rate can be linked in view of
equation (2) to a 25-year event, i.e., to the time horizon, which is not matched with the
lifespan of the investment that is linkedy $a a 250-year flood. Therefore, in the long
term the evaluation is dominated by the 1@t@04 rather than 0.04. The misperception

of these effects may significantly underestimate the necessity of long-term mitigation
efforts. As a result, it may provoke cataphes (Section 6) and hence, lead to



increasing vulnerability of the society. The increasing catastrophic losses is an alarming
global tendency (Munich Re, 1999), which isymarily due to the misperception of rare
catastrophic events and hence, movementgaital and people in risk-prone areas. The
adequate perception is a challenging task requiring models that enable the explicit
evaluation of risk profiles, induced discounting, its time inconsistency, and related long-
term strategies. These models can be considered as a key mitigation measure to cope
with increasing vulnerability.

A number of authors already distinguish beén various types of so-called “imperfect
altruism” resulting in the lack of social commitment to mitigate risks. For example,
Akerlof (1991) and Strotz (1956) alluded dwsfiions of a naivea sophisticated and a
committed society (thrift). The main differences between these three societies are
summarized in (Hepburn, 2002). Thus, the naive society does not anticipate its time
inconsistent preferences anduadtrisk profiles; it plans taonsume less than it actually

does at the expense of investments in mitigation efforts. The sophisticated society is
aware of the time inconsistency and therefore chooses the strategy that is a best
response to its later generations best response. Thus, the two societies are not committed
to the strategy for the overall long horizon. The reasons for such policies lay simply in
the misperception of risks and society’s lack of power to lead a committed life. The
third, committed society, has the ability to commit to mitigate risks. In Section 5 we
discuss how different types of societies effectielay or provoke— the possibility of a
catastrophic collapse. The cect understanding of risk profiles and induced time
inconsistent discounting, as we can seenfriSections 4 and Sequires appropriate
stochastic optimizatiomodels. Consider a risk management model, which is used in
Section 5 for numerical experiments.

4 Model

The model described in this Section has the structure outlined by equations (6) and (7).
In fact, it is possible to formulate a simple analytical model, which incorporates the
following three elements:

1. The risk of a catagiphe induces discounting;
2. The discount rate affects the optimal mitigation effort; and
3. Mitigation efforts affect the risk of a catastrophe (return to point 1).

This is evident from equation (7). In this way, we have a loop and the potential for
positive feedback and branching (multiple equilibria). It also means that the discount
rate will be time varying, so the implications of the three types of society (naive,
sophisticated, committed) can be illustrated analytically. However, this requires lengthy
computations of solutions for arising stochastic optimization problems with an infinite
horizon. Therefore, in what follows, we illustrate the implications of three societies by
numerical experiments using a simplifiedrsien of a catastrophic risk management
model that was developed (Ermolieva, 1997; Ermolieet al., 2000a, b). Namely, we

deal with long uncertain time horizorembedded into the model that has been
calibrated for the analyses of catastrophic flood (Ermoleah, 2001) risks. The main
purpose is to evaluate the amount of precaatiy financial resources needed in order



to cope with a possible catastrophic floodle assume that risk reserves are
accumulated over years in a catastrophed through payments from the population
through a mandatory insurance.

In our experiments, the system is miedeuntil the first catastrophic flood, which
occurs at random within a given fixed time horizér=100. We define this random
moment as the stopping time. This eventdsogiated with the break of one of nine
existing dikes that may occur only after a 100, 150 or 1000-year flood. The timing of a
first catastrophic flood signifantly affects the accumulation of risk reserves by the
insurance and total payments of indivitblusFor example, a 100-year flood with the
break of a dike may occur in two years leading to considerable underpayments by
individuals.

Let t be a random (stopping) time of a fiatastrophic flood within a time interval
[0, T]. If no catastrophe occurs, thar=T . Let LTj be random losses at locatignat

time t = 1. In the experiments we evaluate ttepacity of the catastrophe insurance in
the region only with respect to insurance decisions.stjebe the premium rate paid by

location j to the mandatory insurance, then the accumulated mutual catastrophe fund at

time 1 together with the proportional compensatigon LTJ- by the government is equal
j

to X + XX Lrj —Zq)jLT- , where 0<¢; <1, is the insurance coverage for cgll
j j j

Thus, in this model, we assume that the compensation to victims by the government is
paid through the mandatory insurance.

The sustainability of the insuranceogram depends on whether the accumulated

mutual fund together with the governmentampensation is able to cover claims, i.e.,
on the probability of insolvency defined by the event:

I +X2 L -2 6L <0, (8)
j j j

The sustainability also depends on the wgjliess of individuals to accept premiums,
i.e., on the probability of overpayments:

-l >0, j=1..m. 9)
This requirement can be written in the form:

mj<ag;, j=1...m, (10)

where a is the minimal number satisfying the following equatiB(LTj < ar): 0.04,
requiring that overpayment may occur only once in 25 years.



Inequalities (8) and (9) define events, which constrain the choice of the decision
variables specifying the insurance program, i.e., the compensatiory rdtg the

government, coverages by the insurance comggngind premiumgt; . The likelihood

of an event defined by equation (8), inderpayments to the pool as well as equation
(10), determine the resilience of the progrdintan be expressead terms of equation
(10) and the probabilistic constraint:

PKTZHJ- +XZLY -2 ;L] <0ﬂ3y, (11)
J J J

where y is a specified probability of the program’s default, say a default that occurs
only once in 1000 yearsy =0.001. The constraint (11) is similar to the so-called
insolvency constraint, a standard for regulations of the insurance business. In the
stochastic optimization (Erniev and Wets, 1988), the constraint (11) is known as the
so-called chance constraint. The main goal can now be formulated as the minimization
of the expected total uncovered by insurance losses

F(x) = EY (- ¢;)L! (12)
J

subject to equations (1@nd (11), where vectax includes all decision variables. The
solution procedure for this type ofaslel can be found in Ermolieva (1997) and
Ermolievet al. (2000b).

5 Numerical Experiments

These experiments serve to demonstrate byrhaeh the different (often erroneous and
light-minded) risk perception, in other wordsgduced time inconsistency, may turn into
a catastrophe.

Our model, defined by the maximization of value (12) subject to equations (10) and
(11), is similar to the model outlined by equations (6) and (7). From equation (7), it
follows that the induced discount factors the value function (12) is related to the
probability of ruin given that a catastrophe occurs at ttm&his discount factor is
subject to regulations according to egprs (10)-(12), i.e., we have endogenously
generated discount factors.

In what follows we use modified data from (Ermolietal., 2001). We assume that the

dike system deteriorates over time, therefore after a passage of time the break may
occur from less severe but more frequemhfalls. The number of fast Monte Carlo
simulations in a single experiment run eigug000. The evaluation of risk management
decisions accounts for only catastrophes thay occur within 100 years, i.8.,=100.

Hence, the stopping tima <100. The time periodt of the model covers five
overlapping generations and each generaiitis as a social planner for 20 years. The
parametery in the experiments is fixednd we only simulate 150-year floods.

10



We consider the fixed 100-year horizon which three societies, the naive, the
sophisticated, and the committed, live and plan for mitigating and coping with the
catastrophic losses that may occur. They are able to mitigate the risks by laying aside
money to be able to cover the losses. But, depending on their perception of risks, i.e.,
induced time preferences, the results are different.

5.1 The Naive Society

The current generation of social planness aware of a possible catastrophe. It
maximizes the value function (12) taking irocount the potential need to save for the
catastrophe by establishing a catastropimel fand paying premiums. Unfortunately, the
society postpones the implementation of deadisj i.e., let futurgenerations take the

lead. In this sense, the naive society puts its preferences on consumption as the first
priority, the first generation of the naive society consumes at a higher rate than it
actually plans.

For the next generation, the time is shifted forward by 20 years and the second
generation, similar to the first, plans but does not implement saving actions essential for
the catastrophe fund to function. It also has a misleading view on the catastrophe,
namely, if the catastrophe has not occurred in the later generation the society believes
that it will not occur within the current generation with the same probability, i.e., it fails

to take into account the time inconsistgmaeduced by increasing the probability of a

dike break. Thus, the risk profiles, time preferences, and the actions are not adjusted
towards the real risks. In a similar way, we simulate the other three generations, each
time calculating how much insurance premiums they naively plan to save. The plans are
never implemented and the view aratastrophe is time invariant.

Now, what happens to the five generatiaisthe society is shown in Table 1. The
society believes that the ruin probability satisfies desirable level 0.05 calculated by
using time consistent geometric discountinduced by 150-year flood. In fact, even if
society implements its savings plan, the ruin would still increase (“Ruin probability
under savings”) due to the misundarsling of the actual risk profiles- it keeps
reducing the savings (premiums) despite the increasing actual threats in the remaining
time intervals (“Ruin probability actual”).

Table 1: Performance of the naive society.

Planning  Probability = Premium Per  Ruin Probability = Ruin Probability

Horizon of Ruin Location Under Savings Actual
0-100 0.05 1.61 0.05 0.32
20-100 0.05 1.32 0.06 0.46
40-100 0.05 0.97 0.07 0.61
60-100 0.05 0.63 0.09 0.76
80-100 0.05 0.35 0.12 0.89
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5.2  The Sophisticated Society

The simulation scheme for the sophisticategtiety is similar to that of the naive
society. In contrast though, it idgs a correct understanding of the time-
inconsistencies induced by the deteriorating system of dikes. But in fact this society,
similar to the naive planners, also evalugiresent consumption to be much higher than
the future, i.e., they spend also more tpéan. This leads to postponing the decisions
made by each generation. If the catastraptmurs, the procrastination may turn out to

be very costly.

Table 2 shows that since ethsophisticated society mectly understands its time
inconsistency, it is able to keep the “Ruin probability” at a constant level. To do this, the
sophisticated society plans for premiumattincrease over time (higher savings), but

the decisions are postponed to the next gaio®. Due to these delays, the risk burden

is increasingly shifted to the next generation (“Ruin probability actual”). In any case, if

a catastrophe occurs this society will also be not prepared to meet threats, as premiums
are not accumulated.

Table 2: Performance ofelsophisticated society.

Planning Probability Premium Per Ruin Probability
Horizon of Ruin Location Actual
0-100 0.05 1.92 0.32
20-100 0.05 2.49 0.46
40-100 0.05 3.06 0.61
60-100 0.05 3.63 0.76
80-100 0.05 4.19 0.89

The “pathologies” of the naive and the sopb#ed societies can be explained by their
ignorance of risks, incorrect understandingpofential losses and, therefore, the lack of
committed actions. The delays in actions may dramatically affect individuals and the
growth of societies as a whole. Individuasuld be better off if their consumption
options were limited and their choicesnstrained by anticipating risks.

5.3 The Committed Society

The committed society evaluates savings plans by explicitly taking into account time
dependent profiles of catastrophiisks and induced discounting. This society is able to
implement decisions together with subsedugenerations. As shown in Table 3, the
premiums that the society saves for copinthpwatastrophes in 100 years time are much
lower than those of the sophisticated, which is a direct consequence of their committed
actions.

Table 3. Performance of the committed society.

Planning Horizon Probability of Ruin Premium Per Location
0-100 0.05 2.1
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6 Concluding Remarks

The explicit treatment of extreme events, uncertain time horizons, social goals and risks
leads to induced discounting, which may dignificantly different from the standard
discounting obtained from capital markets.siRimanagement decisions affect this
discounting with the potential for positive feedbacks and locked-in “equilibriums”. The
misperception of time inconsistenhdiuced discounting may provoke catastrophic
collapse. Stochastic optimization models enable us to deal with induced time-
inconsistent discounting. It is important to analyze this with more analytical details.
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