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Abstract 

The concept of learning by doing (LBD) rests on the assumption that the more we do 
something, the more efficient we become at it.  The inclusion of this phenomenon in our 
models results in a non-convex formulation and the possibility of multiple local optimal 
solutions.  In this paper, we present a dynamic programming formulation of a model 
with learning-by-doing.  The main advantage of this formulation is the guarantee of a 
global optimal solution, as conventional nonlinear solvers generally return local optimal 
solutions with no guarantee of global optimality.  We also present two nonlinear 
extensions to the model that are not easily solved with some other heuristics.  We 
conclude by running the model based on three carbon tax cases and a discussion of the 
results.  
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A learning-by-doing energy model based on dynamic 
programming 
Charles Tze-Chao Ng 

1 Introduction 

The concept of learning by doing (LBD) rests on the assumption that the more we do 
something, the more efficient we become at it. This phenomenon can be seen in many 
aspects of everyday life. Typing skills, for example, can not be acquired without doing. 
We can memorize the placement of every key on the keyboard, but in end, it takes hours 
and hours of actual practice to type with a reasonable degree of accuracy and speed. 
Similarly, no one has ever learned to swim without entering the water, nor has anyone 
ever learned to ride a bicycle without the bike. Finding our way to a new location for the 
very first time almost always takes more time than subsequent trips, no matter how 
many times we look at the map beforehand. These are but a few examples where 
implementation is not only an important, but absolutely essential part, of the learning 
process.  

In recent years, there has been a trend towards including the LBD phenomenon into 
energy models. From the energy modeling point of view, efficiency shows up as savings 
in cost of production. The concept of costs going down with cumulative production, or 
experience, was first brought up by Wright (1936) in his study of costs in airframe 
manufacturing. He observed that the direct labor hours needed to build an airframe 
decreased as more airframes were produced.  

These feedback effects from learning are generally nonlinear. In Wright’s airframe 
study, the number of direct labor hours required decreased by a fixed percentage with 
every doubling of cumulative experience. In other words, it is easy to become 
moderately knowledgeable in an area, but to get from mediocrity to perfection takes a 
lot more effort. The first few units of experience will contribute greatly to learning, but 
as we gain more experience, it becomes more and more difficult to extract lessons from 
implementation procedures. In many models, we preserve Wright’s method of modeling 
learning, and assume that learning costs will go down with every doubling of 
experience. In the beginning, when experience is low, it does not take much effort to 
double experience, and the learning process is fast. As we accumulate experience, 
however, it becomes more and more difficult to double our experience, and the learning 
process slows down.  
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1.1 Non-convexity 

This nonlinear behavior of cost with respect to experience results in a non-convex 
formulation of the model and the possibility of multiple local optimal solutions when 
we try to solve the model. For a minimization problem, a local optimal solution, loosely 
defined, is a point where the objective function at that point is lower than the objective 
function for the points in its immediate vicinity. A global optimal solution, on the other 
hand, is defined as a point where the objective function is the lowest among all feasible 
points. 

For an analogy in three-dimensional space, we can think of solving a model as finding 
the lowest point on an uneven surface. If we pour water onto this surface, it will flow in 
a downwards direction, i.e. where the objective function is decreasing. A local optimal 
solution is a point where water accumulates. If the surface is convex, water will always 
flow towards the lowest point on the surface – the global optimal solution. For non-
convex surfaces, however, it is possible that the water will accumulate in places other 
than the global optimum, like a lake on a mountaintop. Conventional nonlinear solvers 
generally use techniques that can be likened to water flowing on a surface, and they 
return local optimal solutions with no guarantee of global optimality.  

In the right context, local optimal solutions represent different trajectories that the 
energy system may follow if decisions are made myopically. Different trajectories often 
lead to different technological configurations of the energy system with different 
environmental impacts. Sometimes, system costs can be very similar for different 
locally optimal configurations; at other times, a myopic policy could result in a much 
higher system cost than the global optimal configuration. Therefore, although local 
optimal solutions are interesting in their own right, it is important to have a global 
optimal solution in which to compare them against. In this paper, we focus on finding 
the global optimal solution.  

Because of the nature of learning, LBD technologies are prone to being “locked-out”. 
We can think of this as a result of a myopic strategy – because an LBD technology is 
relatively expensive at the beginning, we do not use it; because we do not use it, its cost 
does not go down. This becomes a vicious cycle, and eventually, we do not use it 
altogether. If a technology is not locked out, there is also a question of “when” it comes 
in. In a locally optimal solution, a technology might be introduced either later or earlier 
than its optimal debut time. Empirically, this is a rarer occurrence than the lockout 
effect, but the modeler should still be aware of this possibility.  

In this paper, we present a dynamic programming formulation of a model with learning-
by-doing. The main advantage of this formulation is the guarantee of a global optimal 
solution. We first give an overview of the literature in Section 2, focusing on the various 
heuristics that have been used to solve LBD models. In Section 3, we describe our 
model and the dynamic programming formulation in detail. In Section 4, we present two 
nonlinear extensions to the model that are not easily solved with some other heuristics, 
in particular, the MIP approach described in Section 2. In Section 5, we run the model 
based on three carbon tax cases and discuss the results. Conclusions and directions for 
further work are presented in Section 6. 
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2 An Overview of the Literature 

As mentioned in the previous section, the concept of LBD itself goes all the way back to 
Wright’s work (1936) on airframe manufacturing. Arrow (1962) was one of the first to 
apply learning curves in economics, suggesting an “endogenous theory of the changes 
in knowledge which underlie intertemporal and international shift in production 
functions.” Since then, many studies have been done on the incorporation of LBD into 
economic models.  

In the realm of energy modeling, recent work include papers by Barreto and Kypreos 
(1999); Kypreos et al. (2000); Gritsevskyi and Nakićenović (2000); Manne and Barreto 
(2002).  

Several heuristics have been used to overcome the problem of local optimality, with 
varying degrees of success. Mattsson and Wene (1997) use a “multiple starting point” 
approach that provides a “best known solution” instead of a global optimum solution.  

Messner (1997) and Kypreos et al. (2000) both approximate the learning-by-doing cost 
curve with a piecewise linear one, and solve the problem with mixed integer 
programming (MIP) solvers. This method does guarantee a global optimal solution, but 
does not work readily when we have other nonlinear components in the model.  

Manne and Barreto (2002) use a simple heuristic that forces the introduction of a 
technology by the end of the learning horizon. This approach eliminates local optima 
due to initial “lockout effects”, but does not deal with local optimality that might occur 
elsewhere. They also bring up the possibility of using the global optimization solver 
called BARON. This approach calls for much larger commitments in computing time 
and memory, and is at this point impractical for large-scale models. 

3 Description of the Model  

In this section, we will give a brief description of our model, and the formulation as a 
dynamic program. We have a system with a single region and a number of energy 
producing technologies. The objective is to satisfy all exogenous electric energy 
demands at the cheapest cost. There are growth and decline constraints on the 
technologies. A carbon tax is imposed on the amount of carbon produced.  

3.1 Cost Function 

Let Xj,t be the level of production of technology j in time period t. The unit cost of 
production using technology j at time t is a function of experience Yj,t.  

lrn
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Experience Yj,t is defined by the following equation 2.  
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The parameter sc represents the portion of the unit cost that is static and not affected by 
the learning phenomenon. The parameter incl represents the initial portion of the unit 
cost that is affected by learning. The learning parameter lrn is greater than zero. Thus, 
as experience Yj,t increases, the learning portion of the unit cost decreases. For non-
learning technologies, the parameter incl is zero. The parameter acc represents initial 
experience and the learning exponent lrn determines how fast costs decrease with time.  

To calculate the learning exponent for a technology with learning costs, we assume that 
learning costs go down by a fixed percentage x with every doubling of experience. We 
then solve for lrn in the following equation. 

xlrn −=− 12  

When x is 20%, the learning exponent is 0.32. 

3.2 Dynamic Programming 

As mentioned in Section 1, global optimality is not guaranteed when conventional 
nonlinear solvers are used. By formulating and solving this problem as a dynamic 
program, we are assured of a global optimum.  

Dynamic programming is an extensive field. A thorough and detailed explanation of the 
theory and applications of dynamic programming can be found in Bertsekas (2000). In 
the following paragraphs, we provide a rough description with an emphasis on how it 
applies to our model. 

A dynamic program is defined by the following components – state variables, action 
variables and a recursive formula with terminal conditions. State variables describe the 
state of the world at a certain time period, or the information that affects our decisions. 
In our case, experience is a state variable because it denotes the unit cost of an LBD 
technology. Also, previous production is a state variable because it defines the critical 
levels for expansion and decline.  

Action variables are the choices available to the decision maker. In our model, the 
action variables are the production levels for all available technologies. Different 
actions may result in different states. Clearly, different levels of production will result in 
different levels of experience in the next time period.  

The recursive formula provides the connection between one time period and the next. 
The main idea behind a dynamic program is to first find the optimal actions for each 
possible state at the last time period T – the terminal stage. We then store the 
information in a cost-to-go function and pass it down to the decision maker at time 
period T-1. Using the recursive formula and the cost-to-go function, we can again find 
the optimal action for each possible state at time period T-1. This is again passed down 
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to time period T-2 in the form of a cost-to-go function, and the recursion continues until 
we get to the first time period. 

At the first time period, we know our initial conditions and we can easily find the 
optimal production portfolio by doing a forward recursion. That is, starting from the 
first period onwards. 

3.3 Equations  

We now present the dynamic program in mathematical terms. Let TECH be the set of 
technologies in the system. We define the sets Xt-1 and Yt as state variables, where 

}|{ 1,1 TECHjXX tjt ∈= −−  

and 

}|{ , TECHjYY tjt ∈= . 

Xt-1 represents the levels of production in the previous time period for all technologies, 
and Yt represents the experience levels.  

The set Yt + Xt represents the updated experience due to production Xt and is defined as  

},,|{ ,,,, TECHjXXYYXYXY ttjttjtjtjtt ∈∈∈+=+ . 

Let the cost-to-go function 

),( 1 ttt YXCOST −  

be the minimum present value of all costs from time period t to the time horizon T, 
given the levels of the state variables Xt-1 and Yt. This is a continuous function over the 
state variables Xt-1 and Yt and we approximate it by calculating the values of the 
function at a pre-determined number of (Xt-1,Yt ) grid-points.  

The rest of the function is approximated via linear interpolation. MATLAB (2003) is 
used because it has a built-in interpolation function called interpn.  This function does 
not require that the grid-points be evenly spaced. The main advantage of this 
approximation over a straightforward discretization is that it allows us more control 
over the resolution of the solution and the size of the problem.       

The calculation of the cost-to-go function at the final time period T is given below. This 
is also known as a terminal condition because it does not depend on the cost-to-go 
function from a later time period. 

∑
∈

∈− ⋅=
− TECHj

TjTj
XAX

TTT XYunit_costYXCOST
TT

,,
)(

1 )(min),(
1

    (3) 

The feasible region resulting from expansion and decline constraints is denoted by A(.) 
and is known from the problem specification.  
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When we are in a time period t < T, the present value of total cost is the sum of two 
parts – the cost of production in this time period, and the discounted total cost of future 
time periods. A decision at this time period affects not only accumulated experience, but 
also upper and lower bounds for production in the next period due to expansion and 
decline constraints. 

When t < T, the recursive formula for COST is given in 4) below. 

)}Y,(                                                                    

)(unit_cost{min)Y,(

t1

,,
)(

1
1

ttt

TECHj
TjTj

XAX
ttt

XXCOST

XYXCOST
tT

+⋅+

⋅=

+

∈∈− ∑
−

β
  

 (4) 

where β denotes the discount factor.  

For readability, the equations 3 and 4 assume no carbon taxes. The modifications 
required to include carbon taxes are straightforward and will not be covered explicitly in 
this paper.  

3.4 Complexity 

The running time of a dynamic program is non-polynomial. It grows exponentially with 
respect to the number of state variables in the model. It also depends on the resolution 
used. The more grid-points we calculate, the closer our linear approximation will be to 
the true cost-to-go function. However, since these calculations take up the bulk of the 
running time, running time increases with the number of grid-points we calculate.  

Besides time complexity, we are also interested in the space complexity of the algorithm 
– the amount of computer memory it takes to run the model. The main memory 
requirement is the storage of the cost-to-go function. If we had used a straightforward 
discretization of the cost-to-go function, the amount of memory required would have 
depended on the parameters. With the linear interpolation approximation, the amount of 
memory required is proportional to the number of grid-points we choose to approximate 
the cost-to-go function.  

4 Extensions 

With this dynamic programming formulation, we are able to incorporate two different 
extensions into the model. The extensions described below both require nonlinear terms, 
and are not easily modeled using an MIP approach. 

4.1 Expansion and Decline Penalties 

Instead of “hard bounds” for expansion and decline constraints, we impose a nonlinear 
penalty for large growth and large contractions in production. This extension serves two 
purposes. First of all, it gives a more subtle representation of growth and decline 
dynamics. Secondly, if we use “hard bounds” with the linear interpolation 
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approximation, some state variable combinations will be infeasible and have a cost of 
infinity. Because of the sudden jump from a real number to infinity, linear interpolation 
is not a good approximation for the cost-to-go function when the states are close to the 
boundary of the feasible region. With nonlinear penalties for growth and decline and 
allowing all production levels to be feasible, we remove the problem of having to 
interpolate between real numbers and infinity.  

When production in one period does not deviate too much from previous production, the 
penalty is zero. But when the deviation becomes too large, the penalty grows 
exponentially. The penalty function that we use is given in equation (5). 
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The critical levels after which the penalties kick in are ct(Xt-1) and dt(Xt-1). These 
depend on the level of previous production Xt-1. The parameters a and b determine how 
fast the penalties increase once we pass the critical level. 

4.2 Cost Range Estimates 

We can also use range estimates for unit cost instead of the point estimates described in 
the previous sections.  

The concept of a single parameter for unit cost is a simplification. We live in a non-
homogeneous world, and variation in costs is common. In their paper, Strubegger and 
Reitgruber (1995) give an interesting discussion on cost distributions of investment 
costs for various technologies. 

Petersik (1999) provides an example of cost differentiation in US wind power 
generation. In the Northern states, wind plants require reinforcement to cope with the 
winter storms. In Texas, violent wind storms and tornadoes are common. The terrain in 
New England and the Northwest is steep and heavily vegetated. In the Midwest, wind 
turbine blades are often coated with insects. All these factors result in variations in 
production costs.  

By using range estimates, we attempt to capture not only the variation in production 
costs due to geographical, political or cultural reasons, but also the optimization 
behavior that occurs with this variation. Imagine a cinema with a small number of 
people. Almost all of the people will be seated in the middle, since that is where the best 
view of the screen is. As more people enter, they will start sitting in the more 
unattractive seats, since the good ones will have already been taken. We assume that the 
decision maker is rational like the people in a cinema, and production always starts from 
the cheapest unit available.  

With range estimates, we assume that different potential sites have different unit costs 
of production for the same technology. These differences could result from many 
different factors, ranging from geographical to political to cultural. Given the minimum 
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and maximum values of the range of unit costs, we assume that potential production 
follows a uniform distribution with respect to cost. In other words, we have the same 
number of potential locations for each cost category between the maximum and 
minimum values. Figure 1 shows the uniform distribution of potential sites with respect 
to cost. The area under the rectangle is 1. 

 

 

 

 

 

 

 

Figure 1: Uniform distribution of potential production over cost. 

Integrating the function in Figure 1 gives us something conceptually equivalent to a 
cumulative distribution function in probability. Figure 2 gives the percentage of 
potential production below a given cost. 

 

 

 

 

 

 

 

 

 

Figure 2: Percentage of potential production below a given cost.  

Taking the inverse of the cumulative function gives the cost of the nth cheapest 
percentile of potential production. This is shown in Figure 3. We also show how the unit 
cost is divided into ranged cost, learning cost and static cost.  

Percentage of potential 
production below this 
cost 

cost 

max min

100% 

Density of potential
production at this cost 

cost 

min max
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If we produce at x% of total potential production, the total cost of production is the area 
under the curve from 0 to x in Figure 3. With the uniform assumption for cost, this area 
can be calculated geometrically. If a different assumption on the cost distribution is 
made, total cost can still be calculated via integration. 

It is also possible to assume a cost distribution over absolute production instead of a 
percentage of potential production. The discussion will be similar to the one presented 
in this section with slight modifications. 

 Cost per unit of production 

Percentile of 
potential production 

100% 

Max Cost 

Min Cost 
Learning cost 

Static cost 

Ranged cost 

 

Figure 3: Unit cost as a function of production. 

5 Numerical results 

5.1 Parameters 

We use a time horizon of 2100, with ten years per time period. A discount rate of 5% is 
used.  

For world electric energy demands in 2000, we use statistics from the International 
Energy Outlook 2003 published by the Energy Information Administration (2003). 
Predictions for 2010 and 2020 are also taken from the IEO 2003. For demands after 
2020, we extrapolate by assuming a fixed percentage annual growth rate of 1.8%.  

We consider three aggregate technologies in our model. The “mature” technology is low 
cost, with relatively high carbon emissions. The unit cost of production with the 
“mature” technology is low. The “med” technology has slightly higher initial costs than 
the “mature” one. It has a moderate amount of experience, but cost reductions are still 
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possible through learning. It also produces carbon emissions, albeit with a much lower 
carbon coefficient. The variation in unit costs is moderate. The “new” technology has 
higher initial unit production costs, higher cost variations, and a higher learning 
potential. The “new” technology is carbon free. In year 2000, the “mature” technology 
satisfies 75% of all electricity demands, while the “med” and “new” technologies take 
up 20 and 5% respectively. Learning exponents of 0.32 are used for both learning 
technologies.  

Figure 4 shows how the unit cost for each technology is divided into its individual 
ranged, learning and static parts.  

For all technologies, we assume that the critical levels for both decline and growth are 
5% a year. Growth or contraction exceeding 5% a year will be penalized according to 
the penalty function given in the previous section. The penalty parameters a and b are 
chosen so that the penalty is US$100 billion if we exceed expansion and decline critical 
levels by 10% of previous production.  

0

20

40

60

80

100

120

140

mature med new

ranged

learning

static

$/kwh

 

Figure 4: Unit cost for each technology for 2000, in US$/kWh. 

We consider three cases with different levels of carbon tax. These cases are a subset of 
the cases studied at the EMF19 forum (2001). 

•  BAU – a business as usual case with no carbon tax 

•  LTAX – a +10 US$/ton per decade carbon tax increase case which starts with a 
10 US$/metric ton carbon tax in 2010, which increases by US$10 per decade 
from then on. 

•  HTAX – a + 25 US$/ton per decade carbon tax increase case which starts with a 
25 US$/metric ton carbon tax in 2010, increasing by 25 US$/metric ton per 
decade until 2040, and then held at the 100 US$/metric ton level through the end 
of the century. 

A grid size of 10 x 10 x 10 x 10 is used for the approximation of the cost-to-go function, 
and the model is implemented in MATLAB. The bulk of the running time is devoted to 

US$/kWh 
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the calculation of the cost-to-go functions in each time period. A single run of the model 
takes approximately one hour on a 1.8 GHz machine with 256 MB of RAM. 

5.2 Analysis 

In Figure 5, we give the globally optimal production paths of the three technologies for 
the BAU case. Because of the overlapping cost ranges and expansion/decline penalties, 
all three technologies are present in the optimal portfolio. The “mature” technology, 
however, maintains cost superiority for the first half of the century. As we enter the 
second half of the century, unit cost for the “med” technology becomes competitive, and 
the “med” technology starts to come in. Although the “new” technology follows a 
“minimal” production path, it still accumulates enough experience for its total unit cost 
to go down by roughly 36% by the year 2100. Even with these cost reductions due to 
learning, the “new” technology is still too expensive to be widely used, and it does not 
play a major role in fulfilling electricity demands over the course of the century. 

  
Figure 5: Optimal production portfolio for BAU case, in TkWh. 

When carbon taxes are imposed, we have an incentive to steer away from the carbon-
intensive “mature” technology. Figure 6a shows the optimal production trajectories 
when we impose carbon taxes according to the LTAX case. Since the “med” technology 
has a lower carbon coefficient than the “mature” one, it becomes more attractive and 
overtakes the “mature” technology at the end of the century. The “new” technology also 
plays a larger role, especially in the final two decades, when carbon taxes are US$90 
and US$100 a ton respectively.  

Figure 6b shows the optimal production trajectories when we impose carbon taxes 
according to the HTAX case. Because of the higher carbon tax, the carbon-free “new” 
technology has higher market penetration, supplying up to 20% of the demands in the 
last few decades. In order to achieve this, expansion for the “new” technology starts 
earlier in the century compared to the LTAX case.  
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a) b) 

Figure 6: Optimal production portfolio for a) LTAX case, and b) HTAX case, in TkWh. 

Figure 7 shows the amount of experience accumulated for the “new” technology over 
the century and Figure 8 shows the corresponding unit costs. We see that the unit costs 
at the end of the century for the “new” technology are slightly different, but not 
significantly, with 37.6 US$/kWh for the LTAX case versus 35 US$/kWh for the 
HTAX case. The reason for this small difference in cost is due to the fact that the “new” 
technology already satisfies 5% of the demand in year 2000. If we just maintain this 
minimal market share throughout the entire century, as in the BAU case, it is still 
possible to double experience four times over by the time horizon. If carbon taxes are 
imposed, experience accumulates faster, but the cost reductions from the extra 
experience are relatively small.  
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Figure 7: Experience accumulated for “new” technology, in TkWh. 
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Figure 8: Unit cost for the cheapest unit of the “new” technology, in US$/kWh. 

Thus, most of the difference in the “new” technology market penetration behavior 
results from the carbon tax with some contribution from the difference in unit costs due 
to learning.   

Figure 9 shows the carbon emissions for each case. In all three cases, carbon emissions 
maintain an upwards trend, although they do level off at the time horizon for the LTAX 
case. This trend is due to the increasing demand and the fact that the carbon-free 
technology is not yet cost-effective. With other cost and demand parameters, it is 
possible that carbon emissions could decline over time. It is also clear from the figure 
that scenarios with higher carbon taxes result in lower carbon emissions. 
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Figure 9: Carbon emissions under different tax scenarios, in billon tons. 
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6 Conclusions and Further Work 

We have shown how dynamic programming can be used to solve nonlinear, non-convex 
models that include learning-by-doing. By using dynamic programming, we are 
guaranteed a global optimal solution. In addition, we have been able to incorporate 
features that cannot be easily handled by other approaches. 

The running time of a dynamic program is non-polynomial and grows exponentially 
with the number of state variables. Since each new technology requires two new state 
variables, dynamic programming is currently not suitable for models with a large 
number of technologies. Thus, finding heuristics or algorithms that will reduce the 
running time of the dynamic program is an important direction for future research. 

6.1 Parallel Processing 

An interesting and promising direction for further work is the use of parallel processing. 
With the linear approximation of the cost-to-go function, we calculate the value of the 
function at a predetermined number of grid points. These calculations only depend on 
the cost-to-go function of the next time period, and are independent of one another. 
Therefore, it is theoretically possible to do these calculations on multiple processors 
simultaneously. We conjecture that since the bulk of the running time is due to the 
calculation of the cost-to-go function, the running time will be inversely proportional to 
the number of processors used as long as the number of processors does not exceed the 
number of predetermined grid points we calculate. If number of processors exceeds the 
number of predetermined grid points, the extra processors will not contribute towards 
decreasing running time. 

6.2 Other Extensions 

Another interesting extension to the model will be to have the variation of costs go 
down with learning. Mature technologies tend to have a smaller variation in unit costs 
than newer technologies, and it would be reasonable to assume that the variation will go 
down as we learn more.  

Assuming that the some of the technologies in the model are based on the consumption 
of finite resources like oil or coal), we can also assume that the costs of these 
technologies go up with experience as these resources become scarce. This assumption 
should result in a shift away from these technologies as time goes by.  

6.3 Conclusions 

As computer processing power becomes increasingly available, we believe that the 
dynamic programming approach is a promising one. We would like to conclude with the 
observation that the dynamic programming approach itself exhibits learning by doing 
behavior. With the accumulation of experience, the running time of the algorithm has 
the potential to be reduced even further. But this potential, like the learning potential of 
our technologies, can not be realized unless we “do”.  
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