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Abstract

A diallelic two-locus model is investigated in which the loci determine the genotypic value
of a quantitative trait additively. Fitness has two components: stabilizing selection on
the trait and a frequency-dependent component, as induced for instance if the ability
to utilize different food resources depends on this trait. Since intraspecific competition
induces disruptive selection, this model leads to a conflict of selective forces. We study how
the underlying genetics (recombination rate and allelic effects) interacts with the selective
forces, and explore the resulting equilibrium structure. For the special case of equal effects,
global stability results are proved. Unless the locus effects are sufficiently different, the
genetic variance maintained at equilibrium displays a threshold-like dependence on the
strength of competition. For loci with equal effects, the equilibrium fitnesses of genotypic
values exhibit disruptive selection if and only if competition is strong enough to maintain
a stable two-locus polymorphism. For unequal effects, disruptive selection can be observed
for weaker competition and in the absence of a stable polymorphism.
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Additive Genetic Variation under

Intraspecific Competition and Stabilizing

Selection:

A Two-Locus Study

Reinhard Bürger

1 Introduction

Both stabilizing selection on quantitative traits and intraspecific competition are fre-
quently observed phenomena. Yet, surprisingly few studies have been performed to elu-
cidate their interaction and the consequences for the maintenance of genetic variation.
Moreover, competition leads to disruptive selection by favoring genotypes that deviate
from the most frequent ones, but disruptive selection on quantitative traits appears to
be rare compared with stabilizing or directional selection (Endler 1986). This seems to
contradict the wide-spread belief among ecologists that frequency-dependent selection is
ubiquitous. Therefore, it may be worthwhile to investigate how strong competition must
be in order that it leads to detectable disruptive selection on a trait.

A Gaussian phenotypic model with competition and density-dependent selection was
investigated by Slatkin (1979). He considered a phenotypic character in a population of
size N(t), and assumed that the fitness of an individual with phenotype z is given by

W (z, t) = 1 +R− RN (t)

k(z)

∫

α(z − y)P (y, t)dν(y) , (1.1)

where 1+R is the maximum fitness in the absence of competition, k(z) represents resources
that can be utilized by an individual of type z, α(z−y) represents the competition between
individuals of type z and y for the limiting resource, and P denotes the Gaussian density
of the trait which has variance σ2z . This functional form of W is related to the Lotka–
Volterra competition equations (cf. Roughgarden 1979). As a model for k(z), Slatkin used
a function proportional to a Gaussian density with mean z0, which is the value of the
character for which the maximum resources are available, and variance σ2k, which mea-
sures the range of available resources. Thus, small σ2k means strong stabilizing selection.
Similarly, as an example of α he uses

α(z − y) = exp
[

−12(z − y)2/σ2α
]

, (1.2)

where σ2α measures the extent of competition between individuals. With these choices, the
fitness function (1.1) leads to disruptive selection on the character if σ2z < σ2k−σ2α, and to
stabilizing selection otherwise (including the case σ2k < σ2α).

Slatkin (1979) showed that for these specific functions a stable equilibriumwith positive
variance exists if σ2k − σ2α > σ2e , where σ2e is the environmental variance of the trait,
and R < 2. The latter condition is necessary for demographic stability of the difference
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equation describing population growth. At this equilibrium, the population mean satisfies
z̄ = z0 and the variance is σ

2
z = σ2k−σ2α. Hence, competition can maintain genetic variation

if it is strong enough relative to the stabilizing selection induced by the resources that can
be utilized. However, he also proved that for less flexible genetic models (e.g., two alleles
at a single locus), often no polymorphism is maintained.

Bulmer (1980, pp. 171–172) studied a related model, in which he assumed that

W (z) =

(

ρ− 1

κ

∫

α(z − y)P (y)dν(y)

)

exp

[

−(z − zO)
2

2Vs

]

. (1.3)

Furthermore, the population size was assumed to be constant and at its equilibrium value
determined by the condition that mean fitness satisfies W̄ = 1 (from this condition it is
straightforward to derive the corresponding value of κ). Bulmer proved that a diallelic lo-
cus that contributes an infinitesimally small amount to the trait is maintained polymorphic
if and only if

(σ2z + Vs + σ2α)(σ
2
z + Vs)

3/2 < ρV 5/2s . (1.4)

This implies that no polymorphism can be maintained, whatever the phenotypic variance
σ2z of the trait, if

σ2α
Vs
≥ ρ− 1 , (1.5)

i.e., if stabilizing selection is strong (Vs small) relative to competition. Otherwise, the
locus is maintained polymorphic if the variance σ2z of the trait is below the critical value
defined by (1.4).

Christiansen and Loeschke (1980) investigated a multiallelic one-locus model based on
the Lotka-Volterra-like functional form (1.1) for the fitnesses. They found that if σ2k > σ2α,
i.e., if competition is sufficiently strong, and if the resource optimum is within the range
of genotypic values, then the two alleles with the most extreme effects will persist in
the population, whereas if the resource optimum is outside this range, so that there is
directional selection, a polymorphism is maintained only if the effect of the allele that
deviates most from the optimum is sufficiently large. In this case, this extreme allele will
be maintained in the population together with the allele that is closest to the optimum.
Conversely, if σ2α > σ2k, then a polymorphism will be maintained only if the resource
optimum is within the range of allelic effects, and the two alleles closest two the optimum,
but on opposite sides, will be persist. Dominance does not fundamentally alter these
conclusions (Christiansen 1988).

In 1984, Loeschke and Christiansen extended their previous model to two linked loci.
Their study concentrates on the case of tight linkage and strong competition relative to
stabilizing selection. They investigated the equilibrium structure for a number of scenarios,
mainly by numerical computation. We shall discuss the relation between the present work
and their work in the final section.

The present article focuses on the population-genetic consequences of the interaction
of competition and stabilizing selection. Therefore, we shall ignore density dependence
and adopt the fitness function of Bulmer, but approximate the Gaussian functions by
quadratic functions to make the model analytically tractable. We shall study how genetic
assumptions about recombination rate and allelic effects influence the equilibrium struc-
ture obtained from a balance between the selective forces. For the special case of equal
effects, global stability results are derived for arbitrary recombination rates. We shall
further explore how the genetic variance depends on the parameters of the model, and
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when the equilibrium fitness of genotypic values exhibits disruptive selection. The results
are derived under the assumption that selection acts on diploids, but we shall also outline
the case of selection on haploids.

2 The Model

We consider a randomly mating population with discrete generations and equivalent sexes
that is sufficiently large so that random genetic drift can be ignored. Here we assume
that selection acts on diploids, and in Section 5 we shall briefly deal with selection on
haploids. Fitness is determined by two components: (i) by a quantitative character that
is under stabilizing selection, and (ii) by competition between individuals, as may result,
for instance, if different phenotypes utilize different food resources. Selection acts only
through differential viabilities. We ignore environmental variation and deal directly with
the fitnesses of genotypic values.

We adopt the functional form (1.3) and posit that the fitness of an individual with
genotypic value g is given by

W (g) =

(

ρ− 1

κ
C(g)

)

S(g) , (2.1)

where C(g) represents the strength of intraspecific competition experienced by individuals
of genotypic value g, ρ and κ are positive parameters, and S(g) represents stabilizing
selection on g. In the context of density-dependent growth models, the parameter ρ
in (2.1) is related to the growth rate of the population and κ to the carrying capacity.
Since we are mainly interested in the population-genetic consequences of the interaction
of competition and stabilizing selection, we assume throughout that the population size is
constant and at the equilibrium value resulting from the condition that mean fitness, W̄ ,
is unity. We assume that competition between genotypes g and h can be described by the
function

α(g, h) = 1− 1

2σ2α
(g − h)2 , (2.2)

with the obvious constraint that the maximum difference between genotypic values must
be less than

√

2σ2α. Then the competition function C(g) is defined as

C(g) =
∑

h

α(g, h)P (h) , (2.3)

where P (h) is the relative frequency of individuals with genotypic value h.
Stabilizing selection is modeled by the quadratic function

S(g) = 1− g2/(2Vs) , (2.4)

where Vs is an inverse measure for the strength of stabilizing selection. Of course, S(g)
is assumed to be positive on the range of possible genotypic values, thus restricting the
admissible values of Vs. In the articles cited in the introduction, the functions α and S
specified in (2.2) and (2.4) are Gaussian, but the quadratic functions used here will be
adequate approximations, unless selection or competition are very strong. In particular,
the present choice enables us to analyze the model analytically.

The genetic assumptions are as follows: the trait values g are determined additively
by two loci (no dominance or epistasis), each with two alleles, A1 and A2, B1 and B2. The
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four gametesA1B1, A1B2, A2B1, A2B2 have relative frequencies p1, p2, p3, p4, respectively.
Let the contributions of the alleles A1, A2, B1, and B2 to the genotypic value g of the
trait be β − 12γ1, β + 1

2γ1, −β − 12γ2, and −β + 1
2γ2, respectively, where β is an arbitrary

constant. We assume that the alleles determine the genotypic value g purely additively.
Then the effects of the gametesA1B1, A1B2, A2B1, and A2B2 are−12(γ1+γ2), −12(γ1−γ2),
1
2(γ1 − γ2), and

1
2(γ1 + γ2). The resulting genotypic values are shown in Table 2.1. For

notational simplicity, we will use the same symbol g for a genotype and its genotypic value,
and we shall write gij for the genotype composed of the gametes i and j.

Table 2.1. The genotypic values in the additive model.

B1B1 B1B2 B2B2

A1A1 −γ1 − γ2 −γ1 −γ1 + γ2
A1A2 −γ2 0 γ2
A2A2 γ1 − γ2 γ1 γ1 + γ2

For definiteness, we assume γ1 ≥ γ2 and refer to these loci as major and minor,
respectively. The parameters γ1 and γ2 are the effects of allelic substitution at locus one
and two, respectively. For brevity, we call them the effects of the loci. Let us introduce
the following quantities:

γ = 1
2(γ1 + γ2) , e = γ1−γ2

2γ , s = γ2

2Vs
, (2.5)

where γ2 may be called the average (substitional) effect on the trait, e measures the
disparity of effects, and s (0 < s < 1

4 because S(g) must be positive) is a measure for the
strength of stabilizing selection on genotypes. This yields a special case of the so-called
symmetric viability model (Karlin and Feldman 1970) with the genotypic fitness values
given in Table 2.2.

Table 2.2. The fitnesses of genotypes, S(g), caused by stabilizing selection.

B1B1 B1B2 B2B2

A1A1 1− 4s 1− (1 + e)2s 1− 4e2s
A1A2 1− (1− e)2s 1 1− (1− e)2s
A2A2 1− 4e2s 1− (1 + e)2s 1− 4s

Moreover, it will be convenient to introduce the following new variables:

x = p1 + p4 , y = p1 − p4 , z = p2 − p3 . (2.6)

Because p1 + p2 + p3 + p4 = 1, these are sufficient to describe the genetic composition of
the population.

Next, a straightforward calculation shows that

C(g) = 1− 1

2σ2α
[(g − ḡ)2 + σ2g ] , (2.7)

where

ḡ = 2γ(y+ ez) (2.8)
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denotes the mean genotypic value, and

σ2g = 2γ2[x− y2 − 2eyz + e2(1− x− z2)] (2.9)

is the (additive) genetic variance. It will be convenient to write C(g) as

C(g) = 1− γ2

2σ2α
ϕ(g) , (2.10)

where explicit formulas for ϕ(g) are given in Table 2.3.

Table 2.3. The values of ϕ(g).

ϕ(−γ1 − γ2)= 2[2 + x− 4y+ y2 − 2ez(2− y) + e2(1− x+ z2)]
ϕ(γ1 + γ2)= 2[2 + x+ 4y+ y2 + 2ez(2 + y) + e2(1− x+ z2)]

ϕ(−γ1)= 1 + 2x− 4y + 2y2 + 2e(1− 2y − 2z + 2yz) + e2(3− 2x− 4z + 2z2)
ϕ(γ1)= 1 + 2x+ 4y + 2y2 + 2e(1 + 2y + 2z + 2yz) + e2(3− 2x+ 4z + 2z2)

ϕ(−γ1 + γ2)= 2[x+ y2 − 2ey(2− z) + e2(3− x− 4z + z2)]
ϕ(γ1 − γ2)= 2[x+ y2 + 2ey(2 + z) + e2(3− x+ 4z + z2)]

ϕ(−γ2)= 1 + 2x− 4y + 2y2 − 2e(1− 2y + 2z − 2yz) + e2(3− 2x+ 4z + 2z2)
ϕ(γ2)= 1 + 2x+ 4y + 2y2 − 2e(1 + 2y − 2z − 2yz) + e2(3− 2x− 4z + 2z2)
ϕ(0)= 2[x+ y2 + 2eyz + e2(1− x+ z2)]

Let

c =
γ2/(2σ2α)

ρκ− 1
, (2.11)

which we call the coefficient of competition (c > 0), and let

w(g) = [1 + cϕ(g)]S(g) ; (2.12)

then W (g) = (ρ− 1/κ)w(g). Since in the recurrence relations for the gamete frequencies
multiplicative constants cancel, we shall denote the (scaled) fitness w(gij) of genotype gij
by wij. The wij are calculated from (2.12) by resorting to Tables 2.2 and 2.3. Denoting
the marginal fitness of gamete i by wi =

∑4
j=1 wijpj, and the resulting mean fitness by

w̄ =
∑4
i,j=1 wijpipj =

∑4
i=1 wipi, the dynamics of gamete frequencies is given by the four

recurrence relations

w̄p′i = piwi − ηirw14D (2.13)

(e.g. Bürger 2000, Chap. II.1), where η1 = η4 = 1, η2 = η3 = −1, r is the recombination
fraction, and D = p1p4 − p2p3 measures linkage disequilibrium. The expressions for the
wi and w̄ are formidable in general, and given in Appendix 1 for the case e = 0.

3 Equal Effects and Arbitrary Recombination

If both loci have equal effects, γ1 = γ2, then fairly complete analytic results can be derived.
For unequal effects, even in the absence of competition, global convergence results have
not yet been proved. Nevertheless, in this case (c = 0) the model is fairly well understood
and the possible equilibria and their local stability properties have been derived (see
Gavrilets and Hastings 1993, and Bürger 2000, Chap. VI.2). It should also be noted that
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in the absence of competition, but for Gaussian instead of quadratic stabilizing selection,
the possible equilibrium structure has not yet been fully explored. Nagylaki’s (1989)
analysis, which is based on the assumption of linkage equilibrium, suggests that for strong
selection, the equilibrium structure may be more complex than for quadratic selection (see
the Discussion). This is one of the reasons why we chose a quadratic fitness function.

In this section, we assume γ = γ1 = γ2, i.e., e = 0. This simplifies the expressions for
the fitnesses and the recursion relations substantially. In particular, the marginal fitnesses
of the gametes A1B2 and A2B1 are equal, i.e., w2 = w3. We also assume r > 0 and
relegate the degenerate case r = 0 to the end of this section.

We begin by demonstrating how the equilibria can be found. Because r > 0, no
equilibrium can exist in the interior of the boundary planes, i.e., equilibria involving three
gametes are impossible. Therefore, at every boundary equilibrium at least one locus is
monomorphic, and we leave the calculation of the possible boundary equilibria to the
interested reader.

Determination of the interior equilibria is more cumbersome. From the recurrence
relations we obtain immediately

p′2
p′3

=
p2w2 + rw14D

p3w2 + rw14D
. (3.1)

Since for an equilibrium with p3 > 0, p′2/p
′

3 = p2/p3 must hold, any equilibrium lies either
at one of the boundary planes p2 = 0 or p3 = 0, in the plane p2 = p3, or at the Wright
manifold D = 0. In addition, it follows that each of the regions p2 > p3, p2 = p3, and
p2 < p3 is invariant.

Next, Lemma A.5 in the Appendix implies that

p′1
p′4

=
p1
p4

(3.2)

can hold only if D > 0 or p1 = p4 (or p4 = 1). Therefore, any interior equilibrium with
D ≤ 0 is located in the plane p1 = p4 and those with D < 0 must even be symmetric, i.e.,
satisfy p1 = p4 and p2 = p3. Finally, Lemma A.7 informs us that equilibria with D > 0
(hence p2 = p3) must also be symmetric.

It is now straightforward to calculate the coordinates of all possible equilibria. Their
stability properties are derived in Appendix A. In the followingwe summarize these results.
Figure 1 gives a graphical representation. For simplicity (and with little loss of generality
and relevance), we shall posit s < 1

5 , although this is necessary only if c ≥ s/(1 − 5s) is
assumed.

The main result: equilibria and their stability properties

1. There always exist the four corner equilibria. Of these, the equilibria p̂1 = 1 (fixation
of A1B1) and p̂4 = 1 (fixation of A2B2) are always unstable. Both of the equilibria
p̂2 = 1 (fixation of A1B2) and p̂3 = 1 (fixation of A2B1) are (locally) asymptotically
stable if and only if

c ≤ s

1− s
. (3.3)

In this case, p̂2 = 1 is globally attractive for the half space p2 > p3, and p̂3 = 1 for
p3 > p2.
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c < s/(1-s)

s/(1-s) < c < s/(1-5s)

c > s/(1-5s)

p1 = p4 = 1/2

2 = 1 p3 = 1

2 = 1 p3 = 1

= 1 p = 1

p1 = p4 = 1/2

p1 = p4 = 1/2

Figure 1: The three possible equilibrium structures for equal effects, corresponding to the
cases (3.3), (3.4), and (3.8). Displayed is the plane y = 0 with the curve D = 0, the
symmetric line {p1 = p4, p2 = p3} (dashed, where the symmetric equilibrium is always
unstable), the stable equilibria (filled circles), and the unstable equilibria (open circles).
Other stable equilibria do not exist, but unstable single-locus polymorphisms may exist.
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2. If
s

1− s
< c <

s

1− 5s
, (3.4)

then the following pair of equilibria exists and is asymptotically stable:

p̂1 = p̂4 =
c(1− s)− s

16cs
, (3.5a)

p̂2(±) =
s− c(1− 9s)

16cs
± 1

4

√

s− c(1− 5s)

cs
, p̂3(±) = p̂2(∓). (3.5b)

Both equilibria satisfy D = 0 and, therefore, do not depend on r. Numerical itera-
tions of the recurrence relations suggest that the first is globally attractive for the
half space p2 > p3, and the second for p3 > p2. If c is taken as bifurcation parameter,
then they emerge from the corner equilibria p̂2 = 1 or p̂3 = 1 by an exchange-of-
stability bifurcation at c = s/(1− s). As c increases, they converge to the center of
the simplex (p1 = p2 = p3 = p4 =

1
4), where, for c = s/(1 − 5s), they merge with

the unstable symmetric equilibrium and cease to exist. For large c, the symmetric
equilibrium described below becomes stable; thus, a pitchfork bifurcation occurs at
c = s/(1− 5s).

3. If c > s/(1 − s), then there exist four equilibria with one locus monomorphic and
one locus polymorphic. For instance, if the B-locus is fixed at B1, i.e., p1 + p2 = 0,
then p̂1 is the unique solution of the equation

4csp31 − 18csp21 + 2p1(c+ s+ 6cs)− c(1 + s) + s = 0 . (3.6)

This equilibrium always satisfies p̂1 < 1
2 , and p̂1 increases as c/s increases. The

positions of the three other equilibria of this type are given by analogous conditions
(with p1 replaced by p4 if A1 is absent. These equilibria are always unstable with
respect to the whole simplex, but they are globally attractive for the corresponding
single-locus systems.

4. There always exists one symmetric equilibrium, p̂1 = p̂4 and p̂2 = p̂3. It is the
uniquely determined solution of the equation

32csp31 + 2[s− c(1 + 2r + 7s)]p21 − [r+ s− c(1 + r − s)]p1 +
r

4
= 0 (3.7)

such that 0 ≤ p̂1 ≤ 1
2 . If c < s/(1 − 5s), then 0 < p̂1 < 1

4 , hence D < 0, and the
equilibrium is unstable. If c = s/(1 − 5s), then p̂1 =

1
4 . If c > s/(1 − 5s), then

1
4 < p̂1 <

1
2 and D > 0. If

c ≥ s/(1− 5s) , (3.8)

then this equilibrium is asymptotically stable, and numerical iterations suggest that
it is globally stable. Global stability (with respect to the interior of the simplex) can
be proved if s < 1

6 and c ≥ s/(1− 6s).

For the symmetric equilibrium it is easy to show that its position p̂1, and therefore the
amount of linkage disequilibriumD, is an increasing function of c, but a decreasing function
of s and r. For every s ≥ 0, p̂1 approaches an upper limit < 1

2 as c→∞. For s = 0, this
limit is limc→∞ p̂1(c) =

1
2
1+r
1+2r ; for larger s, it is smaller (cf. Figure 3). Positive linkage

disequilibrium is maintained only at the symmetric equilibrium if (3.8) holds. Because,
in this case D̂ = p̂1 − 14 , strong (positive) linkage disequilibrium is maintained only if the
loci are tightly linked (cf. Figure 3).
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The genotypic fitnesses at equilibrium

Next, we investigate the fitnesses of the genotypes at equilibrium, in particular, when they
experience stabilizing or disruptive selection. In the present symmetric case with equal
effects there are only five different genotypic values: ±2γ, ±γ, and 0. We refrain from
giving the formulas for the fitnesses, which are complicated, but summarize the results
verbally and graphically (Figure 2). If (3.3) holds, i.e., competition is weak relativ to
stabilizing selection, then the net selection on genotypic values is stabilizing, i.e.,

w(0) > w(γ) = w(−γ) > w(2γ) = w(−2γ) . (3.9a)

If c = s/(1− s), then

w(0) = w(γ) = w(−γ) > w(2γ) = w(−2γ) . (3.9b)

(But note that in these two cases, at equilibrium only genotypes with value 0 are main-
tained in the population.) If (3.4) holds, i.e., the pair of interior equilibria with D = 0
is stable, then there is disruptive selection and the genotypes with one homozygous locus
and one heterozygous locus have highest fitness, and the ‘extreme’ genotypes have the
lowest fitness.

w(γ) = w(−γ) > w(0) > w(2γ) = w(−2γ) . (3.9c)

If c = s/(1− 5s), then

w(γ) = w(−γ) > w(0) = w(2γ) = w(−2γ) . (3.9d)

If c = s/(1− 5s− 6sp̂1), where p̂1 the coordinate of the symmetric equilibrium, then

w(2γ) = w(−2γ) = w(γ) = w(−γ) > w(0) . (3.9e)

Finally, if competition is even stronger, then the extreme genotypes have the highest fitness
and those with genotypic value zero have the lowest, i.e.,

w(2γ) = w(−2γ) > w(γ) = w(−γ) > w(0) . (3.9f)

The equilibrium genetic variance

The equilibrium variance is zero, of course, if the monomorphic equilibria are stable, i.e.,
if (3.3) holds. In general, it is given by σ̂2 = 4γ2p̂1, because all equilibria satisfy p1 = p4;
cf. (2.9). As c increases beyond c = s/(1 − s), the genetic variance increases rapidly
to high values. It is independent of r if c ≤ s/(1− 5s), and decreases with increasing r,
otherwise. Figure 3 displays the equilibrium genetic variance as a fraction of the maximum
possible variance, which is 2γ2 and is obtained if x = p1 + p4 = 1 and x = y = 0.
Therefore, the equilibrium variance relative to the maximum possible variance is 2p̂1. This
shows that frequency-dependent selection caused by intraspecific competition can maintain
high levels of genetic variation in situations where stabilizing selection alone depletes all
variation, provided competition is sufficiently strong. Figure 3 shows an almost threshold
like dependence of the variance upon the coefficient of competition: the increase from no
variance to a very high value occurs within the, typically small, interval [s/(1−s), s/(1−5s)]
in which the equilibria with D = 0 move from the corners to the center.
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Figure 2: Genotypic fitnesses, w(g)/w̄, at equilibrium for s = 0.05 and r = 0.5. The cases
shown, beginning with c = 0.09, correspond to (3.9a) – (3.9f).

The case r=0

This case requires separate treatment because it is degenerate, i.e., there exists a line
of stable equilibria. From (3.1), we infer immediately that any plane p2/p3 = const. is
invariant, and the proof of Lemma A.5 informs us that all trajectories converge to the
plane p1 = p4. The dynamics on the resulting line is given by

w̄(p′1 − p1) = p1(1− 2p1)[c(1− s− 16sp1)− s], (3.10)

which is independent of p2/p3. Therefore, all trajectories with initial condition p2(0)/p3(0) =
κ converge to the equilibrium given by

p̂1 = p̂4 =











0 , if c ≤ s
1−s ,

c(1−s)−s
16cs , if s

1−s < c < s
1−9s ,

1
2 , if c ≥ s

1−9s (and s < 1
9) ,

(3.11a)

p̂2 = κp̂3 =
1− 2p̂1
1 + κ

. (3.11b)
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Figure 3: Additive genetic variance at equilibrium relative to the maximum possible vari-
ance of 2γ2 as a function of c for three different values of the recombination rate r.
The selection coefficient is s = 0.05. Because this relative variance equals 2p̂1, the fig-
ure also displays the position of the symmetric equilibrium and its linkage disequilibrium
(D̂ = p̂1 − 14) if c ≥ s/(1− 5s).

Obviously, we have p̂1 < 1
4 if and only if c < s/(1 − 5s). It may also be noted that the

coordinate p̂1 coincides with the corresponding coordinate of the pair of interior equilibria
with D = 0 that exists if r > 0, cf. (3.5a).

4 Unequal Effects and Loose Linkage

For unequal effects, stabilizing selection alone can maintain stable interior polymorphisms,
provided the loci are sufficiently tightly linked. If the effects are very similar, then linkage
must be almost complete. However, if the effects are very different (e > 1

3 , i.e., γ1 ≥ 2γ2),
then even for freely recombining loci does stabilizing selection alone maintain stable single-
locus polymorphisms (cf. Gavrilets and Hastings 1993, and Bürger 2000, Chap. VI.2). Here
we shall investigate the interaction of competition and stabilizing selection for unlinked
loci with different effects. The case of linked loci seems to be much more complicated and
may be treated in a subsequent publication.

It is evident from Table 2.2 that the case of unequal effects (e > 0) leads to much more
nasty expressions than the case of equal effects, thus making a complete analysis almost
impossible. However, some progress can be made. For instance, with a little help from
Mathematica (Wolfram 1996), a linear stability analysis of the monomorphic equilibria
p̂2 = 1 and p̂3 = 1 reveals that they are asymptotically stable if and only if

c ≤ r − 4e2s

4e2(1− r)
(4.1a)
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Figure 4: Regions of stability of the four classes of stable equilibria for free recombination
(r = 0.5). The strength of stabilizing selection is s = 0.05.

and

c ≤ s(1− 3e)

(1 + e)[1− s(1− e)2]
(4.1b)

hold. If r is large, e.g., r = 0.5, then validity of (4.1b) implies (4.1a). Condition (4.1b)
shows that the monomorphic equilibria cannot be stable if e > 1

3 or if c > s/(1 − s),
where the latter condition is obtained for e = 0. The range of c values for which the
monomorphic equilibria are asymptotically stable decreases as e increases (see Figure 4).
Numerical iterations of the recurrence relations suggest that each of the two monomorphic
equilibria is globally attractive for half of the state space whenever it is asymptotically
stable. For e = 0 this is proved in the Appendix.
It is also elementary to derive the conditions for existence and the positions of single-locus
polymorphisms. Only the equilibria satisfying p1 + p3 = 1 or p2 + p4 = 1 can attract
trajectories from the interior, i.e., only the locus with the major effect (by assumption
locus A) can be stably polymorphic. The defining equation for the equilibrium at the edge
p1 + p3 = 1 is

4cs(1 + e)3p31 − 6cs(3− e)(1 + e)2p21 + 2(1 + e)[s+ c+ 2cs(3 + 2e− 3e2)]p1

+s(1 − 3e)− c(1 + e)[1− (1− e)2s] = 0 . (4.2)

Observe that the constant term is negative if and only if condition (4.1b) is invalid, i.e.,
if and only if p̂3 = 1 is unstable (given that r is large). In this case, (4.2) has a solution
satisfying 0 < p̂1 < 1. Indeed, since the left-hand side of (4.2) is monotone increasing
on [0, 1], the equilibrium is is uniquely determined. Hence, a single-locus polymorphism
exists if and only if (4.1b) does not hold, i.e., if p̂3 = 1 is unstable. A parallel result is
obtained for p2 + p4 = 1, by replacing p1 in (4.2) by p2.
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Figure 5: Additive genetic variance at equilibrium relative to the maximum possible vari-
ance of 2γ2 as a function c for freely recombining loci (r = 0.5), and for various values
of e (disparity of effects). Here, e = 0 means equal effects; further, e = 0.25 if γ1 =

5
3γ2,

e = 0.5 if γ1 = 3γ2, and e = 0.75 if γ1 = 7γ2. The strength of stabilizing selection is
s = 0.05. Because this relative variance equals 2p̂1, the figure also displays the position of
the symmetric equilibrium and its linkage disequilibrium (D̂ = p̂1 − 14) if c is large.

Numerical iteration of the recurrence relations and numerical solution of the equi-
librium conditions shows that for a small range of (intermediate) values of c a pair of
asymptotically stable interior equilibria on the Wright manifoldD = 0 exists. They corre-
spond to the pair of equilibria (3.5) that could be calculated explicitly in the case of equal
effects. For e > 0, these equilibria no longer satisfy the symmetry condition y = 0, but still
both equilibria have the same x-coordinate. Using c as the bifurcation parameter, they
move into the interior of the simplex when the single-locus polymorphisms at the edges
p1 + p3 = 1 and p2 + p4 = 1 become unstable (exchange of stability), and then converge
to the center of the simplex. At the critical value

c =
s

1− 5s(1 + e2)
(4.3)

(cf. Eq. 3.8) they hit the center and cease to exist. Instead, the symmetric equilibrium,
p̂1 = p̂4 and p̂2 = p̂3, which always exists, becomes stable (through a pitchfork bifurcation).
For all larger values of c, this symmetric equilibrium apparently is globally stable and
satisfies D > 0. It is interesting to observe that for increasingly different effects of the
loci, intraspecific competition must become stronger in order maintain a stable two-locus
polymorphisms.

Numerical iteration of the recursion relations and numerical search for solutions of the
equilibrium conditions suggest that no other interior equilibria exist for loose linkage, and
that stability of one of these classes excludes stability of any other attractor.

The equilibrium genetic variance can be calculated from Eq. (2.9). The maximum
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possible value is attained if x = 1 and y = z = 0, and equals 2γ2. Figure 5 displays the
equilibrium variance relative to this maximal value as a function of c for several values of e.
The threshold like dependence on c observed for equal effects in Figure 3 still occurs, but
only if the effects of the loci are similar. Otherwise, stabilizing selection alone maintains
genetic variation and, hence, the contribution of competition to variation is relatively
smaller. For very different effects, competition adds almost no variation. In this figure,
the range of c values for which the interior equilibria with D = 0 exist and are stable is
clearly visible by the steep increase of the variance. For c larger than (4.3), the symmetric
equilibrium appears to be globally stable, and since its variance relative to the maximum
possible variance is 2p̂1, and since its linkage disequilibrium is D̂ = p̂1 − 1

4 , the right
part of the figure also provides the information for the position of this equilibrium and
for the linkage disequilibrium maintained. Thus, for free recombination a high amount of
(positive) linkage disequilibrium is maintained only if the locus effects are very unequal
and competition is sufficiently strong.

From Eq. (2.8) we observe that with unequal effects the equilibrium mean phenotype
deviates from the fitness optimum, unless the population is at the symmetric equilibrium.
Thus, at least for loose linkage, competition pushes the population mean towards the
fitness optimum. Actually, numerical evaluation of (2.8) shows that the deviation of
the mean from the optimum is a decreasing function of c, unless the population is at a
monomorphic equilibrium (results not shown).

For equal effects, Figure 3 and Eqs. (3.9) show that genotypic fitnesses exhibit dis-
ruptive selection if and only if competition maintains both loci polymorphic. For unequal
effects, such disruptive selection may already occur if the monomorphic equilibria are
stable. Then, for values of c and e close to the boundary curve of the region in which
a single-locus polymorphism is maintained (cf. Figure 4), the genotypes with genotypic
values |γ2| (cf. Table 2.1) may have higher fitness than all other genotypes. If the single-
locus polymorphisms are stable, then the genotypic values may also exhibit stabilizing or
disruptive selection, depending on the combination of c and e, and either the genotypes
with values |γ2| or with |γ1 − γ2| may have the highest fitness. If competition maintains
both loci polymorphic, then there is always disruptive selection with either the genotyes
|γ1| or |γ1 + γ2| having maximal fitness (results not shown).

5 Selection on Haploids

If selection acts on haploids, the same basic model as in Section 2 can be used. Since
there are only four genotypes, Tables 2.1 and 2.2 become much simpler. In particular, the
expressions for the marginal fitnesses and the mean fitness are greatly simplified. We leave
the straightforward calculations to the interested reader. For selection on haploids, it is
more convenient to assume that in the life cycle recombination occurs before selection.
Then the recursion relations can be written as

w̃p′i = wi(pi − ηirD) , (5.1)

where w̃ = w̄ − r(w1 − w2 − w3 + w4)D; cf. Rutschman (1994). It turns out that, at
least for equal effects of the loci, the basic equilibrium structure is exactly the same as for
diploids, i.e.:

1. If c ≤ s
1−s , then the equilibria p̂2 = 1 and p̂3 = 1 are asymptotically stable and

attract all trajectories from the corresponding half space.
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2. If s
1−s < c < s

1−3
2
s
, then a pair of interior equilibria with D = 0 is asymptotically

stable. The coordinates are

p̂1 = p̂4 =
c(1− s)− s

2cs
, (5.2a)

p̂2(±) =
s− c(1− 2s)

2cs
± 1

2
√
2

√

s− c(1− 32s)
cs

, p̂3(±) = p̂2(∓) . (5.2b)

3. If c ≥ s
1−3
2
s
, then the symmetric equilibrium is globally asymptotically stable. It is

given by the unique solution of

16cs(1− r)p31 − 8[c− s+ rs(1− 12c)]p21
+ 4[c(1− r − s+ rs)− s− r(1− 3

2
s)]p1 + r(1− s)(1 + c) = 0 (5.3)

that satisfies 14 ≤ p1 <
1
2 . This symmetric equilibrium exists also for smaller c, but

is unstable then and satisfies p1 <
1
4 .

The main difference to the diploid model is that for haploid selection the symmetric
equilibrium becomes stable for smaller values of c. The proof of these results is much
simpler than for diploids and omitted. For instance, by considering the Lyapunov function
(p′1/p

′

4 − 1)2, it is not difficult to show that all trajectories converge to the plane p1 = p4.
This reduces the further analysis of D′ and p′2/p

′

3 to a two-dimensional problem, which
greatly reduces the difficulties faced in the diploid case.

6 Discussion

Previous analyses have demonstrated that intraspecific competition may be a potent force
in maintaining genetic variation of traits under stabilizing selection, provided it is suf-
ficiently strong (Slatkin 1979, Bulmer 1980, Christiansen and Loeschke 1980, Loeschke
and Christiansen 1984). However, as the model of Bulmer discussed in the introduction
shows (and also a single-locus model in Slatkin’s article), strong competition is not nec-
essarily sufficient to guarantee a stable polymorphic equilibrium. With the exception of
the work of Loeschke and Christiansen (1984), these investigations were based either on
single-locus models or on phenotypic models with a Gaussian distribution of phenotypes
and a constant genetic variance. Loeschke and Christiansen studied a two-locus model
similar to ours, but used the Lotka-Volterra-type functional form (1.1) as fitness function
together with (1.2) for competition and a Gaussian resource function k. In the limit of
weak selection, weak competition, and small allelic effects, their model and the present
model should yield equivalent results. Loeschke and Christiansen (1984) restricted their
attention to the case of strong competition relative to selection, i.e., in the notation of the
introduction, they assumed σ2k > σ2α. Moreover, most of their, primarily numerical, results
and their discussion are focused on the case of complete or tightly linked loci. However,
they also consider scenarios when the double heterozygote is not at the resource optimum,
i.e., when it deviates from the optimum fitness under stabilizing selection. In this case,
Loeschke and Christiansen (1984) conclude that intraspecific competition does not play
any role if the population is far from the optimum, because then directional selection pre-
vails, whereas competition keeps the population polymorphic and its mean close to the
optimum if the optimum is within the range of genotypic values.
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The present analysis poses no restrictions on the relative strength of competition and
stabilizing selection, or on the effects of the loci, but assumes, as most classical models
of stabilizing selection, that the double heterozygote is at the fitness optimum of stabi-
lizing selection. The main goal was to explore the interplay of the genetic parameters,
recombination rate and allelic effects, with the two selective forces in maintaining genetic
variation and stable polymorphisms.

Perhaps the main achievement is a complete analytical characterization of the possible
equilibrium structures for the case of equal effects, but arbitary strength of competition
and stabilizing selection and arbitrary recombination rates. Except for a small parameter
range, global convergence results could be proved. With equal effects, the genetic variation
maintained depends in a threshold-like manner on the strength of competition. If it is
weak, c ≤ s/(1 − s), then no variation is maintained at all, whereas otherwise both loci
are stably polymorphic (cf. Figures 1 and 3). In terms of the original parameters, this
condition on c means that no variation can be maintained if

σ2α
Vs
≥ (ρ− 1)

(

1− γ2

2Vs

)

,

which is closely related to Bulmer’s condition (1.5). However, in contrast to his model, in
which the effect of the locus under consideration on the phenotypic variance is neglected, in
the present model sufficiently strong competition always maintains a stable polymorphism.

This behavior extends to similar, but unequal, effects and large recombination rates.
However, with such effects, a single-locus polymorphism can be stably polymorphic for
intermediate values of c. The range of values c extends rapidly as the disparity of locus
effects increases, and if γ1 ≥ 2γ2, the pair of single-locus polymorphisms (with the major
locus polymorphic) is stable for all small values of c, i.e., even in the absence of competition
(the reason is single-locus overdominance); stable monomorphic equilibria do no longer
exist. For strong competition, there is always one pair of stable interior equilibria with
D = 0 that exists only for a small range of values c, otherwise the symmetric equilibrium
is stable (cf. Figure 4).

Thus, in the present model, as well as in that of Loeschke and Christiansen (1984),
sufficiently strong competition relative to stabilizing selection always maintains a sta-
ble symmetric two-locus polymorphism. Apparently, in our model this polymorphism is
uniquely determined, globally stable, and displays positive linkage disequilibrium. In the
model of Loeschke and Christiansen, up to three symmetric two-locus polymorphisms can
coexist, two of which can be stable, or one can be stable and coexist with stable boundary
equilibria. This occurs for strong Gaussian selection that leads to strong selection on one
or both loci. This phenomenon, however, is not a consequence of competition, but a conse-
quence of the properties of Gaussian stabilizing selection in two-locus models, and occurs
also in the absence of competition (Nagylaki 1989; Gavrilets and Hastings 1994; Gimelfarb
1996; Bürger 2000, Chap. VI.2). As the properties of the two-locus model with Gaussian
stabilizing selection alone have not yet been fully explored, the present analysis has been
based on the quadratic optimum model. A further difference to the model of Loeschke and
Christiansen (1984) is that they report numerical results about the existence and position
of a pair of interior equilibria corresponding to our pair with D = 0 that are dependent
on the recombination rate. Loeschke and Christiansen (1984) conclude that competition
will in general lead to strong positive linkage disequilibrium, but they considered mainly
the case of very tight linkage. Our results demonstrate that either tight linkage or very
different effects are necessary to obtain high positive linkage disequilibrium.

For equal effects, the equilibrium fitnesses of the genotypic values exhibit disruptive
selection if and only if competition is strong enough to maintain a two-locus polymor-
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phism. Interestingly, with unequal effects, disruptive selection may be observed even if
competition is not strong enough to change the equilibrium maintained by stabilizing
selection alone. Hence, the conditions to observe disruptive selection are not very restric-
tive. This suggests that if disruptive selection is observed only rarely, then, provided the
measurement methods are appropriate, strong intraspecific competition may indeed be an
infrequent phenomenon.
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Appendix

Here we prove the main results of Section 3. This is done in several steps. Accordingly, the
appendix is structured as follows: in the first part, we consider the dynamics on the line
{p1 = p4, p2 = p3}. This will be needed subsequently. In the second part, we prove the
(global) stability results for the two monomorphic equilibria that are stable if c ≤ s/(1−s);
in the third part, we derive asymptotic stability results for the case c > s/(1− s); in the
fourth part, we prove global stability of the symmetric equilibrium if c ≥ s/(1− 6s).

Throughout this appendix, we assume r > 0, c ≥ 0, 0 ≤ s < 1
5 , and γ1 = γ2, i.e.,

e = 0. In Table A.1, the marginal fitnesses wi of the four gametes and the mean fitness w̄
are displayed. Notably, they are independent of the coordinate z. Most of the following
calculations have been performed with Mathematica (Wolfram 1996). The statements in
the proofs below can be checked easily with any decent package for symbolic computations
by implementing the marginal fitnesses and the mean fitness from Table A.1, and by
following the advice given in the proofs.

Table A.1. The marginal fitnesses and the mean fitness.

w1= 1− s(1 + x+ 2y) + c(1 + 3x− 2y − 2y2)
−cs(1 + 9x+ 4y + 2x2 − 8xy − 14y2 + 2xy2 + 4y3)

w2 = w3= 1− sx+ c(3x− 2y2)− cs(x+ 2x2 − 4y2 + 2xy2)
w4= 1− s(1 + x− 2y) + c(1 + 3x+ 2y − 2y2)

−cs(1 + 9x− 4y + 2x2 + 8xy − 14y2 + 2xy2 − 4y3)
w̄= 1− 2s(x+ y2) + 4c(x− y2)− 2cs(x+ 5x2 − 8xy2 + 2y4)

We shall consider only trajectories for which initially (at generation t = 0) all four
alleles are present. Thus, a statement such as “all trajectories converge to . . .” is always
to be understood upon this qualification. Because r > 0, any such trajectory will be in
the interior of the simplex for all t ≥ 1. Hence, the invariant subsets of the boundary are
the lines at which one locus is monomorphic (and the vertices, of course). Since we also
suppose that w(g) > 0 for all genotypes, no trajectory from the interior can reach the
boundary within a finite number of generations. In the proofs, we shall repeatedly use
this fact without further mentioning.

A.1 Dynamics on the symmetric line {p1 = p4, p2 = p3}
In this case, p1 is sufficient to describe the population distribution (0 ≤ p1 ≤ 1

2). We
restrict our attention to the case c ≥ s/(1 − 5s), because otherwise the symmetric equi-
librium is unstable anyway (see next subsection). Then the recurrence relation for p1 is
computed to be

w̄(p′1 − p1) = 32csp31 + 2[s− c(1 + 2r + 7s)]p21 − [r+ s− c(1 + r − s)]p1 +
r

4
, (A.1)

cf. (3.7). If s, c > 0, then this polynomial is of third degree, has a positive leading
coefficient, is positive (= 1

4r) at p1 = 0 and negative (= −14r(1+2c)) at p1 =
1
2 . Therefore,

it has a unique root in the interval (0, 12). This gives the uniquely determined equilibrium
denoted by p̂1. The same conclusion is true if c = 0 or s = 0, when the equilibrium can
be calculated explicitly.

From (A.1), p′1 can be calculated as a function of p1, which we denote by p′1(p1). Since
p′1(0) =

1
4r > 0, p′1(

1
2) <

1
2 , and p′1 = p1 if and only if p1 = p̂1, all trajectories on {p1 = p4,
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p2 = p3} must converge to p̂1 without oscillation if p
′

1(p1) is strictly monotone increasing.
A simple calculation with Mathematica shows that

dp′1
dp1

=
320s2c2p41 +A1 − rA2

w̄2
, (A.2)

where A2 = (1− s)(1 + c) + 4c(2− 5s)p1 + 8c[3s+ c(4− 7s)] > 0 and A1 is a polynomial
of degree 3. We want to show that the expression in (A.2) is positive. Since A2 > 0, it is
sufficient to show that A1 − 12A2 > 0 for 0 ≤ p1 ≤ 12 . This is indeed the case, because we
can write

A1 − 12A2 = 12 + c(12 + 8p1)− s(12 + 4p1)− cs(12 + 26p1 + 36p21)

+ 4c2p21(8− 25s− 32p1s+ 8s2 + 16p1s
2 + 80p21s

2) + 8s2p21(1 + c(5 + 8p1)) ,

and the sum of the expressions in the first line is ≥ 12 and both expressions in the second
line are ≥ 0 since p1 ≤ 12 and c ≥ s/(1− 5s).

A.2 Stability of p̂2 = 1 and of p̂3 = 1 if c ≤ s/(1− s)
We shall prove the following result (see Sect. 3):

If (3.3) is satisfied, i.e., c ≤ s/(1−s), then the equilibrium p̂2 = 1 is globally attractive
for the set p2 > p3, and p̂3 = 1 is globally attractive for p2 < p3.

This assertion follows immediately from the following two lemmas together with the
invariance of the two regions p2 > p3 and p2 < p3; cf. Eq. (3.1).

Lemma A.1 If (3.3) holds, then |y′| = |p′1 − p′4| ≤ |p1 − p4| = |y|, and equality is obtained
if and only if y = 0, or y = 1 (i.e., p1 = 1 or p4 = 1.) Therefore, all trajectories converge
to the plane y = 0.

Lemma A.2 If (3.3) holds and y = 0, then |z′| = |p′2 − p′3| > |p2 − p3| = |z|, unless x = 0
when equality obtains.

Proof of Lemma A.1 From the recurrence relations (2.13), we obtain

w̄y′ = w̄(p′1 − p′4) = (p1 − p4)v14 = yv14 , (A.3)

where

v14 = 1− s(1 + 3x) + c[1 + x− 2y2 − s(1 + 13x− 6x2 − 14y2 + 6xy)] > 0

because 0 ≤ s < 1
4 , c ≥ 0, and 0 ≤ y2 ≤ x ≤ 1. This shows that each of the regions y > 0

and y < 0 is always invariant. By (A.3), it is sufficient to investigate when

v14 − w̄ = − s(1 + x− 2y2) + c(1− 3x+ 2y2)

− cs(1 + 11x− 16x2 − 14y2 + 22xy2 − 4y4) (A.4)

is negative. It is straightforward to check that there is no critical point satisfying 0 ≤ x ≤ 1.
(This holds for all positive c and s.) Therefore, the global maximum must lie on the
boundary of the region 0 ≤ y2 ≤ x2 ≤ 1. We investigate the three possible cases:

(i) y = 0. Then

ω14 − w̄ = −s(1 + x) + c(1− 3x)− cs(1 + 11x− 16x2) .
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This function assumes the value c(1− s) − s at x = 0 and −2(s+ c− 2cs) at x = 1 and,
hence, is negative for 0 < x ≤ 1.

(ii) y2 = x2. Then

ω14 − w̄ = −(1− x)[s− c(1− s) + 2x(s+ c+ cs(6− 9x+ 2x2))] ,

and the term in brackets is positive if x > 0, because c ≤ s/(1− s).
(iii) x = 1. Then

ω14 − w̄ = −2(1− y2)[s+ c− 2sc(1− y2)] ,

which is negative, unless y = 1.
This proves Lemma A.1.

Proof of Lemma A.2 Since w2 = w3, we have

z′ = zw2/w̄ ,

so that it is sufficient to show that w2 > w̄ if y = 0 and x > 0. This, however, is the case
if c ≤ s/(1− s), because for y = 0 we have

w2 − w̄ = x[s− c(1− s) + 8csx)] > 0 .

A.3. Asymptotic stability of equilibria if c > s/(1− s)
We shall outline the proof of the following result (see Sect. 3):
If (3.4) holds, then the pair of equilibria with D = 0, given by (3.5), is asymptotically
stable. If (3.8) holds, then the symmetric equilibrium is asymptotically stable, otherwise it
is unstable.

The eigenvalues of the pair of equilibria with D = 0 are given by

λ1 = 1− 4[c(1− s)− s](c+ 3s+ 5cs)

3s2 + 6cs(3 + s) + c2(1− s)(11− 3s)
,

λ2(±) = 1− 2(β1 ±
√
β2)

3s2 + 6cs(3 + s) + c2(1− s)(11− 3s)
,

where

β1 = [c(1− s)− s][s− c(1− 9s)] + 2cr(3s+ c(1− s))

and

β21 − β2 = 16cr[3s+ c(1− s)][c(1− s)− s][s− c(1− 5s)] .

Both expressions, β1 and β21 − β2, are positive if (3.4) holds, hence λ2(±) < 1. It can also
be shown that λ2(±) > 0. Finally, λ1 < 1 if c > s/(1− s), and λ1 > 0 holds always. This
proves local asymptotic stability of this pair of equilibria.

For the symmetric equilibrium, we already know that it is asymptotically stable within
the line {p1 = p4, p2 = p3} if c > s/(1 − 5s). Therefore, it is sufficient to consider the
other two eigenvalues. These are given by

λ1 = 1− c(2x̂− 1) + s(1 + x̂) + cx̂(1− 4sx̂) + cs(1 + 11x̂− 12x̂2)

1 + 2x̂[c(2− s− 5sx̂)− s]
,

λ2 = 1− x̂[c(1− s− 8sx̂)− s]

1 + 2x̂[c(2− s− 5sx̂)− s]
,
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where x̂ = 2p̂1 denotes the position of the equilibrium. Because x̂ > 1
2 if c > s/(1− 5s), it

follows immediately that in this case both eigenvalues are between 0 and 1, which proves
asymptotic stability. If c < s/(1−5s), then [c(1− s)− s]/(8cs) < x̂ < 1

2 (cf. Eq. 3.5a) and
λ2 > 1, whence instability follows.

A.4. Global stability of the symmetric equilibrium if c > s/(1− 6s)
We will prove the following result (see Sect. 3):
If s < 1

6 and c ≥ s/(1 − 6s), then the symmetric equilibrium given by (3.7) is globally
stable.

We shall need the following lemmas:

Lemma A.3 If s < 1
5 and c ≥ s/(1− 5s), then the region |y| ≤ 1

2 is positively invariant
and every trajectory enters it.

Lemma A.4 If s < 1
6 and c ≥ s/(1− 6s), then the region {D ≥ 0, |y| ≤ 1

2} is positively
invariant.

Lemma A.5 If D ≤ 0, then

(

p′1
p′4
− 1

)2

≤
(

p1
p4
− 1

)2

,

and equality holds if and only if p1 = p4 or p4 = 1.

Lemma A.6 If D ≥ 0, then

(

p′2
p′3
− 1

)2

≤
(

p2
p3
− 1

)2

,

and equality holds if and only if p2 = p3 or D = 0.

Lemma A.7 If D ≥ 0 and p2 = p3, then |y′| ≤ |y| and equality holds if and only if y = 0.
Therefore, all trajectories from the planar region {D ≥ 0, p2 = p3} converge to the line
{p1 = p4, p2 = p3}.

Lemmas A.3–A.5 imply that every trajectory enters the region {D ≥ 0, |y| ≤ 1
2}

and remains there because it is positively invariant. Lemma A.6 shows that (within this
region) all trajectories converge to the plane p2 = p3, because D = 0 always implies
D′ > 0, unless one locus is monomorphic (see the remark below the proof of Lemma A.4).
Finally, Lemma A.7 together with the result of Appendix A.1 proves the desired result,
i.e., global stability of the symmetric equilibrium.

It seems to be difficult to extend this proof to c ≥ s/(1−5s), because if c = s/(1−5s) (or
if c is slightly larger), then no region of the form {D ≥ 0, 0 < |y| ≤ α}, where 0 < α ≤ 1

2 ,
is positively invariant. However, it can be proved that D ≥ 0 is positively invariant in
the plane y = 0 if c ≥ s/(1 − 5s), which implies that the symmetric equilibrium attracts
all trajectories from this plane. It also seems to be difficult to derive global results in the
case when (3.4) holds, because then neither D ≥ 0 nor D ≤ 0 is positively invariant on
y = 0. There seems to be no simple way of proving that all trajectories converge to y = 0,
in particular, for c > s/(1− s) it is in general not true that |y′| ≤ |y|.

Proof of Lemma A.3 First we show that if 12 ≤ |y| ≤ x ≤ 1, then |y′| ≤ |y|. From (A.3) we
infer that it is sufficient to demonstrate that v14 − w̄ ≤ 0; cf. (A.4). The proof of Lemma
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A.1 informs us that a global maximum can only be located on the boundary of the region
1
2 ≤ |y| ≤ x ≤ 1. Thus, we have to consider three cases:

(i) |y| = 1
2 . Then

v14 − w̄ = −1
4
[2s(2 + 3c) + (2x− 1)(6c+ 2s+ cs(17− 32x))] ,

which is negative because x ≥ 12 and c > s/(1− 5s).
(ii) x = 1. Then v14 − w̄ = −2(1− y2)(s+ c− 2sc(1− y2)) < 0 if y2 < 1.
(iii) y2 = x2. Then

v14 − w̄ = −(1− x)[s(2 + 3c) + (2x− 1)(s+ c+ 2sc(1− 4x+ x2))] ,

which is again negative for the given range of parameters.
This proves that every trajectory enters the region |y| ≤ 12 .
Now we show positive invariance, i.e., |y| ≤ 12 implies |y′| ≤ 12 . Equation (A.3) informs

us that we have to prove w̄− 2yv14 ≥ 0 if |y| ≤ 12 . Because of symmetry, it is sufficient to
consider the case 0 ≤ y ≤ 12 . It is straightforward to check that

w̄ − 2yv14 =1− 2(1 + c)(1− s)y − 2(2c+ s)y2 + 4c(1− 7s)y3 − 4csy4

+ 2[c(2− y − s+ sy(13 + 8y + 6y2))− s(1− 3y)]x− 2cs(5 + 6y)x2 .

Therefore, the partial derivative with respect to x is linearly decreasing in x and, as is
not difficult to show, positive in x = 1 because c > s/(1− 5s) and 0 ≤ y ≤ 1

2 . Therefore,
∂(w̄ − 2yv14)/∂x > 0 for all x ∈ [0, 1], whence the minimum of w̄ − 2yv14 on the region
{0 ≤ y ≤ x ≤ 1, y ≤ 12} must be attained on the boundary set 0 ≤ x = y ≤ 12 . On this set
we obtain

w̄ − 2yv14 = (1− 2x)[1 + 2xc(1− x)] + 4sx2(1 + 4c− 6cx+ 2cx2) ,

which is positive if x < 1
2 .

The reader may note that in case (i) v14− w̄ is positive if x < 1
2 and s = 0. Therefore,

a region of the form |y| ≤ a cannot be invariant if a < 1
2 . In this sense, Lemma A.3 is best

possible.

Proof of Lemma A.4 From the recursion equations, we obtain easily

w̄2D′ = p1p4(w1w4 − w2w3) +D(w2w3 − rw14w̄) . (A.5)

In order to show that for |y| ≤ 12 , D ≥ 0 implies D′ ≥ 0, we have to prove that w̄2D′ ≥ 0
if D ≥ 0 and |y| ≤ 1

2 . Since in the following analysis only even powers of y enter, we set
q = y2 and recall that 0 ≤ q ≤ x2 ≤ 1 holds. For c ≥ s/(1− 5s), we obtain

w2w3 − 12w14w̄ =12 + 3[c(1− 5s)− s](x− q) + c[c(1− 5s)− s][4(x− q)2 + (x− 2q)2]

+ 2s(x− q) + s2x2

+ cs[(x− 2q)2 + (x− 3q)2 + 7(x− q) + 6x(1− q) + (x− q2)]

+ 2xcs(x+ 2x2 − 4q + 2xq)

+ c2s[4(x− q)(x− q2) + 12(x− q)2 + 10xq(1− x) + 2x(1− x)(x+ 5q)]

+ c2s2(x+ 2x2 − 4q + 2xq)2 ≥ 0 (A.6)
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(check the equality with Mathematica; the inequality is trivial because all terms are ≥ 0
since 0 ≤ q ≤ x2 ≤ 1). Therefore, if D = 0, we have to prove that

WD = w1w4 − w2w3 (A.7)

is nonnegative for q ≤ 14 , whereas if D > 0, we have to prove that w̄2D′ ≥ 0. To this end,
we observe directly from Table A.1 that WD depends only on x and q, but not explicitly
on p2 or p3. (The explicit expression for WD is complicated, and we shall not present it.)
Moreover, we observe that for given p1 and p4 (i.e., for given x and q), D assumes its
minimum if p2 = p3 =

1
2(1− x), the minimum value being D = 1

4(2x− q − 1). Thus, for
given x and q, D is positive for all admissible p2 and p3 if and only if 0 ≤ q < 2x− 1.

Therefore, in order to prove positive invariance of D ≥ 0, it will be sufficient to show
that

WD > 0 ifmax(0, 2x− 1) ≤ q ≤ min(x2, 14) (A.8)

and

WI = (x2 − q)WD + (2x− q − 1)(w2w3 − 12w14w̄) ≥ 0

if 0 ≤ q ≤ min(2x− 1, 14) and
1
2 ≤ x ≤ 1 , (A.9)

where we note that 2x− 1 = 1
4 if x = 5

8 .
Step 1. Proof of (A.8). First we show that WD has no critical point in the region defined
in (A.8). Then we shall examine the boundary.

We show that the derivative of WD(x, q) in direction (3, 4) is negative. Indeed, with
the help of Mathematica we obtain

−12
(

3∂WD∂x + 4∂WD∂q

)

= 7c2 + 4cs+ 4c2s+ 5s2 + 58cs2 + c2s2(61− 66q)

− 4csx(21c+ 23s− 25cs)

+ 4csq(11c− 66cs+ 10s+ 30csx)

+ 60c2s2q2 .

The second but last term is positive if s < 1
6 . Since 21c+23s− 25cs is always positive we

obtain, by omitting the last two terms and by using q ≤ 14 and x ≤ 58 ,

−12
(

3∂WD∂x + 4∂WD∂q

)

≥ c2(7− 972s+ 107s2) + 4cs+ 1
2cs
2 + 5s2 > 0 .

Hence, the derivative of WD in direction (3, 4) is negative.
Therefore, WD can attain its minimum only on one of the following subsets of the

boundary: (i) {q = x2, x ≤ 38}; (ii) {q = 1
4 ,
1
2 ≤ x ≤ 58}; (iii) {12 ≤ x ≤ 58 , q = 2x− 1}.

(i) For q = x2 we obtain

WD = 2[c− s− 2cs(1 + 6x− 4x2)] + s2(1 + 2x− 4x2)

+ 2cs2(1 + 10x− 12x2 + 8x3 − 8x4)

+ c2s2(1 + 18x+ 40x2 − 144x3 + 76x4 + 24x5 − 16x6)

+ c2(1 + 6x− 8x2)− 2c2s(1 + 12x+ 18x2 − 60x3 + 28x4) .

It is straightforward to check that the coefficients of cs, s2, cs2, c2s2, c2, and c2s are
positive if x ≤ 3

8 . The sum of the two terms with c2 (in the last line) is positive if s < 1
6
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(and x ≤ 1
2). Finally, the first term (in brackets) in the first line is positive if x ≤ 3

8 and
c ≥ s/(1− 6s). Therefore, WD > 0 on this part of the boundary.

(ii) For q = 1
4 we obtain

WD = 2[c− 6cs− s+ c2(1− 234 s)] + s2(1 + 7c+ 29
4 c
2)

− (x− 12)[4cs(6− 11s)− 2s2 + c2(6− 46s+ 131
2 s2)]

− 2cs(x− 12)2(26c− 57cs− 10s) + 32c2s2(x− 12)3 .

This is clearly positive if x = 1
2 , and the reader can readily convince himself thatWD is also

positive at x = 5
8 , even if the third-order term is omitted. Since the resulting polynomial

of degree two in (x− 12) is obviously concave, WD must be positive for 12 ≤ x ≤ 58 .
(iii) For q = 2x− 1, we obtain

WD = (c− 5cs− s)(2 + 4c− 7cs− 2s)

− 2(x− 12)[c2(1− 7s)2 + 38c2s2 + 4c(c− s− 6cs) + 16cs2 + 3s2]

− 12(x− 12)2cs(s+ 3c− 23cs)− 144c2s2(x− 12)3 . (A.10)

This expression is monotone decreasing in x if s < 3
23 and c ≥ s/(1− 6s). In fact, joint

consideration of the linear and quadratic terms in (p− 12) shows that this true for all s < 1
6 .

Setting a = c− s− 6cs, which is nonnegative by assumption, we obtain

WD = 1
32(1− 6s)−2[s2(32− 72s+ 467s2)

+ 2a(32− 344s+ 1067s2 − 677s3) + a2(88− 578s+ 553s2)] > 0 ,

as is trivial to check. This finishes the proof of (A.8).

Step 2. Proof of (A.9). We set a = c− s− 6cs ≥ 0, ξ = x− 12 , and compute

∂WI
∂x

= 1 + 2s(1 + 4ξ − 3q) + 1
2s
2[1 + 8(4− 9q + 10q2) + 4ξ(26− 31q − 15ξ)]

+ a
{

(5− 9q + 16ξ) + s[ 132 + 15(1− 2q)2 + 8q2 + 2ξ(3ξ + 40− 63q)]

+ s2[28 + 3(1− 2q)(43− 44q − 4q2)

+ 4ξ(105 + 8(5 + 2q)(1− 4q) + (4− 3ξ − 8ξ2) + 168qξ)]
}

+ a2
{

(8− 31q + 28q2) + 2ξ(20− 37q + 24ξ)

+ s[14 + frac12(67− 319q+ 208q2+ 24q3) + 2ξ(113− 149q − 54q2)

+ ξ2(150− 224ξ) + 306qξ2]

+ s2[4ξ(262− 1045q) + 8ξ(290− 237ξ − 484ξ2 + 50ξ3)

+ (500− 4q(577− 1290ξ2 + 120ξ3)) + 4q2(343− 416ξ + 36ξ2) + 8q3(29− 10ξ)]
}

,

which is greater than 1 because all terms in parentheses and brackets are nonnegative on
the region defined in (A.9). Therefore, WI attains its minimum on the line {q = 2x− 1,
1
2 ≤ x ≤ 58}. On this line, however, we have WI = p1p4WD. Since WD > 0 for q = 2x− 1
was already proved in (A.10), the proof of (A.9) and of the lemma is finished.

Remark. From (A.5) and the above proof, it follows immediately thatD′ ≥ D ifD ≤ 0, and
D′ > 0 if D = 0 and p1p4 
= 0, provided c > s/(1− 6s). This implies that all trajectories
enter D > 0 (with the only exception of those for which one locus is monomorphic).
Lemma A.5, however, allows a slightly more general conclusion.
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Proof of Lemma A.5 The recurrence relations imply

p′1
p′4
− 1 =

(

p1
p4
− 1

)

p4v14
p4w4 − rDw14

,

where v14 was defined below (A.3). (Note that p4w4 − rDw14 = p′4 > 0 if p4 > 0.) It
follows immediately that

p4v14 − (p4w4 − rDw14) = rD[1 + 2c(x+ y2)]− (x2 − y2)[s+ c+ 2cs(1− 2x+ y2)] ≤ 0

if D ≤ 0 because y2 ≤ x2. Therefore, 0 < p4v14/(p4w4− rDw14) < 1 if D ≤ 0 and y2 < x2

(i.e., p1, p4 < 1), and the lemma is proved.

Proof of Lemma A.6 From the recurrence relations and because w2 = w3, or from (3.1),
we obtain

p′2
p′3
− 1 =

(

p2
p3
− 1

)

p3w2
p3w2 + rDw14

.

Obviously, the fraction on the right-hand side is < 1 if and only if D > 0. This proves the
lemma.

Proof of Lemma A.7 If p2 = p3, then D = 1
4(2x − y2 − 1) and D ≥ 0 if and only if

y2 ≤ 2x− 1. Therefore,

v14 − w̄ = c(1− s)− s− x(3c+ s+ 11cs) + 16csx2

+ 2y2(c+ s+ 7cs− 11csx) + 4csy4

≤ −(1− x)(c+ 3s+ 11cs− 12csx) < 0

if 0 ≤ x < 1, because y2 ≤ 2x− 1 and c+ s+ 7cs− 11csx ≥ c+ s− 4cs ≥ 0. This proves
the lemma.
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