
Adaptive Dynamics of Pathogen-
Host Interactions

Dieckmann, U.

IIASA Interim Report
February 2002

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33898247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dieckmann, U. (2002) Adaptive Dynamics of Pathogen-Host Interactions. IIASA Interim Report. IR-02-007 Copyright © 

2002 by the author(s). http://pure.iiasa.ac.at/6777/ 

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


International Institute for Tel: 43 2236 807 342
Applied Systems Analysis Fax: 43 2236 71313
Schlossplatz 1 E-mail: publications@iiasa.ac.at
A-2361 Laxenburg, Austria Web: www.iiasa.ac.at

Interim Report IR-02-007

Adaptive Dynamics of Pathogen-Host Interactions
Ulf Dieckmann (dieckman@iiasa.ac.at)

Approved by
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Abstract

This paper explains why the traditional approach of predicting evolutionary outcomes
by maximizing the basic reproduction ratio of a disease is not always appropriate. Since
pathogens tend to affect their host environment in radical ways, selection pressures usually
depend on the types of pathogens and hosts that are established in an infected population.
After outlining the theory of adaptive dynamics as a versatile toolbox for investigating
the evolution and coevolution of pathogen–host interactions under conditions of frequency-
dependent selection, examples illustrate how classic methods and the new models presented
here result in different predictions about the evolution of infectious diseases.
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Adaptive Dynamics of Pathogen-Host Interactions

Ulf Dieckmann

1 Introduction

Over the past few decades, the expectations of scientists regarding stable patterns of
pathogen–host interaction have undergone major transformations. During an initial phase
it was widely agreed that pathogens and their hosts evolve in ways that would render
benign the consequences of infection (May 1983). These predictions, fostered by the
idea that evolution tends to act “for the benefit of the species”, are challenged by the
conspicuous existence of highly virulent, yet apparently rather stable, human and animal
diseases. Within the paradigm of species-level selection, such examples could only be
interpreted as transitory cases in which a pathogen has jumped to a new host species
so recently that the predicted evolutionary loss of virulence has not yet progressed far
enough.

To explain stable intermediate levels of pathogen virulence therefore required a
paradigm shift in evolutionary theory: the seemingly conclusive (and, from today’s per-
spective, almost too enthusiastic) demolition of scientific credibility for selection above
the level of individuals (Williams 1966). This change in perspective was accompanied by
the insight that, although a benign form of infection might benefit a pathogen population
as a whole, individuals of a more aggressive pathogen strain might nevertheless invade to
reap their harvest. The decisive criterion for the success or failure of such pathogens is
their rate of spread through a given host population: if the new pathogen spreads faster
than its predecessor does, it may invade and replace that predecessor. It is easily shown
that this transmissibility of a pathogen can be highest at intermediate levels of virulence
(Anderson and May 1982, 1991). If virulence is too low, symptoms may be absent or
harmless and the pathogen may therefore have little opportunity to multiply massively
and/or to leave its host. By contrast, if virulence is too high, the resultant symptoms
are so severe that the host is likely to perish before it has spread much of the harbored
pathogen population. It therefore appeared that evolution would tend to maximize the
transmissibility of pathogens, rather than minimize their virulence.

This idea can be made precise. The so-called basic reproduction ratio of a pathogen,
denoted byR0, is defined as the expected number of infections produced by a single infected
host individual in an otherwise uninfected host population (see Box 2.2 in Dieckmann et al.
2002) Analyses of relatively simple epidemiological models led to the conclusion that it is
the value of R0 that is raised by the successfully invading pathogens and that is therefore
maximized by the evolutionarily stable strain. Since R0 is a measure of effective transmis-
sibility, maximizing a pathogen’s R0 is equivalent to maximizing its transmissibility.

This paper explores how far the technique of R0 maximization can take us when study-
ing evolution in more complex epidemiological models. Section 2 reviews the conceptual
limitations of the conventional R0-based approach, and Section 3 introduces adaptive dy-
namics theory to overcome these limitations. Section 4 and Section 5 focus on two different
settings – pathogen evolution in a constant host population and pathogen–host coevolu-
tion – and illustrate how the results obtained by application of the new toolbox differ in



– 2–

interesting ways from those of traditional analyses.

2 Limitations of R0 Maximization

The notion of R0 maximization is plausible in general, applies rigorously to many well-
studied models, and undoubtedly helps us to understand some major features of observed
pathogen–host interactions. Yet it is not the full story – four crucial problems are not
addressed by this approach.

First is the realization that it is not alwaysR0 that is maximized by evolution. Consider
pathogen strains A and B, for which the R0 of A exceeds that of B. The argument above
leads us to expect that, among these strains, A will win the evolutionary race. This
expectation is based on the infection’s rate of spread in an uninfected host population, as
specified in the definition of R0. What we really should ask, however, is what happens
once pathogen A has spread and substantial parts of the host population have thus become
infected? In this situation the success or failure of a new strain is no longer determined by
its performance in the initial environment, which comprised uninfected hosts only. Instead,
we have to consider the strain’s rate of spread in the current environment of hosts already
infested by strain A. It may well be that in this case pathogen B is better adapted than
A to the actual challenge of spreading in a partially infected host population. Under such
circumstances, strain B, and not A, will be evolutionarily stable. In general, whenever
the resident strains change the actual epidemiological environment in such a way that the
performance of different strains in the uninfected environment is no longer indicative of
their invasion success in the actual environment, R0 maximization does not apply. This
option raises the possibility of alternative optimization principles. It turns out that in
some models it is indeed possible to find quantities other than R0 that are maximized by
evolution. In particular, it can be shown that the type of density regulation that operates
in the system critically influences which quantity is maximized (Mylius and Diekmann
1995; Metz et al. 1996b).

Unfortunately, it is by no means clear that for a given system such an optimization
principle exists at all. This is a second reason why the assumption of R0 maximization
often misleads. The well-known rock–scissors–paper game (rock beats scissors by crushing,
scissors beats paper by cutting, paper beats rock by wrapping) is a very simple example of
a situation in which no single quantity can be construed as being maximized by evolution.
Likewise, it can happen that pathogen strain B outcompetes strain A in the environment
that results from the prevalence of A, while strain C wins against B in the environment
set by B, and A beats C in the C environment. The salient feature of such a scenario
is frequency-dependent selection: selective pressures and the resultant invasion success
depend on the composition of the established, or resident, pathogen population against
which a variant strain is competing. Since frequency-dependent selection is ubiquitous in
nature and also naturally arises in epidemiological models (unless the modeler explicitly
tries to avoid it), the absence of an optimization principle is the rule, rather than the
exception, in realistic pathogen–host interactions. It is important to stress that this does
not imply our understanding cannot be furthered through modeling efforts. It merely
shows that – instead of always having available the convenient shortcut of maximizing a
certain quantity – we often have to evaluate which sequences of invasions are possible and
to which evolutionary outcome they lead.

So far we have restricted attention to the evolution of a pathogen in a nonevolving
population of hosts. Since pathogens often have much shorter generation times than their
hosts, they may be expected to evolve faster than the hosts and therefore to experience
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essentially a nonevolving host population in the course of their adaptation. This situation
appears to apply to acquired immunodeficiency syndrome (AIDS), in which evolutionary
change on the part of the human immunodeficiency virus is so unusually rapid that it not
only overwhelms the evolutionary potential of the host population, but it even tends to
beat the immune system of individual hosts. However, even for the AIDS pandemic, which
(in evolutionary terms) is still very recent, some genes that confer host resistance have
been reported. Other examples show that evolutionary change in pathogens and their hosts
can occur on similar time scales. A case in point is the swift coevolutionary race between
the European rabbit and the myxoma virus in Australia, which commenced with the
virus’s introduction to the Fifth Continent in 1950 (see Figure 2a). As in this case, sexual
recombination often allows hosts to match effectively the evolutionary pace of their asexual
pathogens. It must therefore be concluded that pathogen and host evolutions do not always
have different time scales. To conceive the adaptation of pathogen–host interactions in
terms of coevolutionary dynamics makes it plain that no general optimization principle
can predict adequately the evolutionary outcome of all possible arms races. Instead, we
have to consider the potential for the invasion of a variant pathogen or host type into
the environment jointly brought about by the prevalent pathogen and host types. This
highlights the importance of the environmental feedback loop (Metz et al. 1996b; Heino
et al. 1997) that operates in evolving pathogen–host systems: the current environment
determines current selection pressures and, in turn, these selection pressures determine
the future environments that result from the invasion of selectively favored types. In
such a context, the rates at which new types are generated by mutation or recombination
may be critical (Dieckmann and Law 1996) and dynamic descriptions therefore become
essential – static optimization principles simply cannot account for such complexity.

There is a fourth reason that necessitates a departure from classic concepts of evolu-
tionary epidemiology. The principle of R0 maximization is based on the notion that we
should expect to see as evolutionary outcomes those types of pathogen or host that are
unbeatable or evolutionarily stable against all possible other types that can, in principle,
arise in their species. However, hopeful monsters are not frequently encountered in the
biological world and substantial changes in morphology or physiology tend to be lethal.
For this reason, adaptation can usually explore only the small range of variation that is
accessible by gradual change. It is therefore not always meaningful to seek out those types
of pathogens or hosts that cannot be beaten by any potential variant, including those
that require major evolutionary reconstruction. In the presence of frequency dependence,
this simple observation has substantial consequences. First, some evolutionary outcomes
predicted by the analysis of evolutionary stability alone cannot actually be reached by
a sequence of small adaptive steps, and, second, some outcomes actually attained in the
course of evolution turn out not to be evolutionarily stable at all (for an illustration of
these points, see Box 1). Consequently, evolutionary stability and attainability must al-
ways be considered in conjunction; it is only in the simple case of evolutionary processes
governed by an optimization principle that the two notions coincide of necessity (Meszéna
et al. 2000).

The conventional approach to maximize R0 for a pathogen therefore has some funda-
mental limitations as a tool to describe the complex processes that arise from the evolution
of general pathogen–host interactions. To overcome this obstacle, an extended framework
is required to encompass the successful classic approach as a special case. In the follow-
ing section the theory of adaptive dynamics is introduced as a candidate to meet this
challenge.
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Box 1 Pairwise invasibility plots

The invasion fitness of an evolving species (see Section 3) defines pairwise invasibility plots
for resident and mutant phenotypes (Van Tienderen and de Jong 1986; Metz et al. 1992,
1996a; Kisdi and Meszéna 1993; Geritz et al. 1997; see also Taylor 1989). In the simplest
case, these phenotypes are described by a single metric character or quantitative trait.
Plotting the sign of the invasion fitness f for each of the possible combinations of mutant
phenotypes x′ and resident phenotypes x reveals the shapes of the zero contour lines at
which f(x′, x) = 0. As shown in the left panel below, these lines separate regions of potential
invasion success (f > 0) from those of invasion failure (f < 0). The resident population
precisely renews itself when it is at equilibrium, so the resident trait value is neutral in
its own environment and the set of zero contour lines therefore always includes the main
diagonal.
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The shape of the other zero contour lines carries important information about the evolu-
tionary process. In particular, possible evolutionary endpoints are located at the resident
phenotypes for which a zero contour line intersects with the main diagonal. In characterizing
these so-called evolutionarily singular points, adaptive dynamics theory uses an extended
classification scheme in which four different questions are tackled simultaneously:

1. Evolutionary stability. Is a singular phenotype immune to invasions by neighboring
phenotypes? This criterion amounts to a local version of the classic evolutionarily
stable strategy (ESS) condition that lies at the heart of evolutionary game theory
(Maynard Smith 1982).

2. Convergence stability. When starting from neighboring phenotypes, do successful
invaders lie closer to the singular phenotype? Here the attainability of a singular
point is addressed, an issue that is separate from its invasibility (Eshel and Motro
1981; Eshel 1983).

3. Invasion potential. Is the singular phenotype capable of invading populations of its
neighboring types (Kisdi and Meszéna 1993)?

4. Mutual invasibility. If a pair of neighboring phenotypes lies either side of a singular
phenotype, can they invade each other? Assessment of this possibility is essential to
predict coexisting phenotypes and the emergence of polymorphisms (Van Tienderen
and de Jong 1986; Metz et al. 1992, 1996a).

All four questions are important to understand the nature of potential evolutionary
endpoints. It is therefore remarkable how the four answers are obtained simply by examining
the pairwise invasibility plot and reading off the slope of the zero contour line at the singular
phenotype (Metz et al. 1996a; Geritz et al. 1997), as illustrated in the right panel above.

Three particularly interesting types of evolutionarily singular points are illustrated be-
low. In each case, the staircase-shaped curve depicts a possible trait substitution sequence
during which populations of resident phenotypes are repeatedly replaced by advantageous
mutant phenotypes that invade successfully.

continued
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Box 1 continued
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The left panel shows a singular point that is both evolutionarily stable and convergence
stable. Such an outcome is called a continuously stable strategy (CSS; Eshel 1983). In the
middle panel, the singular point is evolutionarily stable but not convergence stable. This
means that, although the singular phenotype is protected against invasion from all nearby
phenotypes, it cannot be attained by small mutational steps – a situation aptly referred
to as a Garden-of-Eden configuration by Nowak and Sigmund (1989). The right panel
shows an evolutionary branching point: here the singular point is convergence stable but
evolutionarily unstable. This implies convergence to disruptive selection and thus permits
the phenotypic divergence of two subpopulations that straddle the branching point (Metz
et al. 1992, 1996a).

3 Adaptive Dynamics Theory

The starting point of adaptive dynamics theory is to understand that the fitness of a type
can only be evaluated relative to the environment that type experiences. This implies that
we have to know the current ecological and epidemiological status of a host population
before we can assess whether a given pathogen can spread within that population or not.
A characterization of this status includes, inter alia, information about the types and
abundances of other pathogen strains that are present in the host population. Likewise,
we have to specify the resident host type, as well as the endemic strain or strains of the
pathogen, to predict which variant host types excel at the evolutionary play staged in the
given ecological theater.

These considerations naturally lead to the concept of invasion fitness (Metz et al. 1992).
The invasion fitness of a type x is the expected long-term per capita growth rate f of that
type in a given environment E, f = f(x, E). If the invasion fitness of a type is positive it
may invade in that environment, otherwise not.

As discussed above, those types x1, x2, . . . that are present in a given system in gen-
eral affect the environment, E = E(x1, x2, . . .). One possible complication here is that
the environment may not yet have fully settled to reflect the present set of types. This
can happen, for instance, in the wake of an ecological perturbation or shortly after new
types, very different from their predecessors, have started to invade the system. Often,
however, evolution is slow enough for ecological processes to respond swiftly in compari-
son, in particular since gradual evolutionary change usually does not even require much
ecological response for a population to stay at its ecological equilibrium or, more gener-
ally, its ecological attractor. To simplify matters, it is therefore convenient to assume that
the state of the environment has come close to the attractor determined by the resident
types. Under such conditions, the dependence of the invasion fitness f of a type x on the
current environment E can be replaced by a dependence on the resident types x1, x2, . . . ,
f = f(x, x1, x2, . . .). These types can belong to the same species as type x does, or involve
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other coevolving species. For simplicity, it is often sufficient to characterize a population
by its prevalent or average type (Abrams et al. 1993). Although strictly monomorphic
populations are rarely found in nature, it turns out that the dynamics of polymorphic
populations (which harbor, at the same time, many similar types per species) can often
be well described and understood in terms of the simpler monomorphic cases.

For pathogen–host systems that allow the coevolution of virulence x and resistance y,
we thus arrive at the notation f(x′, x, y) for the invasion fitness of a variant pathogen of
virulence x′ in a host population of resistance y that is infected by resident pathogens of
virulence x. Analogously, in this infected host population fh(y

′, x, y) is the invasion fitness
of a variant host of type y′. Notice that the variant types can arise from mutation, as well
as from recombination and immigration. In the absence of host evolution, pathogen fitness
is simply denoted by f(x′, x). (Throughout this chapter a prime denotes variant types,
whereas no prime refers to resident types; this keeps the notation shorter than using the
more explicit notation xmut and xres.) Based on these fitness functions so-called pairwise
invasibility plots can be constructed to explore which variant pathogens can successfully
invade which resident pathogens, and the same analysis can be carried out for evolution
in the host (Box 1). Moreover, one of the explicitly dynamic models of adaptive dynamics
theory can be used to investigate the time course of evolutionary or coevolutionary change
in such systems (Box 2).

4 Pathogen Evolution

To illustrate how the theory of adaptive dynamics can elucidate the evolution of virulence,
consider a generalized susceptible-and-infected (SI) model (see Box 2.1 in Dieckmann et al.
2002),

dS

dt
=+ bS(x, S, I)S+ bI(x, S, I)I − dS(x, S, I)S

− β(x, S, I)SI + θ(x, S, I)I , (1a)

dI

dt
= −dI(x, S, I)I + β(x, S, I)SI − θ(x, S, I)I , (1b)

which describes the dynamics of the density S of susceptible hosts and of the density I
of hosts infected by a single pathogen strain with virulence x. The per capita birth and
death rates, b and d, as well as the transmission rate β and the recovery rate θ, can all
depend on the virulence of the resident strain x and on the current composition of the
host population, in terms of densities S and I . The birth rates of susceptible and infected
hosts, bS and bI, can differ, as can their death rates dS and dI ; in particular, the pathogen-
induced death rate is α = dI − dS. Hosts are born uninfected and the host population is
assumed to be spatially homogeneous.

Evolutionary invasion analysis

A variant strain of the pathogen is now introduced into the resident population described
by Equations (1). The variant strain has virulence x′ and the density of hosts thus infected
is denoted by I ′. Assuming that the resident population is at its demographic equilibrium
[S∗(x), I∗(x)], the mutant is rare, and super- or coinfections are negligible, we obtain

dI ′

dt
= f(x′, x)I ′ , (1c)
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Box 2 Models of adaptive dynamics

Adaptive dynamics theory derives from considering ecological interactions and phenotypic
variation at the level of individuals. Extending classic birth and death processes, as well as
ecological descriptions of structured populations, adaptive dynamics models allow offspring
phenotypes to differ from those of their parents, and thus enable studies of the interplay be-
tween population dynamics (changes in the abundance of individuals) and adaptive dynamics
(changes in their heritable traits). Four types of dynamic model are used to investigate the
resultant eco-evolutionary processes at different levels of resolution and generality:

Evolut ionary t ime, t

Ph
en

o
ty

p
e,

 x (a) (b) (c) (d)

• With an individual corresponding to a single point in a population’s trait space,
situated at the individual’s combination of trait values, populations can be envisaged
as clouds of such points. These stochastically drift and diffuse through trait space as
a result of selection and mutation (Dieckmann 1994; Metz et al. 1996a); see panel (a)
above.

• If populations are large and mutation rates are sufficiently low, evolutionary change in
clonal populations proceeds through sequences of trait substitutions (Metz et al. 1992;
Dieckmann 1994; Dieckmann and Law 1996). During each such step, an advantageous
mutant quickly invades a resident population, ousting the former resident. These steps
are analyzed through the pairwise invasibility plots introduced in Box 4.1 and used in
Figure 4.1. Concatenation of such substitutions results in a description of evolutionary
change as a directed random walk in trait space; see panel (b) above.

• If, in addition, the mutation steps are sufficiently small, the staircase-like dynamics
of trait substitutions are well approximated by smooth deterministic trajectories; see
panel (c) above. It can be shown that these trajectories follow the canonical equation
of adaptive dynamics (Dieckmann 1994; Dieckmann and Law 1996),

d

dt
xjk =

1

2
µjn

∗

j (x)
∑

l

σ2j,kl
∂

∂x′jl
fj(x

′

j, x)

∣

∣

∣

∣

x′j=xj

, (a)

where xjk is the value of trait k in species j, xj is the resultant trait vector in
species j, and x collects these trait vectors for all species in the considered ecological
community. For species j, µj is the probability for mutant offspring, n∗j (x) is the
equilibrium population size, σ2j is the variance–covariance matrix of mutational steps,
and fj is the invasion fitness. The partial derivatives of fj in Equation (a) are the
components of the selection gradient gj. Evolution in xj comes to a halt where gj
vanishes, and the curves on which this happens are therefore known as evolutionary
isoclines.

• If, by contrast, mutation rates are high while populations are large, stochastic elements
in the dynamics of phenotypic distributions become negligible; this enables mathe-
matical descriptions of the reaction–diffusion type; see panel (d) above. However,
the infinitely extended tails that phenotypic distributions acquire in this framework
easily give rise to artifactual dynamics that have no correspondence to processes in
any finite population.

At the expense of ignoring genetic complexity, models of adaptive dynamics are geared to
analyze the evolutionary implications of ecological settings. This allows the study of all
types of density- and frequency-dependent selection mechanisms within a single framework,
into which coevolutionary dynamics driven by interspecific interactions are also readily in-
corporated.
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where f(x′, x) denotes the mutant’s invasion fitness,

f(x′, x) =− dI(x
′, S∗(x), I∗(x)) + β(x′, S∗(x), I∗(x))S∗(x)

− θ(x′, S∗(x), I∗(x)) . (2a)

The lifetime reproductive success of the mutant in the resident population at equilibrium
can also be determined,

R(x′, x) =
β(x′, S∗(x), I∗(x))S∗(x)

dI(x′, S∗(x), I∗(x)) + θ(x′, S∗(x), I∗(x)
. (2b)

Analogously, the lifetime reproductive success of the mutant in an infection-free resident
population that comprises S0 susceptible hosts can be obtained,

R0(x
′) =

β(x′, S0, 0)S0

dI(x′, S0, 0) + θ(x′, S0, 0)
, (2c)

and is known as the mutant’s basic reproduction ratio R0 (see Box 2.2 in Dieckmann et al.
2002).

From Equations (2a) and (2b) it can immediately be seen that the invasion fitness of
the mutant is positive – which indicates that the mutant can invade the resident population
– if and only if its lifetime reproductive success exceeds one: f(x′, x) > 0⇔ R(x′, x) > 1.
This is expected biologically and can be regarded as a trivial correspondence.

What is much less straightforward, however, is to formally link f and R to the widely
used basic reproduction ratioR0. For this link to become more transparent, we can exploit
the relation R(x, x) = 1, which implies that, by definition, the density of infected hosts
accurately replenishes itself once the disease has reached its endemic equilibrium. Applying
this consistency condition to Equation (4.2b), an expression for S∗(x) is obtained. This,
in turn, yields

R(x′, x) =
β(x′, S∗(x), I∗(x))/[dI(x

′, S∗(x), I∗(x)) + θ(x′, S∗(x), I∗(x))]

β(x, S∗(x), I∗(x))/[dI(x, S∗(x), I∗(x)) + θ(x, S∗(x), I∗(x))]
. (2d)

This equation can be rewritten as R(x′, x) = R0(x
′)/R0(x) if the epidemiological rates β,

dI , and θ are density independent, that is, if the corresponding functions do not depend
on their second and third arguments. It is therefore only under this condition that the
convenient equivalence R(x′, x) > 1⇔ R0(x

′) > R0(x) can be taken for granted. Whether
this equivalence also holds for some restricted types of density-dependent rates remains
an open research question; to date no results on this have been obtained.

Next, these general considerations are illustrated with a suite of specific examples.

Virulence evolution toward benignity

Example I. Let us start by investigating the most simplistic version of Equations (1). The
rates for birth, transmission, recovery, and natural mortality are assumed to be constant:
bS(x, S, I) = bI(x, S, I) = b, β(x, S, I) = β, θ(x, S, I) = θ, and dS(x, S, I) = d, while the
death rate of infected hosts increases with the virulence of the infecting strain, dI(x, S, I) =
d + x. The last relation sets the scale of virulence x in terms of disease-induced host
mortality α.

With S∗(x) = (x + b + θ)/β the invasion fitness f(x′, x) = x − x′ is obtained. A
corresponding pairwise invasibility plot (Box 1) and evolutionary trajectory (Box 2) are
shown in Figure 1a. Mutant strains x′, with lower virulence than the resident strain x, can
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always invade and, therefore, the system will evolve toward the most benign strain. The
same conclusion can be obtained by maximizing R0(x

′) = βS0/(x
′ + d + θ) with regard

to x′ – pathogen strains that harm their host as little as possible are always favored by
natural selection.

Virulence evolution under transmission trade-offs

Under the simplistic assumptions made above, pathogens do not benefit from harming
their hosts. However, many pathogens are more readily transmitted during individual
contacts if they have a higher virulence: this introduces a trade-off for the pathogen
between transmission probability and host longevity.
Example II. It can be assumed, for instance, that transmission rates increase pro-
portionally with virulence, β = cx. This results in f(x′, x) = (x′ − x)(d + θ)/x, and
R0(x

′) = cx′S0/(x
′ + d + θ). Thus an ever-increasing virulence (Figure 1b) would be

expected, which is clearly unrealistic.
Example III. Following the seminal work by Anderson and May (1982, 1991) a di-
minishing return for increased virulence is often considered by choosing, for instance,
β = x/(x + c); see also Equation 2.1 in Dieckmann et al. 2002. While maintaining a
trade-off between transmission efficiency and host longevity, more emphasis is thus put on
the latter. The resultant invasion fitness f(x′, x) = (x−x′)[xx′−c(d+θ)]/[x(x′+c)] has a
vanishing selection gradient g(x) = ∂

∂x′ f(x
′, x)
∣

∣

x′=x
(Box 2) at the intermediate virulence

x∗ =
√

c(d+ θ), where also the basic reproduction ratioR0(x
′) = x′S0/[(x

′+d+θ)(x′+c)]
is maximized. A corresponding pairwise invasibility plot is shown in Figure 1c.

The ubiquity of density-dependent rates

Now consider situations in which the rates in the SI model depend on the densities of
susceptible and/or infected hosts. Such density dependence can apply to the basic demo-
graphic rates dS and bS, as well as to the epidemiological rates. The latter include the
disease-induced mortality dI − dS = α, the disease-induced loss in fecundity bS − bI , the
transmission rate β, and the recovery rate θ.

It is actually very implausible that all of these rates are density independent. Den-
sity dependence of demographic rates is already assumed in all simple non-epidemiological
population models and is needed to prevent the density of susceptible hosts from diverging
without bounds in the absence of the disease. The only justification for neglecting such
dependence in simple versions of Equations (1) is to assume that the disease itself is fully
responsible for regulating the host population density. However, even for the severest of
diseases this must remain an approximation, whereas for most other infections the assump-
tion is plainly wrong. A second way to avoid considering density-dependent demographic
rates is to assume that the total host population size, N = S + I , stays strictly constant
– independent of the virulence of the resident strain. Obviously, this is also an approxi-
mation at best and is likely to apply to very benign diseases only. As usual, reality lies
between these mathematical extremes and density regulation in an infected population oc-
curs partially through disease-independent factors and partially through the disease itself
(May 1983).

The case for density-dependent rates becomes even stronger when the epidemiological
rates, which are directly affected by the disease, are considered. An almost endless va-
riety of mechanisms can cause such dependence; hence the following list is certainly not
exhaustive:
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Figure 1 Evolution of pathogen virulence as described by R0 maximization (left column), pairwise invasibility
plots (middle column), and evolutionary trajectories (right column, based on the canonical equation of adaptive
dynamics). Rows (a) to (h) correspond to Examples I to VIII in the text. In the middle column, outcomes of virulence
evolution are indicated by continuous lines and false predictions that result from R0 maximization by discontinuous
lines. Virulence ranges that do not allow the pathogen to remain endemic are depicted as gray areas. Whereas
evolution in cases (a) and (b) leads to ever-increasing or -decreasing virulence, respectively, case (c) shows how a
trade-off between transmission probability and host longevity induces evolution toward intermediate virulence. For
these first three cases the outcome of virulence evolution can be predicted by R0 maximization. Evolution in cases
(d) and (e) also leads to intermediate virulence, but does not allow R0 maximization, since the optimal virulence
depends on which density of susceptible hosts is assumed. For these examples the left column shows several curves,
corresponding to different assumptions about this density; the thick curves describe the self-consistent solutions.
Rows (f) to (h) show cases for which R0 maximization results in seriously misleading conclusions. Parameters: b = 2
(a–h), d = 1 (a–h), θ = 1 (a–f, h), θ0 = 1 (g), β = 1 (a–b), c = 1 (c–d, f–h), c = 0.5 (e), K = 10 (d–h), µσ2 = 1
(a–h, this scales the evolutionary time t).
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• The number of patients an average doctor must treat may rise with the density of
infected hosts. This can affect disease-induced mortality and loss of fertility, as well
as recovery rates.

• The nutritional status of hosts, and thus their resistance against disease symptoms,
may deteriorate with increases in total population density or in the population’s
morbidity level.

• The quality of medical services in terms of diagnostic and therapeutic options may
improve with the wealth of a population. Such wealth may either increase or decrease
with total population density and is likely to deteriorate with an increase in the
density of infected hosts.

• Awareness about potential transmission routes is expected to grow under conditions
of high incidence. Transmission rates are then predicted to decrease when the density
of infected hosts increases.

• The density of infected hosts changes the ambient density of infectious propagules
to which susceptible hosts are exposed. Through the operation of the host’s immune
system, this propagule density may not translate linearly into the rate at which
susceptible hosts acquire infections, and transmission rates then become dependent
on the density of infected hosts.

• Changes in total population density are known to reshape social contact networks
and thereby to affect the chances of disease transmission.

The last three mechanisms imply that the population-level rate of disease transmission is
not proportional to the densities of susceptible and infected hosts and therefore cannot
be described by the simplifying assumption of mass action (see Box 2.1 in Dieckmann
et al. 2002). All six mechanisms together illustrate how far-fetched the assumption of fully
density-independent rates really is. This conclusion, however, only has major consequences
for virulence evolution if evolutionary outcomes in models with density-dependent rates
can differ significantly from those in their simpler, density-independent counterparts. We
therefore examine below how robust the method of R0 maximization and the specific
predictions thus obtained are for epidemiological models with density-dependent rates.
To address this question, five further examples are studied.

Virulence evolution with rates dependent on susceptible host density

Example IV. This example originates from a slight modification of Example III by
considering a density-dependent natural mortality of logistic type, dS = d + S/K, with
carrying capacity K. The disease-induced mortality and the transmission rate remain
density independent, α = dI − dS = x and β = x/(x + c). This means that, in this
example, density dependence extends only to the basic demographic rates, but not to
the epidemiological rates. Examining the resultant invasion fitness f(x′, x) reveals that
under the given conditions evolution converges toward the intermediate virulence x∗ =
[c+
√
c2K+cK(K−1)(d+θ) ]/(K − 1) (Figure 1d).

This conclusion cannot be reached directly by maximizing the basic reproduction ratio
R0(x

′) = x′S0/[(x
′+d+θ+S0/K)(x′+c)], since the resultant optimal virulence depends on

the density of susceptible hosts in the absence of the disease, S0. It is therefore clear that
simple R0 maximization ceases to work for examples like this. The reason is obvious: the
optimal level of virulence depends on the density of susceptible hosts available for infection
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by a new strain, and this density in turn is affected by the resident strain. In other words,
the existence of such an environmental feedback renders selection frequency dependent
and usually precludes predicting the outcome of evolution through R0 maximization.

It is therefore quite remarkable that this example nevertheless allows an optimization
principle other than R0 maximization. It can be shown that the optimal virulence x∗

in this example can also be predicted by maximization of the function Φ(x′) = [x′(K −
1)− c]/[K(x′+ d+ θ)(x′+ c)] (J.A.J. Metz, personal communication). In agreement with
the findings of Mylius and Diekmann (1995) and Metz et al. (1996b), the form of such
alternative optimization functions is very sensitive to the way in which density dependence
affects the rates of the epidemiological model, which implies that the generality of this
particular choice of Φ is very limited. Notice that an analogous conclusion holds for R0

itself: it primarily applies as an optimization principle for models with density-independent
rates. Yet, such models have prevailed in the literature so far, which might have fostered
a rather different impression.
Example V. As a second example for density-dependent rates, we return to density-
independent mortalities, but now let the density of susceptible hosts affect the trans-
mission rate, dS = d, α = dI − dS = x, and β = x/(x + c/S). This means that the
gain in transmission that results from a rise in virulence increases with the density of
susceptible hosts. Analysis of the invasion fitness f(x′, x) shows that evolution again con-
verges toward an intermediate virulence, this time given by x∗ =

√
d+ θ [

√
d+ θ + 4

√
c −√

d+ θ ]/2 (Figure 1e). Also, this example allows an alternative optimization principle,
Φ(x′) = x′/[z +

√

z(z + 4c)] with z = x′(x′+d+θ). Since the form of density dependence
has changed relative to that in Example IV, the two corresponding optimization principles
also look very different.

While, for the previous two examples, the approach of R0 maximization may be incon-
clusive, at least it does not turn out to be misleading. This is because, in these examples,
the existence of the environmental feedback loop is unmistakably signaled by the depen-
dence of R0 on S0. Subsequent to conventional R0 maximization, the feedback loop can
therefore be respected by choosing S0 self-consistently. This is achieved by solving for
a pair (x∗, S0) such that, first, x∗ maximizes R0 given S0 and that, second, S0 is the
equilibrium density of susceptible hosts for a resident virulence x∗. By adhering to such
an extended R0-based framework, it is thus sometimes possible to bypass the explicit
analysis of invasion fitness. While evolutionary invasion analysis is applicable much more
widely, the described alternative (but of course fully equivalent) route might appeal to
those already familiar with conventional R0 maximization.

Virulence evolution with rates dependent on infected host density

Example VI. Bypassing evolutionary invasion analysis is no longer an option when
demographic or epidemiological rates that depend on the density of infected hosts are
considered. Such a situation arises, for example, when the infection rate of susceptible
hosts is assumed to change nonlinearly with the density of infected hosts. The relation
β = xI/(x + c) describes a setting in which the host’s immune system is more likely to
succumb to the onslaught of a disease if the ambient density of pathogens is high. Keeping
the other rates as simple as in Example V, exactly the same expression is obtained for
invasion fitness as when β = x/(x+c), which predicts convergence toward the intermediate
virulence x∗ =

√

c(d+ θ) (Figure 1f). Notice, however, that in this example R0 for
pathogens with any level of virulence x′ vanishes, R0(x

′) = 0 – erroneously suggesting that
virulence is an evolutionarily neutral trait. The same conclusion pertains to any SI model
in which the standard mass action term βSI is replaced by βSIq with q > 1. For all these
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examples, an alternative optimization principle applies, Φ(x′) = x′/[(x′ + d+ θ)(x′ + c)],
and application of R0 maximization is seriously misleading.
Example VII. Unfortunately, the error incurred by adhering to R0 maximization can
be even less conspicuous. Now consider an example in which the rate of recovery from
the disease decreases with the number of infected hosts, θ = θ0/(1+ I/K). As mentioned
above, such a situation could arise, for instance, when the care extended to individual
infected hosts declines with their overall density. Here θ0 is the recovery rate at very
low disease incidence and K is the density of infected hosts at which that rate is halved.
All other rates are assumed to be density independent, as in the previous examples; for
the transmission rate we again revert to the classic trade-off relation β = x/(x + c). As
in Example III, R0 for this setting is given by R0(x

′) = x′S0/[(x
′ + d + θ0)(x

′ + c)] and
it is immediately obvious that the density dependence of the recovery rate leaves this
expression unchanged. This means that the parameter K cannot influence the optimal
virulence x̃∗ =

√

c(d+ θ0), predicted from maximizing R0. Also, the birth rate b does not
show in this result. For a particular choice of parameters (b = 2, d = 1, c = 1, θ0 = 1,
and K = 10) R0 maximization thus leads us to believe that, independent of b and K,
evolution converges toward the intermediate virulence x̃∗ =

√
2 ≈ 1.414. By contrast,

a proper analysis of invasion fitness reveals that the selection gradient for this example
actually vanishes at a significantly lower virulence, x∗ = 1.061 (Figure 1g). Moreover, this
evolutionarily stable outcome changes to x∗ = 1.253 for b = 1.75 and to x∗ = 1.367 for
K = 100, qualitative effects that are altogether missed by the erroneous application of R0

maximization.
Example VIII. The same conclusion applies when the density of infected hosts influences
the disease-induced mortality. Here, consider an example described by dS = d and dI =
d + x(1 + I/K). When disease incidence is low, disease-induced mortality α = dI − ds
is given by x, just as in the preceding examples. Now, however, α increases with the
density of infected hosts. As already mentioned, this could result, for instance, from the
diminished care available to each infected host. For the other rates the same choices are
made as in Example VII, except for the recovery rate θ, which is again simply kept density
independent. Maximization of R0(x

′) = x′S0/[(x
′+d+θ)(x′+c)] yields the by now familiar

expression x̃∗ =
√

c(d+ θ), which (for b = 10, d = 1, c = 1, θ0 = 1, and K = 10) gives
x̃∗ = 1.414. This prediction for the outcome of virulence evolution dramatically differs
from x∗ = 0.194, the accurate value derived from evolutionary invasion analysis. As in the
previous example, R0 maximization also fails to capture the dependence of x∗ on b and
K: b = 2 gives x∗ = 1.043 (Figure 1h), and K = 100 gives x∗ = 0.219.

Notice that the pairwise invasibility plots in all but the last two examples are skew-
symmetric, that is, invariant under reflection along the main diagonal and simultaneous
sign inversion (Figures 1a to 1f). The symmetry applies to the invasion fitness itself,
sgnf(x′, x) = −sgnf(x, x′), and hence is independent of the particular parameters chosen
for the figures. According to the theory laid out by Metz et al. (1996b), this implies
that the feedback loop in these examples acts through a one-dimensional environmental
characteristic. If, in addition, the dependence of f on this characteristic is monotone,
an optimization principle Φ can always be found – although the correct one often differs
from R0. By contrast, pairwise invasibility plots in Figures 1g and 1h are not skew-
symmetric. As Metz et al. (1996b) have demonstrated, this means that the dimension of
the environmental feedback loop exceeds one and no optimization principle can exist.
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Figure 2 Coevolution of pathogen virulence and host resistance. (a) Coevolutionary trajectory observed after
the introduction of the myxoma virus into the Australian rabbit population in 1950. Based on the trajectory’s
shape, a slight “viral backlash” can be conjectured, potentially resulting from the evolution of host resistance.
Data source: Fenner and Ross (1994). (b) to (g) Coevolutionary trajectories that result from Examples IX to XII.
Left column: dependences of disease-induced mortality on virulence and resistance (white: zero mortality, black:
maximal mortality). Middle column: phase portraits of density-dependent models. Right column: phase portraits
of corresponding density-independent models. Ranges of virulence and resistance that do not allow the pathogen
to remain endemic are depicted as gray areas. Thin curves show the evolutionary isoclines of host (continuous) and
parasite (discontinuous). Parameters: b = 5, d = 1, θ = 1, c = 2, K = 100, cx = 4, y0 = 10, cy = 2 (b–d); b = 1.5,
d = 1, θ = 1, c = 1, K = 100, cx = 0.4, y0 = 1.75, cy = 1, ymax = 10, cmax = 2 (e–g); (µσ2)/(µhσ

2

h
) = 1 (b–g).

5 Pathogen–Host Coevolution

Evolution of pathogen virulence does not occur in isolation from other adaptive processes
and is often accompanied by hosts changing their resistance toward infection. At first
sight, the short life cycles of most pathogens suggest that pathogen adaptation greatly
outpaces evolutionary responses on the part of the host. However, sexual reproduction in
hosts often compensates for the pronounced asymmetries in demographic rates, and thus
helps host populations to survive arms races with their pathogens.

This section briefly illustrates how models of adaptive dynamics are used to describe
pathogen–host coevolution. Keeping in mind thatR0 maximization can be safely employed
to predict virulence evolution only when demographic and epidemiological rates are density
independent, the focus here is on the correspondence (or lack thereof) between processes of
pathogen–host coevolution under density-dependent and density-independent conditions.
To this end, host resistance y is introduced as a second trait in addition to pathogen
virulence x, by slightly extending the SI model of Equations (1): all rates may now depend
on (x, y, S, I), instead of on (x, S, I) as assumed in Section 4.

As a rough motivation for the examples considered below, Figure 2a shows the well-
documented coevolutionary trajectory that resulted from the “escape” of the myxoma
virus into the Australian wild rabbit population in 1950 (Fenner and Ratcliffe 1965; Fenner
and Ross 1994; Fenner and Fantini 1999). The data seem to indicate a slight gradual
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increase in pathogen virulence after about 1958, potentially in response to the substantial
increase in host resistance between 1950 and 1958.

Below four models are considered to illustrate the evolutionary implications of density
regulation. It must be emphasized that these simple models are by no means intended to
capture the biological and dynamic complexity of myxoma–rabbit coevolution (for work in
this direction see, e.g., Dwyer et al. 1990). For more details on the myxomatosis epidemic
see Section 3.6 in Dieckmann et al. 2002; the actual complexity of the involved evolution
is neatly highlighted by the discussion of alternative selection pressures in Section 27.2 in
Dieckmann et al. 2002.
Example IX. The first example assumes that disease-induced host mortality decreases
with increased resistance, α = x/[1 + e−(x−y)/cx ] (Figure 2b). This function implies that,
in the absence of resistance, disease-induced mortality is essentially proportional to vir-
ulence. If, however, resistance exceeds virulence, this mortality is greatly reduced (with
the sharpness of the reduction determined by cx). Also accounted for is that resistance
is costly for the host, bS = b/[1 + e(y−y0)/cy ]: while low levels of resistance are rela-
tively cheap, resistance that approaches y0 greatly reduces fertility (the sharpness of the
cost increase is determined by cy). Host mortality is assumed to be density dependent,
dS = d+ (S + I)/K. Such density dependence is required to prevent the host population
from diverging when the pathogen is not endemic. The other rates are given by bI = bS,
dI = dS + α, β = α/(α+ c), and θ. Evolutionary isoclines are those curves on which the
selection pressure on virulence or resistance vanishes, dx/dt = 0 or dy/dt = 0. These iso-
clines are shown in Figure 2c, together with a coevolutionary trajectory that has a shape
vaguely reminiscent of the empirical one in Figure 2a.
Example X. Example IX is now simplified by removing the density-dependent component
of host mortality, dS = d. A corresponding coevolutionary trajectory is shown in Figure 2d.
Compared with Figure 2c, it is immediately obvious that the range of combinations of
virulence and resistance for which the disease is endemic is greatly reduced. In particular,
the coevolutionary attractor is now situated such that the coevolutionary process results
in pathogen extinction. This is an example of evolutionary suicide, a process during which
adaptation in a species is responsible for the extinction of that species (Matsuda and
Abrams 1994; Ferrière 2000; Parvinen et al. 2000). Notice that, relative to Figure 2c,
the shapes of the evolutionary isoclines, and therefore the position of the coevolutionary
attractor, also change. The conclusion is therefore that to remove the density dependence
of host mortality has serious implications for the expected coevolutionary outcome.
Example XI. Returning to density-regulated host mortality, dS = d+ (S + I)/K, now
consider a slightly different dependence of that mortality on virulence and resistance,
α = x/[1 + e−(x−ỹ)/cx] with ỹ = ymaxy/(y + cmax) (Figure 2e). This function describes
a “resistance-is-futile” scenario. With investment in resistance exhibiting a diminishing
return, effective resistance ỹ cannot increase beyond a maximum ymax, which is approached
for large values of y (with the sharpness of the approach determined by cmax). This means
that, in contrast to the two previous examples, it is now impossible for the host to fend
off arbitrarily high virulence levels by increasing its resistance. Evolutionary isoclines and
a coevolutionary trajectory that result from this scenario are given in Figure 2f, and show
that the model gives rise to damped oscillations in virulence and resistance levels.
Example XII. The density-independent model that directly corresponds to Example XI
can be considered by setting dS = d. Comparing the results in Figure 2f with those in
Figure 2g demonstrates that, for this case also, the shape of the evolutionary isoclines, the
position of the coevolutionary attractor, and the domain over which the disease is endemic
alter significantly. Coevolution now results in higher levels of virulence as well as resistance,
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and the coevolutionary oscillations become less pronounced. Notice in particular that
the boundary of disease viability and the evolutionary isocline of the host essentially
exchange their relative position. Thus, evolutionary suicide can again occur in the density-
independent model, whereas such evolution-driven extinction of the disease is excluded in
the density-dependent counterpart.

6 Discussion

This paper evaluates the extent to which the traditional technique of R0 maximization
can be relied upon when studying the evolution of virulence traits. It is shown that R0

maximization must be applied with great care to avoid erroneous conclusions. When
demographic and epidemiological rates are density independent, R0 maximization works
well – unfortunately, however, such cases are quite simplistic. Once density regulation in
these rates is accounted for, R0 maximization may fail. Such failures may be conspicuous,
as when the necessity to close the environmental feedback loop is signaled explicitly in the
prediction derived from R0 maximization, or they may go unnoticed and lead to serious
mistakes. With such dangers lurking, the benefits of evolutionary invasion analysis are
evident.

This conclusion is accentuated by comparison of models that describe the coevolution-
ary dynamics of parasite virulence and host resistance as resulting from density-dependent
and density-independent rates. Although there are some rough similarities between the
corresponding evolutionary scenarios, the shapes of the coevolutionary trajectories, as well
as the positions of the evolutionary isoclines and attractors, turn out to be greatly affected
by density regulation. A particularly intriguing finding in this context is that the condi-
tions under which the evolution of virulence and resistance is expected to result in the
extinction of the disease can differ greatly between these contrasting scenarios.

As pointed out in Section 4, density-dependent demographic and epidemiological rates
appear to be virtually ubiquitous, so it is difficult to justify their omission from dis-
ease models. It may be argued that in industrialized nations human population densities
are regulated by factors other than diseases; while the impact of population density on
pathogen evolution must then still be considered, the feedback from disease evolution on
population density may be negligible. This situation, however, is clearly different for the
developing world, in which the prevalence of human diseases is highest and their evolution
takes place. The same is true for many animal and plant populations, the demographies
of which are greatly affected by endemic viral strains.

Although providing a convenient starting point, it is clear that the class of SI models
studied in this chapter cannot capture the great variety of ecological stages on which
processes of virulence evolution unfold in nature. Incorporating density regulation and the
resultant mechanisms of frequency-dependent selection into more complex epidemiological
models is therefore an exciting challenge. Such theoretical extensions have to address,
in particular, the evolutionary implications of coinfection and metapopulation structure
(Chapters 9, 10, and 11 in Dieckmann et al. 2002) spatially heterogeneous host populations
(Chapters 7 and 8 in Dieckmann et al. 2002) and tritrophic interactions (Chapters 21 and
22 in Dieckmann et al. 2002).

As far as measures of virulence management are concerned, accurate predictions of the
qualitative and quantitative effects of managerial interference on virulence evolution are
indispensable. The theoretical consideration laid out in this chapter may foster this goal
in several regards:

• First, it is not only asymptotic evolutionary outcomes that count in assessing strate-
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gies of virulence management: evolutionary transients toward such states may last
long and must hence receive equal, if not primary, attention. Describing evolution-
ary transients requires dynamic models of adaptation and cannot be accomplished
through consideration of optimization principles. Oscillatory transients, like that
illustrated in Example XI, might actually be relatively widespread. A manager
must be aware of such intrinsic instabilities, lest turning points in the dynamics are
misinterpreted as indicators of faltering containment strategies.

• Second, R0 maximization and adherence to models with density-independent rates
can lead to grossly false predictions when mechanisms of density regulation are not
negligible. As illustrated by Examples VI–VII and IX–XII, the resultant errors vary
between quantitative inaccuracies and qualitative blunders. If simple models predict
that interference with a demographic or epidemiological rate reduces the virulence
of pathogens, while in actual fact such interference, properly analyzed, is expected
to be inconsequential or even to result in more aggressive strains, efforts of virulence
management can be seriously jeopardized.

• Third, the strength of density dependence may determine whether processes of evolu-
tionary suicide can be utilized for the purposes of virulence management. Moving an
evolutionary attractor out of the viability domain of the target pathogen by influenc-
ing the density dependence of demographic or epidemiological rates may sometimes
result in runaway processes toward viral self-extinction, as illustrated by Examples
IX–X and XI–XII. Such convenient opportunities may not arise too frequently, but,
if an evolutionary attractor is situated in the vicinity of a viability boundary, limited
managerial interference may well suffice to push it over the brink.

We must thus conclude that, as much as we would prefer evolutionary models of greater
simplicity, continuing to overlook the adaptational repercussions of density-dependent de-
mographic and epidemiological rates carries a high risk.
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