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Abstract

We show in this paper that the evolution of cannibalistic consumer populations can be a never end-
ing story involving alternating levels of polymorphism. More precisely, we show that a monomor-
phic population can evolve toward high levels of cannibalism until it reaches a so-called branching
point, where the population splits into two sub-populations characterized by different, but initially
very close, cannibalistic traits. Then, the two traits coevolve until the more cannibalistic sub-
population undergoes evolutionary extinction. Finally, the remaining population evolves back to
the branching point, thus closing an evolutionary cycle. The model on which the study is based is
purely deterministic and derived through the adaptive dynamics approach. Evolutionary dynamics
are investigated through numerical bifurcation analysis, applied both to the ecological (resident-
mutant) model and to the evolutionary model. The general conclusion emerging from this study is
that branching-extinction evolutionary cycles can be present in wide ranges of environmental and
demographic parameters, so that their detection is of crucial importance when studying evolution-
ary dynamics.
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Remarks on Branching-Extinction Evolutionary Cycles

Fabio Dercole

1 Introduction

Red Queen dynamics are evolutionarydynamics that do not converge to an equilibrium (Van Valen,
1973, see also Rosenzweig and Schaffer, 1978, Stenseth and Maynard Smith, 1984, Futuyma,
1986 and Rosenzweiget al., 1987). The name was inspired by the book “Through the Looking-
Glass and What Alice Found There” (Carroll, 1871), where the Red Queen says: “Now, here,
you see, it takes all the running you can do, to keep in the same place.” As remarked by the
Red Queen, the most intriguing case of Red Queen dynamics is that of evolutionary cycles, where
natural selection keep (periodically) the system in the same evolutionary state. This is in contrast
with the (wrong) idea that an evolutionary change always implies some sort of improvement.

Evolutionary cycles have captured the attention of theoretical ecologists and geneticists in the
last decades (see e.g.Abrams, 1992; Marrowet al., 1992; Dieckmannet al., 1995; Iwasa and
Pomiankowski, 1995, 1999; Marrowet al., 1996; Abrams and Matsuda, 1997; Gavrilets, 1997;
Dercoleet al., 2003). In all the above cited works, the adaptive traits vary cyclically while the
population densities track the equilibrium corresponding to the current trait values. Other kinds
of evolutionary cycles involve populations which are not at equilibrium at ecological timescale (at
least during part of the evolutionary cycle) (Khibnik and Kondrashov, 1997; Dercoleet al., 2002b),
or switch between different attractors begetting evolutionary reversals (Khibnik and Kondrashov,
1997; Doebeli and Ruxton, 1997; Dercoleet al., 2002a). Finally, there is also the possibility of
evolutionary cycles due to alternating levels ofpolymorphism. Such cycles, calledbranching-
extinction evolutionary cycles, are characterized by recurrentevolutionary branchingandextinc-
tion, which periodically add and remove a population (or morphs) to and from the system.

At a branching point(Metz et al., 1996; Geritzet al., 1997, 1998) one of theresidentpopula-
tions, characterized by a particular trait value, coexists with a population ofmutantscharacterized
by a slightlydifferent trait value. Moreover, the two initially similar traits are under opposite selec-
tion pressures, so that the mutant population becomes a new resident population and the number
of coevolving traits increases. At evolutionary extinction (Matsuda and Abrams, 1994; Ferri`ere,
2000) the trait of a population reaches a critical value at which the corresponding equilibrium den-
sity vanishes or catastrophically collapses to zero, thus reducing the number of coevolving traits.
Therefore, in the simplest branching-extinction evolutionary cycle the evolutionary dynamics of
a monomorphic population are characterized by a globally stable branching point and the dimor-
phic evolutionary trajectories originating close to the branching point end with the evolutionary
extinction of one of the two sub-populations.

Branching-extinction evolutionary cycles have been observed in several models (Van der Laan
and Hogeweg, 1995; Doebeli and Ruxton, 1997; Koella and Doebeli, 1999; Doebeli and Dieck-
mann, 2000) through stochastic simulations. However, from a stochastic simulation it is hard to say
if extinction is produced by demographic stochasticity, when the population density is relatively
small, or by the deterministic mechanism of evolutionary extinction described above. Only Kisdi
et al. (2001) presented an example of branching-extinction evolutionary cycle where extinction
occurs deterministically. Such an example is based on a Lotka-Volterra population competition
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model (Lotka, 1920; Volterra, 1926). As is well known, these models are rather degenerate both
biologically (the per capita growth rates are unbounded) and mathematically (their bifurcations are
non-generic (Kuznetsov, 1998)). Moreover, the particular model analyzed in Kisdiet al. (2001)
uses a very peculiar dependence of the competition coefficients upon the traits. Such a depen-
dence, which is hardly defendable biologically, seems to be adopted simply in view of obtaining a
branching-extinction cycle. Finally, mathematically speaking, the long-term evolutionary behav-
ior of the model is not captured by a true cycle. In fact, the dimorphic trajectories originating close
to the branching point converge to a point in trait space where both sub-populations go extinct,
thus virtually determining the halt of evolutionary dynamics. However, stochastically, one sub-
population goes extinct first. Then, the remaining (very scarce) monomorphic population evolves
back to the branching point. Of course, which sub-population goes extinct first is a matter of
chance and, depending upon this random event, different monomorphic transients lead back to the
branching point. Thus, a stochastic simulation would show long-term evolutionary dynamics in
which two different periods(from the branchingpoint back to it) alternate randomly.

In this paper we present the first fully deterministic example of branching-extinctionevolution-
ary cycle, using the model for the evolution of cannibalistic traitsin consumer populations recently
described in Dercole and Rinaldi (2002). We show that any monomorphic population converges to
an intermediate level of cannibalism where it branches into two sub-populations. Then, assuming
that body size of adult individuals and cannibalism are positively correlated (as it is often the case
(Fox, 1975; Polis, 1981, 1988)), we show that during the dimorphic evolutionary phase the two
sub-populations evolve into a weakly cannibalisticdwarfpopulation and a highly cannibalisticgi-
ant population, until the giant population undergoes an evolutionary extinction. The key point of
our result is that the giant population density does not vanish gradually at evolutionary timescale,
but rather collapses suddenly (Gyllenberg and Parvinen, 2001). Such a discontinuous extinction
event reverses the selection pressure on the dwarf population, which then begins to enhance its
cannibalistic attitude.

As in Kisdi et al. (2001), we follow the approach ofadaptive dynamics theorydeveloped by
Metz et al. (1996); Geritzet al. (1997, 1998). This approach is based on the assumption that
small and rare random mutations are followed by natural selection and allows one to describe
the dynamics of the traits in a purely deterministic way, through an ODE called thecanonical
equation(Dieckmann and Law, 1996; Champagnatet al., 2001), which is capable of explaining
evolutionary branching and extinction.

The paper is organized as follows. In the next section we sketch the derivation of the monomor-
phic and dimorphic canonical equations. In the third section we derive the branching-extinction
evolutionary cycle for a particular parameter setting. A discussion of the mechanisms necessary
for this kind of evolutionary cycles to exists and some comments on the robustness of the results
close the paper.

2 The model

Assume that a cannibalistic consumer population is characterized by a positive phenotypic trait
from now on calledcannibalism, indicated byx and positively correlated with the size of adult
individuals. This assumption is not necessary for our result but it facilitates its interpretation. In
fact,x can be simply identified with a suitable measure of adult body size (like length or weight,
but see e.g. Mittelbach and Persson (1998) for other examples in cannibalistic fish populations), so
that the coexistence of two sub-populations, one with low and one with high cannibalism, should
be revealed by the presence of dwarfs and giants in the same environment.

The derivation of the canonical equation of adaptive dynamics requires three things: (i) the
knowledge of the interactions occurring at ecological time scale between all sub-populations; (ii)
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the dependence of the demographic parameters of the sub-populations upon the traits; (iii) the
frequency and distribution of the mutations. All this is specified in the next two sub-sections.

2.1 Ecological model

The interactions betweenN cannibalistic consumer sub-populationswith biomass densitiesni and
traitsxi, i = 1, . . . , N , are described by the following ODE:

ṅi = nifi(n, x) (1a)

where

fi(n, x) =
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(1b)

n = (n1, . . . , nN), x = (x1, . . . , xN), n0 is the density of a common resource,aij andhij are
the attack rate and the handling time of thei-th sub-population associated with the food source of
typej, eij is a conversion factor transforming food intake of typej into new biomass of typei and
cij specifies the extra-mortality due to competition.

The parametersn0, eij andcij are assumed to be constant, while the attack ratesaij and the
handling timeshij depend upon the traits as follows:

ai0 =
2Ai0
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xi
x0

)α

+
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xi

)α (2a)
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(2b)

hij = w1 x
−w2
i (2c)

whereAij is the maximum attack rate,x0 is the trait value at which a population is best adapted to
the common resource (see eq. (2a)) andα > 1, β > 1, γ > 1, δ > 1, p < 1,

¯
x, x̄, w1 andw2 are

suitable positive parameters which specify the shape of the functions (2) (see Dercole and Rinaldi,
2002, for a more detailed description). In particular, the cannibalistic attack rateaij is higher when
the body size of the victim is in a suitable ratio with that of the predator, i.e. whenxj = p xi, p < 1
(see eq. (2b)). Moreover, small values ofβ imply high values of the cannibalistic attack rateaii
(see eq. (2b) withxi = xj), i.e. great possibilities for individuals of traitxi to predate individuals
of the same trait. In the real world such a population would be characterized by a substantial
change in size from juvenile to adult, so that adult individualscan easily predate young ones (Polis,
1981, 1988). However, an explicit description of the age/size distribution, which naturally calls
for relatively complex age/size structured models (see e.g. Bosch van denet al., 1988; Diekmann
et al., 1986; Metz and Diekmann, 1986a,b,c; Briggset al., 2000; Claessenet al., 2000), poses
some problems in the derivation of the canonical equation of adaptive dynamics. In fact, as we
shall see in Section 2.2, the canonical equation captures the evolutionary dynamics under the
assumptions that an invading mutant generically substitutes its former resident. Unfortunately, as
far as we know, this property is not yet proved for structured population models. Moreover, for
such models, the canonical equation can hardly be determined in closed form. For these reasons,
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our choice has been to hide the size-structure of the population, thus describing eachpopulation
with a first order ODE (see eq. (1)) where the parameter(1/β) is a sort of surrogate for thesize
rangeof the individuals in the population. As discussed above,(1/β) gives an indication of the
level of intra-trait cannibalism, which is enhanced by factors such as, among others, the sizerange
in the population.

2.2 Evolutionary model

We now use model (1, 2) withN = 2 and3 to derive the monomorphic and dimorphic evolution-
ary models. The first(N − 1) populations are considered to be the resident populations while the
last population is considered to be the mutant population. Consistently with the adaptive dynamics
approach, we assume that mutations are rare events, so that the resident populations are at equi-
librium when a mutation occurs and are never challenged by more than one mutation at a time.
Moreover, we also assume that the traitxN of the mutant is only slightly different from one of the
resident traits, sayxi (i.e. xN = xi+ ǫ, with ǫ small) and that the mutant population densitynN is
initially very small. Under the above conditions, model (1, 2) can be used to establish the fate of
the mutant and resident populations. Generically, an invading mutant replaces the former resident
(see Dercole, 2002, for detailed conditions and proofs) so that, in the end, the system is composed
of new set of(N − 1) resident populations withi-th trait given byxi + ǫ. In the opposite case,
i.e. when the mutant population does not invade, it goes extinct so that the traits of the resident
populations remain unchanged. This process of mutation and selection can be further specified
by making suitable assumptions on the frequency and distribution of small mutations (Dieckmann
and Law, 1996; Champagnatet al., 2001). The conclusion forN = 2 is that the rate at which
the traitx1 varies at evolutionary time scale is given by the following monomorphic canonical
equation:

ẋ1 = k n̄1(x1)
∂f̄2(x1, x2)

∂x2
|x2=x1 (3)

wherek is proportional to the frequency and variance of small mutations,n̄1(x1) is the resident
population equilibrium density in the absence of mutants (see Dercole and Rinaldi, 2002, for a
proof of existence and uniqueness) andf̄2(x1, x2) is thefitness of the mutant, i.e.

f̄2(x1, x2) = f2(n̄1(x1), 0, x1, x2) (4)

Geritzet al. (1997, 1998) showed that a stable monomorphic equilibriumx̄1 is abranching
point if

∂2f̄2(x̄1, x2)

∂x2
2

|x2=x̄1 > 0 (5)

At a branching point a mutant population invades but does not replace the former resident, thus it
becomes a new resident itself. Moreover, the two initially very similar traitsx1 andx2 differentiate
in accordance with the dimorphic canonical equation (see the forthcoming eq. (6)).

The numerical bifurcation analysis (Kuznetsov, 1998; Doedelet al., 1997; Kuznetsov and
Levitin, 1997) of model (3, 4) carried out in Dercole and Rinaldi (2002) reveals that a globally
stable branching point̄x1 characterizes the monomorphic dynamics of a population with wide size
range living in a rich environment (i.e. for sufficiently high values of the parameters1/β andn0).
Thus, for such a population, we now focus on the dimorphic evolutionary dynamics, namely the
evolution of the cannibalistic traitsx1 andx2 of two coexisting sub-populations with densitiesn1
andn2.

As explained in Dercole and Rinaldi (2002), the study of dimorphic evolutionary dynamics
must be limited to thecoexistence region, which is the region of all pairs(x1, x2) for which
model (1, 2), forN = 2, has a stable and strictly positive equilibrium. Such a region can be
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Figure 1: Bifurcation diagram of model (1, 2) (N = 2) with respect to cannibalistic traitsx1
and x2. Upper triangle: bifurcation curves and regions I-IV (squares indicate codimension-2
bifurcation points). Lower triangle: state portraits of model (1, 2) (N = 2) for each region I-IV
(circles indicate equilibria). Parameter values:n0 = 500, β = 1.9,Ai0 = 1, Aij = 10, x0 = 0.1,
x = 0.5 x̄ = 5, p = 0.2, α = 2, γ = 8, δ = 2, c = 1, e = 0.6,w1 = 0.1, w2 = 0.25, i, j = 1, 2.
Region III has been horizontally stretched for purpose of illustration.

computed by performing the bifurcation analysis of model (1, 2) (N = 2) with respect to the
traitsx1 andx2 interpreted as constant parameters. Since the trajectories in the space(x1, x2) are
symmetric with respect to the diagonalx2 = x1, we limit the analysis to the regionx1 < x2 and
call populations1 and2 dwarf and giant populations, respectively. An example of this bifurca-
tion analysis is shown in Fig. 1, where the upper part reports all bifurcation curves which identify
four regions (I-IV),while the lower part reports the corresponding state portraits of model (1, 2)
(N = 2). Since only in the state portraits III and IV there is a stable and strictly positive equilib-
rium, the region of coexistence is the union of regions III and IV. PointB on the diagonalx2 = x1
corresponds to the monomorphic branching point, i.e.B ≡ (x̄1, x̄1). The nature of a bifurca-
tion curve separating two nearby regions can be understood by comparing the two corresponding
state portraits. For example, the bifurcation curve separating region II from region IV is charac-
terized (see state portraits II and IV) by the collision of a stable and strictly positive node with
a saddle on then1-axis (so-calledtranscritical bifurcation). Thus, if a dimorphic trajectory in
region IV moves toward this bifurcation curve, the giant population density vanishes and the giant
population eventually goes extinct when the dimorphic trajectory hits the curve. By contrast, the
bifurcation curve separating region II from region III is characterized (see state portraits II and III)
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by the collision of a stable and strictly positive node with a strictly positive saddle (so-calledfold
bifurcation). Thus, if a dimorphic trajectory in region III moves toward this bifurcation curve,the
giant population density does not vanish, but catastrophically collapses (at ecological timescale)
as soon as the dimorphic trajectory crosses the curve.

Let nowN = 3 and denote bȳn1(x1, x2) and n̄2(x1, x2) the densities of the stable and
strictly positive equilibrium of model (1, 2) (N = 2) in the region of coexistence. The dimorphic
canonical equation reads:

ẋ1 = k1 n̄1(x1, x2)
∂f̄3(x1, x2, x3)

∂x3
|x3=x1

ẋ2 = k2 n̄2(x1, x2)
∂f̄3(x1, x2, x3)

∂x3
|x3=x2

(6)

wherek1 andk2 are proportional to the frequency and variance of small mutations in the two
resident populations and̄f3(x1, x2, x3) is the fitness of the mutant, i.e.

f̄3(x1, x2, x3) = f3(n̄1(x1, x2), n̄2(x1, x2), 0, x1, x2, x3) (7)

3 The branching-extinction evolutionary cycle

The dimorphic evolutionarydynamics defined by model (6, 7) within the coexistence region shown
in Fig. 1 are sketched in Fig. 2. The coexistence region is partitioned in white, light gray and dark
gray sub-regions. Trajectories starting in the white region tend toward a dimorphic equilibrium
D (which can be either a branching point or not, see Geritzet al. (1998) or Dercole (2002) for
the specific conditions). Trajectories starting in the light gray region hit the boundary of the
coexistence region where a catastrophic evolutionary extinction occurs, namely between points
C1 andC2 (see Fig. 1). Notice that pointsC1 andC2 are equilibria of equation (6, 7). In fact,
n̄2(x1, x2) = 0 (i.e. ẋ2 = 0, see the second equation of model (6)) at such points andẋ1 has
opposite sign at opposite sides ofC1 andC2 along the boundary of the coexistence region. Thus,
a so-calledx1-nullcline (i.e. a curve in the(x1, x2) trait space wherėx1 = 0) passes through
pointsC1 andC2. Finally, dark gray regions are those in which the giant [dwarf] population
density smoothly vanishes when the evolutionary trajectory approaches the extinction boundary
separating region II [I] from region IV (see Fig. 1).

Since the branching pointB, where dimorphism originates, lies on the boundary of the light
gray region the long-term evolutionary attractor of models (3, 4) and (6, 7) is the branching-
extinction evolutionary cycle represented by the thick trajectory in Fig. 2. In words, when dwarf
and giant traits become sufficiently different, the giant population is not capable of sustaining itself
by harvesting on the dwarf population and is driven extinct by natural selection (see pointX∗ ≡
(x∗
1
, x∗
2
) in Fig. 2). After that (i.e. after the sudden transition fromX∗ toX∗∗ in Fig. 2) the dwarf

population evolves back to the branching pointB, starting with a traitx1 = x∗1, in accordance
with the monomorphic canonical equation (3, 4). Thus, starting from any ancestral monomorphic
condition the final outcome of evolution is the branching-extinction evolutionary cycle of Fig. 2,
characterized by two distinct evolutionary phases: a monomorphic evolution toward the branching
point (fromX∗∗ to B) and a dimorphic evolution marked by the temporary presence of a highly
cannibalistic population of giants (fromB toX∗).

4 Discussion and conclusions

An evolutionary cycle characterized by alternating levels of polymorphism has been shown tobe
the evolutionary attractor of cannibalistic consumer populations with wide size range living in rich

6



0.1 1 10

0.1

1

10

cannibalistic trait, x1

c
a
n
n
ib

a
li
st

ic
tr

a
it
,
x

2

B

D

C2

C1

X∗∗

X∗

Figure 2: Dimorphic evolutionary dynamics (circles indicate dimorphic equilibria) and the
branching-extinction evolutionary cycle (thick trajectory). Parameter values as in Fig. 1 (k1 = k2).

environments. The deterministic mechanisms that lead to such evolutionary cycles have been first
addressed by Kisdiet al. (2001) and require the following three properties: (i) the monomorphic
population has an evolutionary branching point where it becomes dimorphic; (ii) the dimorphic
evolution originating at the branching point leads to the evolutionary extinction of one of the two
morphs, say morph 2; (iii) the post-extinction monomorphic population (i.e. morph 1) is in the
basin of attraction of the branching point.

Condition (iii) implies that the direction of evolution of trait 1 reverses during the transi-
tion from dimorphism to monomorphism. This is not possible if the evolutionary extinction
occurs through a transcritical bifurcation of the dimorphic population equilibrium(n̄1(x1, x2),
n̄2(x1, x2)). In fact, in such a case, the population densityn̄2(x1, x2) vanishes when approaching
the bifurcation curve, so that only population 1 is present. This implies, by continuity, thatẋ1
cannot have different values just before and after the bifurcation.

Thus, the key point of our result is that the evolutionary extinction of the giant population
occurs through a fold bifurcation, which, being catastrophic, allows the evolutionary reversal of
the dwarf population. More precisely, just before the bifurcation,ẋ1 is negative and given by
equation (6) evaluated at pointX∗ (see Fig. 2), wherēn2(x1, x2) is strictly positive (and equal to
the limit of n̄2(x1, x2) along the evolutionary trajectory approachingX∗). By contrast, when the
evolutionary trajectory crosses the bifurcation curve, the giant population suddenly collapses (i.e.
n̄2(x1, x2) converges to zero at ecological timescale, see state portraits II and III in Fig. 1)andẋ1
is positive and given by equation (3) evaluated at pointX∗∗.
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Kisdi et al. (2001) have considered a Lotka-Volterra ecological model in which only transcrit-
ical bifurcations are possible. Thus, in order to reverse the selection pressure on the remaining
population they have been forced to consider a quite peculiar situation in which the evolutionary
extinction of both sub-populations occurs simultaneously. This is why in their case the dimor-
phic evolutionary trajectories converge to a codimension-2 bifurcation point, namely the point of
intersection of two transcritical bifurcation curves.

In closing this paper we like to comment on the robustness of the result. In principle, a com-
plete bifurcation analysis of models (3, 4) and (6, 7) with respect to all couples of strategic pa-
rameters (like the environmental richness (n0) and the size range (1/β)) would answer all possible
questions concerning the robustness of our conclusions. In particular, a complete bifurcation anal-
ysis would allow us to determine all possible qualitative evolutionary scenarios and the regions
in parameter space where such scenarios occur. However, such an analysis poses nontrivial tech-
nical problems, since the dimorphic population equilibrium is not known in closed form, so that
model (6, 7) is actually adifferential algebraic system, for which algorithms for the numerical
solution of boundary-value problems are not yet fully developed (Ascher and Spiteri, 1994). Such
algorithms are needed for the continuation of heteroclinic bifurcations (saddle to saddle connec-
tions) like those present in our model. Indeed, if one would like to determine the boundary of the
region in parameter space where the branching-extinction evolutionary cycle exists, one should
produce through numerical continuation the parameter combinations for which the unstable mani-
fold of the saddle pointB (trajectoryBX∗) coincides with the stable manifold of the saddle point
C2 (see Fig. 2).

Despite these technical difficulties, we checked, by means of extensive numerical integration
of model (6, 7) for various parameter settings, that the branching-extinction evolutionary cycle of
Fig. 2 is structurally stable and present in wide ranges of environmental and demographic parame-
ters. Thus, our conclusion is that branching-extinction evolutionary cycles are robust evolutionary
attractors and their detection is of crucial importance for fully understanding evolutionary dynam-
ics.
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