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Abstract

The concept of learning by doing (LBD) rests on the assumption that the more we do
something, the more efficient we becomé.aflhe inclusion of this phenomenon in our
models results in a non-convex formulatenmd the possibility of multiple local optimal
solutions. In this paper, we present a dynamic programming formulation of a model
with learning-by-doing. The main advantagfethis formulation is the guarantee of a
global optimal solution, as conventional nonlinsalvers generally return local optimal
solutions with no guarantee of global optimality. We also present two nonlinear
extensions to the model that are not gaslved with some other heuristics. We
conclude by running the modeased on three carbon tax cases and a discussion of the
results.
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A learning-by-doing energy model based on dynamic
programming

Charles Tze-Chao Ng

1 Introduction

The concept of learning by doing (LBD) rests on the assumption that the more we do
something, the more efficient we becomatathis phenomenon can be seen in many
aspects of everyday life. Typing skills, fexample, can not be acquired without doing.

We can memorize the placement of every key on the keyboard, but in end, it takes hours
and hours of actual practice to type with a reasonable degree of accuracy and speed.
Similarly, no one has ever learned to swim without entering the water, nor has anyone
ever learned to ride a bicycle without th&ebiFinding our way to a new location for the

very first time almost always takes more time than subsequent trips, no matter how
many times we look at the map beforeiaThese are but a few examples where
implementation is not only an important, but absolutely essential part, of the learning
process.

In recent years, there has been a trend towards including the LBD phenomenon into
energy models. From the energy modeling pofntiew, efficiency shows up as savings

in cost of production. The concept of cogbing down with cumulative production, or
experience, was first brought up by Wrigh©936) in his study of costs in airframe
manufacturing. He observed that the dirktior hours needed to build an airframe
decreased as more airframes were produced.

These feedback effects from learning are generally nonlinear. In Wright's airframe
study, the number of direct labor hours regdidecreased by a fixed percentage with
every doubling of cumulative experience. In other words, it is easy to become
moderately knowledgeable in an area, but to get from mediocrity to perfection takes a
lot more effort. The first few units of expence will contribute greatly to learning, but

as we gain more experience, it becomes more and more difficult to extract lessons from
implementation procedures. timany models, we preserve Wright's method of modeling
learning, and assume that learning costs will go down with every doubling of
experience. In the beginning, when experience is low, it does not take much effort to
double experience, and the learning process is fast. As we accumulate experience,
however, it becomes more and more difficultituble our experience, and the learning
process slows down.



1.1 Non-convexity

This nonlinear behavior of cost with resp to experience results in a non-convex
formulation of the model and the possibility of multiple local optimal solutions when
we try to solve the model. For a minimization problergcal optimal solution, loosely
defined, is a point where the objective functairthat point is lower than the objective
function for the points in its immediate vicinity. ghobal optimal solution, on the other
hand, is defined as a point where the objediivetion is the lowest among all feasible
points.

For an analogy in three-dimensional space, we can think of solving a model as finding
the lowest point on an uneven surface. If we pour water onto this surface, it will flow in
a downwards direction, i.e. where the ohjex function is decreasing. A local optimal
solution is a point where water accumulates. If the surface is convex, water will always
flow towards the lowest point on therface — the global optimal solution. For non-
convex surfaces, however, it is possible tinat water will accumulate in places other
than the global optimum, like a lake ammountaintop. Conventional nonlinear solvers
generally use techniques that can be likened to water flowing on a surface, and they
return local optimal solutions with no guarantee of global optimality.

In the right context, local optimal solutions represent different trajectories that the
energy system may follow if decisions are made myopically. Different trajectories often
lead to different technological configuatis of the energy system with different
environmental impacts. Sometimes, system costs can be very similar for different
locally optimal configurations; at other times, a myopic policy could result in a much
higher system cost than the global optimal configuration. Therefore, although local
optimal solutions are interesting in their own right, it is important to have a global
optimal solution in which to compare them against. In this paper, we focus on finding
the global optimal solution.

Because of the nature of learning, LB&hnologies are prone tweing “locked-out”.

We can think of this as a result of a myopic strategy — because an LBD technology is
relatively expensive at the beginning, we do une it; because we do not use it, its cost
does not go down. This becomes a viciousle&syand eventually, we do not use it
altogether. If a technology is not locked out, there is also a question of “when” it comes
in. In a locally optimal solution, a technologyght be introduced either later or earlier
than its optimal debut time. Empirically, this a rarer occurrence than the lockout
effect, but the modeler should still be aware of this possibility.

In this paper, we present a dynamic programming formulation of a model with learning-
by-doing. The main advantage of this formulation is the guarantee of a global optimal
solution. We first give an overview of the literature in Section 2, focusing on the various
heuristics that have been used to sdl&D models. In Section 3, we describe our
model and the dynamic programmgiformulation in detail. In Section 4, we present two
nonlinear extensions to the model that are not easily solved with some other heuristics,
in particular, the MIP approach describedSection 2. In Section 5, we run the model
based on three carbon tax cases and discas®shlts. Conclusions and directions for
further work are presented in Section 6.



2 An Overview of the Literature

As mentioned in the previous section, the concept of LBD itself goes all the way back to
Wright's work (1936) on airframe manufactuginArrow (1962) was one of the first to
apply learning curves in economics, suggesting an “endogenous theory of the changes
in knowledge which underlie intertemporal and inéional shift in production
functions.” Since then, marstudies have been done on theorporation of LBD into
economic models.

In the realm of energy modeling, recentriwanclude papers by Barreto and Kypreos
(1999); Kypreost al. (2000); Gritsevskyi and Nalenovi (2000); Manne and Barreto
(2002).

Several heuristics have been used to overcome the problem of local optimality, with
varying degrees of success. Mattsson anthé\M@997) use a “multiple starting point”
approach that provides a “best known soluitiinstead of a global optimum solution.

Messner (1997) and Kypreesal. (2000) both approximate the learning-by-doing cost
curve with a piecewise linear one, and solve the problem with mixed integer
programming (MIP) solvers. This methodedoguarantee a global optimal solution, but
does not work readily when we havéet nonlinear components in the model.

Manne and Barreto (2002) use a simpleirtstic that forces the introduction of a
technology by the end of the learning iaon. This approach eliminates local optima
due to initial “lockout effects’but does not deal with local optimality that might occur
elsewhere. They also bring up the possibility of using the global optimization solver
called BARON. This approach calls for much larger commitments in computing time
and memory, and is at this pointpractical for large-scale models.

3 Description of the Model

In this section, we will givea brief description of our mofjeand the formulation as a
dynamic program. We have a system watlsingle region and a number of energy
producing technologies. The objective is satisfy all exogenous electric energy
demands at the cheapest cost. There are growth and decline constraints on the
technologies. A carbon tax is imposed on the amount of carbon produced.

3.1 Cost Function

Let X;: be the level of productionf technology j in time period t. The unit cost of
production using technology j at tirhés a function of experience;y

=Irn

Y
) _ . J.t
unit _cost, (Y,,) = sc; +indl e (1)

Experience Y; is defined by the following equation 2.
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The parametesc represents the portion of the unit ctsdt is static and not affected by
the learning phenomenon. The paramétel represents the initial portion of the unit
cost that is affected by learning. The learning parantatds greater than zero. Thus,
as experience ;Y increases, the learning portion of the unit cost decreases. For non-
learning technologies, the parameitatl is zero. The parametacc represents initial
experience and the learning exponlentdetermines how fast costs decrease with time.

To calculate the learning exponent for a techgglwith learning costs, we assume that
learning costs go down by a fixed percentage x with every doubling of experience. We
then solve foirn in the following equation.

27" =1- x

When x is 20%, the learning exponent is 0.32.

3.2 Dynamic Programming

As mentioned in Section 1, global optimglils not guaranteed when conventional
nonlinear solvers are used. By formulating and solving this problem as a dynamic
program, we are assured of a global optimum.

Dynamic programming is an extensive field. A thorough and detailed explanation of the
theory and applications afynamic programmingan be found in Bertsekas (2000). In
the following paragraphs, we provide aigh description with an emphasis on how it
applies to our model.

A dynamic program is defined by the following componentsate variables, action
variables and arecursive formula with terminal conditions. State variables describe the
state of the world at a certain time periodttee information thaaffects our decisions.

In our case, experience is a state variable because it denotes the unit cost of an LBD
technology. Also, previous production is atetvariable becausedefines the critical

levels for expansion and decline.

Action variables are the choices availablethe decision maker. In our model, the
action variables are the production levels &l available technologies. Different
actions may result in different states. Clearly, different levels of production will result in
different levels of experience in the next time period.

The recursive formula provides the connection between one time period and the next.
The main idea behind a dynamic program is to first find the optimal actions for each
possible state at the last time period T — the terminal stage. We then store the
information in acost-to-go function and pass it down to the decision maker at time
period T-1. Using the recursive formula ahe cost-to-go function, we can again find

the optimal action for each possible state at time period T-1. This is again passed down



to time period T-2 in the form of a cost-go function, and the recursion continues until
we get to the first time period.

At the first time period, we know our initizonditions and we can easily find the
optimal production portfolio by doing a forwrecursion. That is, starting from the
first period onwards.

3.3 Equations

We now present the dynamic program in reathtical terms. Let TECH be the set of
technologies in the system. We define the seisaKd Y, as state variables, where

Xia :{xj,t—l | JOTECH}
and
Y, ={let | jOTECH} .

X1 represents the levels of production ie firevious time periotbr all technologies,
and Y; represents the experience levels.

The set Y+ X; represents the updated experience due to productiandXs defined as

Y, + X, ={Y, + X, 1Y, 0Y, X, 0X,, j OTECH}.
Let the cost-to-go function

COST, (X1, Y))

be the minimum present value of all costs from time period t to the time horizon T,
given the levels of the state variables 4nd Y. This is a continuous function over the
state variables ¥ and Y and we approximate it by calculating the values of the
function at a pre-determined number of {X;) grid-points.

The rest of the function iapproximated via linear imgolation. MATLAB (2003) is
used because it has a builtamerpolationfunction calledinterpn. This function does

not require that the grid-points be elerspaced. The main advantage of this
approximation over a straightforward discretization is that it allows us more control
over the resolution of the solution and the size of the problem.

The calculation of the cost-to-go function at the final time period T is given below. This
is also known as a terminal condition because it does not depend on the cost-to-go
function from a later time period.

COST; (X14,Yy) = min aZcunit_COSt(Yj'T) X, 3)
H

X OA(Xr-) |

The feasible region resulting from expansand decline constraints is denoted by) A(
and is known from the problem specification.



When we are in a time period t < T, the present value of total cost is the sum of two
parts — the cost of production in this time pdriand the discounted total cost of future
time periods. A decision at this time period affects not only accumulated experience, but
also upper and lower bounds for productiorthe next period due to expansion and
decline constraints.

When t < T, the recursive formula for COST is given in 4) below.

COST, (X, Y,) = min { _DTZCH unit_costY, ;) X, ;
T t-1. J
+ BLCOST,, (X, Y, + X))} @

wheref denotes the discount factor.

For readability, the equations 3 and gsame no carbon taxes. The maodifications
required to include carbon taxes are straightforward and will not be covered explicitly in
this paper.

3.4 Complexity

The running time of a dynamic programmign-polynomial. It grows exponentially with
respect to the number of state variablethan model. It also depends on the resolution
used. The more grid-points we calculates thoser our linear approximation will be to
the true cost-to-go function. However, @nthese calculations take up the bulk of the
running time, running time increases witle thumber of grid-points we calculate.

Besides time complexity, we are also intezdsth the space complexity of the algorithm

— the amount of computer memory it takes to run the model. The main memory
requirement is the storage of the cost-tofgiaction. If we had used a straightforward
discretization of the cost-to-go functiotihe amount of memory required would have
depended on the parameters. With the lime@rpolation approximation, the amount of
memory required is proportional to the numbégrid-points we choose to approximate
the cost-to-go function.

4 Extensions

With this dynamic programming formulation, veee able to incorporate two different
extensions into the model. The extensidascribed below both require nonlinear terms,
and are not easily modeled using an MIP approach.

4.1 Expansion and Decline Penalties

Instead of “hard bounds” for expansion aratlthe constraints, we impose a nonlinear
penalty for large growth and large contrans in production. This extension serves two
purposes. First of all, it gives a more #debrepresentation of growth and decline
dynamics. Secondly, if we use “harbounds” with the linear interpolation



approximation, some state vardi@lcombinations will be irffasible and have a cost of
infinity. Because of the sudden jump from alreumber to infinity, linear interpolation
is not a good approximation for the cost-tofgaction when the states are close to the
boundary of the feasible region. With nomlar penalties for growth and decline and
allowing all productionlevels to be feasible, we rewe the problem of having to
interpolate between real numbers and infinity.

When production in one periatbes not deviate too much from previous production, the
penalty is zero. But when the devaati becomes too large, the penalty grows
exponentially. The penalty function that we use is given in equation (5).

Eb(edt(xt_l)_xt _1) |f Xt < dt (Xt—l)
penalty(X,, X, ,) =0 0 ifd, (X,.) < X, <£c(X,.,) (5)
Ea(ext—q(xt_l) _1) if X, >c(X.4)

The critical levels after which the penalties kick in afeXig) and dX1). These
depend on the level g@irevious production . The parameters a and b determine how
fast the penalties increase once we pass the critical level.

4.2 Cost Range Estimates

We can also use range estimates for unit cost instead of the point estimates described in
the previous sections.

The concept of a single parameter for wust is a simplification. We live in a non-
homogeneous world, and variation in costsasamon. In their paper, Strubegger and
Reitgruber (1995) give an imisting discussion on coststtibutions of investment
costs for various technologies.

Petersik (1999) provides an example ajfst differentiation in US wind power
generation. In the Northern states, wind plaetguire reinforcement to cope with the
winter storms. In Texas, violent wind stog and tornadoes are common. The terrain in
New England and the Northwest is steep &eavily vegetated. In the Midwest, wind
turbine blades are often coated with insects. All these factors result in variations in
production costs.

By using range estimates, we attemptépture not only the variation in production
costs due to geographical, political or cultural reasons, but also the optimization
behavior that occurs with this variati. Imagine a cinema with a small humber of
people. Almost all of the people will be seated in the middle, since that is where the best
view of the screen is. As more people enter, they will start sitting in the more
unattractive seats, since theog ones will have already betaken. We assume that the
decision maker is rational like the peoplaiginema, and production always starts from
the cheapest unit available.

With range estimates, we assume that different potential sites have different unit costs
of production for the same technology. Téedifferences could result from many
different factors, ranging from geographical to political to cultural. Given the minimum



and maximum values of the range of unistsp we assume that potential production
follows a uniform distribution with respect tmwst. In other words, we have the same
number of potential locations for each cost category between the maximum and
minimum values. Figure 1 shows the uniform distribution of potential sites with respect
to cost. The area under the rectangle is 1.

Density of  potential

production at this cost
A

/ » cost

min max

Figure 1: Uniform distributiomf potential production over cost.

Integrating the function in Figure 1 gives semething conceptually equivalent to a
cumulative distribution function in probability. Figure 2 gives the percentage of
potential production below a given cost.

Percentage of potential
production below this
cost

A

100%

A

7/ -~ cost

min max
Figure 2: Percentage of poteth production below a given cost.

Taking the inverse of the cumulative function gives the cost of the nth cheapest
percentile of potential productiomhis is shown in Figure 3. We also show how the unit
cost is divided into ranged co&arning cost and static cost.



If we produce at x% of totgotential production, the total sbof production is the area
under the curve from 0 to x in Figure 3. Witte uniform assumption for cost, this area
can be calculated geometrically. If a different assumption on the cost distribution is
made, total cost can still lmalculated via integration.

It is also possible to assume a costriistion over absolute production instead of a
percentage of potential prodion. The discussion will bersilar to the one presented
in this section with slight modifications.

Cost per unit of production

A

Max Cost

Ranged cost
—>

Min Cost
L » Learning cost

L »  Static cost

>
100% Percentile of
potential production

Figure 3: Unit cost as a function of production.

5 Numerical results

5.1 Parameters

We use a time horizon of 2100, win years per time period. A discount rate of 5% is
used.

For world electric energy demands in 200 use statistics from the International
Energy Outlook 2003 published by the Energy Information Administration (2003).
Predictions for 2010 and 2020 are also tek®m the IEO 2003. For demands after
2020, we extrapolate by assuming a fixed percentage annual growth rate of 1.8%.

We consider three aggregate technologiesimmodel. The “mature” technology is low
cost, with relatively high carbon emisas. The unit cost of production with the
“mature” technology is low. Tén“med” technology has slightly higher initial costs than
the “mature” one. It has a moderate amounéxgerience, but cost reductions are still



possible through learning. It also producasbon emissions, albeit with a much lower
carbon coefficient. The variation in unitste is moderate. The “new” technology has
higher initial unit production costs, higher cost variations, and a higher learning
potential. The “new” technology is carbored: In year 2000, the “mature” technology
satisfies 75% of all electricity demands, while the “med” and “new” technologies take
up 20 and 5% respectively. Learningperents of 0.32 are used for both learning
technologies.

Figure 4 shows how the unit cost for edekchnology is divided into its individual
ranged, learning and static parts.

For all technologies, we assume that thecal levels for both decline and growth are
5% a year. Growth or contraction exceedt® a year will be penalized according to
the penalty function given in the previouscgBon. The penalty parameters a and b are
chosen so that the penalty is US$100 biliiome exceed expansion and decline critical
levels by 10% of previous production.

140

120

US$/kWh
100

ranged
80 &

60

40 learning

20

static

mature med new

Figure 4: Unit cost for eadechnology for 2000, in US$/kWh.

We consider three cases withiferent levels of carbon taXhese cases @l subset of
the cases studied at the EMF19 forum (2001).

+ BAU — a business as usual case with no carbon tax

» LTAX —a +10 US$/ton per decade carbox ii@acrease case which starts with a
10 US$/metric ton carbon tax in 2010, which increases by US$10 per decade
from then on.

« HTAX —a + 25 US$/ton per decade carbon tax increase case which starts with a
25 US$/metric ton carbon tax in 2010gcieasing by 25 US$/metric ton per
decade until 2040, and then held at the WS®/metric ton level through the end
of the century.

A grid size of 10 x 10 x 10 x 10 is used for the approximation of the cost-to-go function,
and the model is implemented in MATLAB. The bulk of the running time is devoted to

10



the calculation of the cost-to-go functionseiach time period. A single run of the model
takes approximately one hour on a &8z machine with 256 MB of RAM.

5.2 Analysis

In Figure 5, we give the globally optimalgaluction paths of the three technologies for

the BAU case. Because of the overlapping cost ranges and expansion/decline penalties,
all three technologies are present in dptimal portfolio. The “mature” technology,
however, maintains cost superiority for the first half of the century. As we enter the
second half of the century, unit cost for the “med” technology becomes competitive, and
the “med” technology starts to coma. iAlthough the “new” technology follows a
“minimal” production pat, it still accumulates enough experience for its total unit cost

to go down by roughly 36% by the year 2100. Even with these cost reductions due to
learning, the “new” technology is still too expensive to be widely used, and it does not
play a major role in fulfilling electricity demands over the course of the century.

80 TkWh

70

0 /mgm/
50 //

" //

20 i

20 m//

10

ew
T

0
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure 5: Optimal production podtio for BAU case, in TkWh.

When carbon taxes are imposed, we hav@eentive to steer away from the carbon-
intensive “mature” technology. Figure 6a shows the optimal production trajectories
when we impose carbon taxes accordintheoLTAX case. Since the “med” technology

has a lower carbon coefficient than theatnre” one, it becomes more attractive and
overtakes the “mature” technology at the efthe century. The “new” technology also
plays a larger role, especially in the final two decades, when carbon taxes are US$90
and US$100 a ton respectively.

Figure 6b shows the optimal productiomjéctories when we impose carbon taxes
according to the HTAX case. Becausetlté higher carbon tax, the carbon-free “new”
technology has higher market penetration, supplying up to 20% of the demands in the
last few decades. In order to achieve tleispansion for the “new” technology starts
earlier in the century compared to the LTAX case.
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Figure 6: Optimal production portfolio for a) LTAX case, and b) HTAX case, in TkWh.

Figure 7 shows the amount of experiem@eumulated for the “new” technology over

the century and Figure 8 shows the correspandnit costs. We see that the unit costs

at the end of the century for the “new” technology are slightly different, but not
significantly, with 37.6 US$/kWh for # LTAX case versus 35 US$/kWh for the
HTAX case. The reason for this small difference in cost is due to the fact that the “new”
technology already satisfies 5% of the dachan year 2000. If we just maintain this
minimal market share throughout the entiretagn as in the BAU case, it is still
possible to double experience four times dwgrthe time horizon. If carbon taxes are
imposed, experience accumulates faster, but the cost reductions from the extra
experience are relatively small.

600

TkWh
500

400
300 /

200 / LT&
100 /

0 T T T T T T T T
2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure 7: Experience accumulated for “new” technology, in TkWh.
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Figure 8: Unit cost for the cheapesitit of the “new” technology, in US$/kWh.

Thus, most of the difference in the “newechnology market penetration behavior
results from the carbon tax with some contribution from the difference in unit costs due
to learning.

Figure 9 shows the carbon emissions for each case. In all three cases, carbon emissions
maintain an upwards trendlthough they do level off at the time horizon for the LTAX

case. This trend is due to the incregsademand and the fact that the carbon-free
technology is not yet cost-effective. Witither cost and demangarameters, it is
possible that carbon emissions could decline dwee. It is also @ar from the figure

that scenarios with higher carbomea result in lower carbon emissions.

16

billion tons
14

12

BAU
10

8 /

6 e
4 M
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Figure 9: Carbon emissions under differeax scenarios, in billon tons.
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6 Conclusions and Further Work

We have shown how dynamicogramming can be usedgolve nonlinear, non-convex

models that include learning-by-doin@y using dynamic programming, we are
guaranteed a global optimal solution. In iidd, we have been able to incorporate
features that cannot be eadilgndled by other approaches.

The running time of a dynamic programrien-polynomial and grows exponentially
with the number of state variables. Sireach new technology requires two new state
variables, dynamic programming is currently not suitable for models with a large
number of technologies. Thus, finding hetics or algorithms that will reduce the
running time of the dynamic program isiamportant direction for future research.

6.1 Parallel Processing

An interesting and promising direction for fuer work is the use of parallel processing.
With the linear approximation of the costgo-function, we calculate the value of the
function at a predetermined number of goimints. These calculations only depend on

the cost-to-go function of the next time period, and are independent of one another.
Therefore, it is theoretically possible to do these calculations on multiple processors
simultaneously. We conjecture that since thulk of the running time is due to the
calculation of the cost-to-go function, thenning time will be invesely proportional to

the number of processors used as long as the number of processors does not exceed the
number of predetermined grid points we calculate. If number of processors exceeds the
number of predetermined grid points, the extra processors will not contribute towards
decreasing running time.

6.2 Other Extensions

Another interesting extension to the modell we to have the variation of costs go
down with learning. Mature technologies teidhave a smaller variation in unit costs
than newer technologies, and it would be oeable to assume that the variation will go
down as we learn more.

Assuming that the some of the technologies in the model are based on the consumption
of finite resources like oil or coal), we can also assume that the costs of these
technologies go up with experience as theseurces become scarce. This assumption
should result in a shift away from these technologies as time goes by.

6.3 Conclusions

As computer processing power becomes increasingly available, we believe that the
dynamic programming approach is a promising one. We would like to conclude with the
observation that the dynamic programming approach itself exhibits learning by doing
behavior. With the accumulation of expexenthe running time of the algorithm has

the potential to be reduced even further. But this potential, like the learning potential of
our technologies, can not bealized unless we “do”.
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