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Abstract 

The paper presents a risk minimization approach to estimate a flexible form that meets a 

priori restrictions on slope and curvature by means of constraints on both the estimated 

parameters and the function values. The resulting constrained risk minimization combines 

parametric and nonparametric estimation and contains integrals and implicit constraints. 

Within econometrics, simulation has become a common tool to solve problems of this 

kind. However, it appears that in our case, the simulation approach only applies when the 

model is linear in parameters, has simple constraints on parameters and a quadratic risk 

function. To deal with other cases, we use a stochastic optimization technique known as 

the stochastic quasi-gradient method for stationary and nonstationary problems with 

Cesàro averaging. This method is also applicable to an expanding series of random 

observations, and produces asymptotically (weakly) convergent estimates.  
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1. Introduction 

 

Econometric regression techniques have developed in two directions. One focuses on flexible 

adaptation of the regression curve to the data. In this area, nonparametric techniques such as kernel 

density regression have gained popularity because they are easy to use and permit to estimate full 

conditional distributions without any normality assumptions (see e.g., Haerdle, 1993; Yatchew, 

1998). The other emphasizes imposition of a priori constraints, so as to improve the identification of 

parameters and to narrow the gap between economic theory and empirical applications. Estimation 

techniques based on simulation, such as simulated maximum likelihood, permit to impose a priori 

restrictions of integral or implicit form, both on function values and on derivatives, while random 

sampling from continuous distributions facilitates the identification of a large number of parameters 

(Gouriéroux and Monfort, 1996). Simulation-based techniques were designed to deal with situations 

when the criterion function of the optimization is not tractable, either because it contains integrals 

without a closed form solution, or because it is only implicitly available, say, as the outcome of a 

process model. They circumvent this problem by proceeding in two steps. The first step conducts a 

random sampling of error terms, latent variables or variables that are only measured as continuous 

distribution to replace the integrals of the risk function, or other expressions that are not available in 

closed form, by a discretized form whose summations run over empirical distributions with a finite 

number of observations. The second step applies common estimation approaches such as maximum 

likelihood, pseudo maximum likelihood, or Generalized Method of Moments (GMM) to the 

discretized problem with sampled data.  

 The simulation approach is workable if the results of these summations can be stored in a 

tractable number of terms that are independent of the vector of parameters to be estimated. This is 

for example the case if the discretized form reduces to linear least squares, where the sums enter 

calculations only once since the optimization has a closed form solution, and the matrices to be 

inverted have the dimension of the parameter vector, rather than of the number of observations. 

However, in the cases mentioned above, that is whenever the model is nonlinear in parameters, or 

has integral constraints that depend on parameters, or when the loss function itself is not quadratic, it 

becomes extremely cumbersome, if not impossible, to evaluate these large expressions with 

sufficient accuracy at every iteration. By contrast, the SQG-algorithm directly addresses the 

approximation by updating parameter values so as to find an optimum during simulations, rather 

than conducting sampling prior to parameter estimation.  

 Flexibility is related to this imposition of constraints, because the less observations are 

available, the more inflexible the specification will have to be so as to maintain identification of the 

parameters (see e.g., Davidson and MacKinnon, 1993; Wets, 1998). Barnett et al. (1991) have, 

among others, proposed to overcome this limitation through Bayesian methods that could provide 

additional identifying restrictions. Various other semiparametric techniques were developed. For 

example, the parametric step may be used to compute an error term whose distribution is estimated 

non-parametrically, and from which a larger data set is created through random sampling for the 

next step of parametric estimation (Robinson, 1988). However, using the empirical distribution may 

be restrictive in this respect, because it cannot venture beyond the limited number of observations. 

 



 

 

 

 

Overview 

 

The paper presents an alternative to the simulation approach to constrained risk minimization by 

replacing the two-step procedure by an SQG-algorithm (Ermoliev, 1976, 1988) with Cesàro 

averaging (Nemirowski and Yudin, 1983), applicable also in case of growing number of 

observations. Besides the empirical distribution we also consider a kernel estimate of the density to 

sample the data from. This eases the identification of parameters since it enables us to sample from 

an infinite number of points on continuous densities rather than from the finite number of data 

points of the empirical distribution. Under relatively mild identifiability restrictions, we prove 

convergence of this algorithm, with probability one, to the unique (global) minimum of the risk 

function and we describe the consistency properties of the procedure.  

 The paper proceeds as follows. Section 2 introduces the computational method using the 

relatively simple problem of computing the mathematical expectation by sampling from the given 

data set and by considering the typical problem of supply function estimation as an example. 

Section 3 applies the computational approach to the problem of prediction and parameter 

estimation for a general form that is linear in parameters, with data sampled from the empirical 

distribution. In section 4 data sampling is from a smooth density estimated by kernel density 

regression. Section 5 establishes the consistency of the estimators for both cases. Section 6 

concludes. 

 

2. Introducing the approach 

 

To introduce our approach and the main concepts, we review in this section seven ways of 

computing the mathematical expectation for a given sample of size N.  Next we describe the issues 

arising for the typical candidate problem of estimating a supply function. 

 

Computation of the mathematical expectation 

 

We start from the simple problem of computing the mathematical expectation, since this enables us 

to focus on the method of calculation rather than on the problem itself. The sample consists of N 

observations  of the vector of observable dependent random variable  distributed 

according density . There are several ways for computing the sample mean, as follows: 

N1 y,...,y

)y(g

mRy∈
 

(i) Direct calculation obtains the mean as 

 

 ∑= =N
1k

kN y
N

1β  (2.1) 

 

(ii) Unconstrained least squares calculation solves the convex problem 

 

 ,  (2.2) )(Fmin N ββ
 

for ∑ −= =N
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2
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1
)(F ββ .  For this minimization, (2.1) represents first-order optimality 

conditions. 
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(iii)  Stepwise calculation proceeds in 1N −  steps, starting from , according to the 

recursion: 

1
1 y=β

 

 )y( kk
k

k1k −−=+ βρββ ,  1N,...,1k −=   (2.3) 

 

for k/1
k
=ρ , i.e. exact solution of least square problem (2.2) can be obtained by 1N −  steps of 

iterative procedure (2.3). 

 

(iv) Constrained least squares can account for the a priori information that the true sample mean 

is known to belong to the compact convex set B, say, }:{B ββββ ≤≤= : 

 

 ,  (2.4) )(Fmin N
B

ββ∈
 

The problem can be solved iteratively, using a standard (deterministic) constrained optimization 

algorithm. 

 

(v)  Calculation by iterative sampling is a stochastic method. It performs a sequence of random 

drawings  (with replacement) from the sample , and updates the estimated mean on the 

basis of the newly sampled value. It uses the a priori information 

ty N1 y,...,y

B∈β and computes the mean as 

the limit point of the sequence  

 

 ))y(( tt
t

t
B

1t −−=+ βρβΠβ , ,...2,1t =    (2.5) 

 

where 
B

Π  denotes the projection on the set B (an interval if m = 1 or a hypercube in the present 

case) and 
t

ρ  is a suitable step-size, for example, t/1
t
=ρ . That this in fact is a stochastic 

optimization procedure can be seen as follows. Let us notice that the random vector  is 

an estimate of the gradient (called stochastic gradient)  for 

ttt y−= βξ
)tβ(F Nβ

 )y(dGy 
2

1
-y E

2

1
)(F N22N ∫ −== βββ  (2.6) 

 

where G  is a distribution from which the empirical distributions are obtained and we 

explicitly write  rather than 

)y(N

N∗β *β  to emphasize that this is not the population parameter. We note 

that Procedure (2.5) drives  towards the minimum of the function (2.6), without requiring the 

distribution  to be known explicitly. It only assumes that  exists, i.e. that the 

distribution has a finite second moment. The sequence generated by (2.5) converges to the minimum 

of  with probability one (Ermoliev, 1976, 1988). It is easy to see that  indeed solves 

, since 

tβ
)y(

)

G N

)( β
(F N

B
β

)(F N β
F N

minβ∈
N∗β

Ey=β  satisfies the optimality conditions: 

 

 ,  (2.7)  0)Ey()(F N =−= βββ
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where Ey  is the expectation according to the density . Therefore, procedure (2.5) attempts to 

reach the stationary point 

)(yg

Ey=β  of  by moving from any current point estimate  to 

  in the direction opposite to the stochastic gradient , for , and such that 

)(F N β tβ
1t+β tξ )y( ttt −= βξ

 

 .  (2.8) )(F]|[E tNtt ββξ β=
  

(vi) Solving the stochastic optimization problem for a previously estimated probability 

distribution. Notice that the given sample of N observations can be thought of as having been 

generated through the generalized density  

 

 ∑ −= =N
1k

kN )yy(
N

1
)y(g δ  (2.9) 

 

where is the delta-measure concentrated at point . The mean can also be computed 

by solving the explicitly defined stochastic optimization problem , for  

)yy( k−δ ky

)(Fmin N
B ββ∈
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2

1
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2

1
)(F βββ −+−∫=∫ −= , (2.10)        

             

where ∫ ∑== =N
1k

kNN y
N

1
dy)y(ygy .  

Procedure (2.5) will solve this problem. The alternative is to integrate (2.10) analytically. This leads 

back to the empirical data set as in (2.4). Yet the empirical density (2.9) is highly nonsmooth. It 

would seem a natural idea to avoid nonsmoothness by incorporating more information about the 

actual distribution G , such as smoothness or a shape restriction. This amounts to replacing the 

empirical density (2.6) by a smooth density  that approaches true density  for 

)y(

)y(g Nθ )y(g 0→θ  

and +∞→N . Let  be a symmetric probability density of the form )y, ky(Kθ




θ
ky

 −y
K=k )y,y( θθ m

1
K , ∫ = 1dy)y(K , e.g. the normal density. Replacing the empirical 

measure by the Kernel estimate leads to: 

  

 ∑ 



 −= =

N

1k

k

m

N yy
K

N

1
)y(g θθθ , 0>θ  (2.11) 

 

It must be noted, however, that this approach could lead to a biased estimate, since the first moment 

)y(Nyθ  might not be the sample mean. This approach can be characterized as semiparametric 

because the density is obtained by a non-parametric (kernel density) method. 

 

(vii) Minimizing squared deviation between non-parametric and parametric estimate.  

 

The same estimate can be obtained if we rewrite the objective of (2.10) as 
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2

1
)(F ββ θθθθ −+−∫= ,  (2.12) 

 

where the first moment  serves as non-parametric estimate. For given θ, only the 

third term matters, which minimizes the squared deviation between the parametric and the non-

parametric estimate. Once this non-parametric estimate has been computed, the optimization 

problem becomes trivial. The problem will not be as simple once explanatory variables are taken 

into account, and it is at that stage that it becomes meaningful to compare the relative merits of these 

seven approaches. Here we only notice that formulations (i)-(iv) invoke deterministic techniques of 

computation, which are perfectly straightforward for small to medium size samples but less practical 

if N is very large viz. infinite. In those cases, stochastic methods (v)-(vii) become relevant 

alternatives.  

∫= dy)y(g yy NN θθ

 The seven approaches mentioned compute the same arithmetic sample mean over N 

observations. The Law of Large Numbers says that this mean is a consistent estimator of .  This 

estimation shifts the concern from computing the mean of the finite sample to estimating the mean 

of a population of a much larger size. If in (2.6) the distribution function G  were known, and 

equal to the distribution function of the population , with well-defined moments, estimation of 

 would only be a problem of computation. However, in practice G(y) is unknown and only the 

fixed sample {  of size N is available. The common strategy is to show that the sequence 

{ }, 

∗β
)y(N

)y(G

∗β

∗β
}y k

,...2,1N N =  converges to  for N going to infinity. We return to this issue in section 5. ∗β
 

Constrained risk minimization 

  

Next, the scope of application of the proposed approach may be illustrated by means of a typical 

regression problem. Let y denote the endogenous variable “net supply” and x the exogenous variable 

“price”. Consider the supply function  obtained in the microeconomic theory of the firm as the 

derivative of the profit function:

)x(y

x/)x()x(y ∂∂= Π  (Varian, 1992), where the profit function 

 is taken to be continuously differentiable, convex, and homogeneous of degree one in prices 

p, and increasing in the prices of the goods for which the firm is a net seller and decreasing in those 

where it is a net buyer. The task in estimation is to identify the m net supply functions on the basis 

of a finite sample of size N, with elements indexed k and observations (  and on 

: 

)x(Π

k ≡Π
)x,y kk

kk y'x

 

 k
i

i

k
k
i x

)x(
y εΠ +∂

∂=  m,...,1i =  (2.13) 

 

with error term where the profit function has a parametric specification k
i
ε

 

 *),x(H)x( βΠ =   (2.14) 

 

and  is, for known parameter set B, the unknown true parameter value, and we have to 

identify the vector function 

nRB* ⊂∈β
x*),x(H ∂∂ β .  
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Theoretical restrictions 

 

In general, the parametric form *),x(H β  itself is unknown, because theory only imposes general 

restrictions such as convexity, monotonicity and homogeneity of degree zero. The common 

procedure is to postulate a form that offers sufficiently flexible adjustment to the observed data, 

while meeting theoretical restrictions. It is relatively easy to find functional expansions (e.g. basis in 

a functional space, Gallant (1981)) such as , where  is j-

th column of matrix , that combine flexibility with linearity in parameters.  Convexity, 

monotonicity and homogeneity are readily imposed by requiring the "building blocks"  to 

have the same properties and by restricting parameters 

∑== =n
1j jj

)x(h)'x(h),x(H βββ

j

)x(h
j

)x(
j

)x(h

h

β  to nonnegative values.  

 However, nonnegativity of
j

β  again reduces the flexibility of the model, especially with 

respect to cross effects. Another way to ensure monotonicity and convexity properties is to place 

restrictions on the derivatives within a given domain X. For example, monotonicity of ),x(H β  

with respect to the variable  means that at any ix Xx∈ , 0x(hx),x(H n
1j ji

≥∑ ∂=∂∂ =β x)
ji

∂ β . 

This can be expressed by the scalar inequality: 

 

 0x)x(hmin)( n
1j jijXxi ≥∑ ∂∂= =∈ ββϕ  (2.14a) 

 

and, similarly, monotonicity in all nonnegative directions is given by  

 

 ( ) 0x)x(hminmin)( n
1j ji ijiLXx r

≥∑ ∑ ∂∂= =∈∈ +
ββϕ l

l
, (2.14b)  

 

for }1|R{L rr ≤∈= ++ ll , and the concavity property can be guaranteed by the inequality 

 0
xx

)x(h
maxmax)( n

1j jh,i

hi

j
2

hiL,Xx r
21

≤∑ 








∑ ∂∂

∂= =∈∈ ββψ ll
ll

, (2.14c) 

}1|R{L rr ≤∈= ll . We will assume that β  belongs to some convex compact set 
nRB∈ , given 

by a system of linear and nonlinear convex inequalities. In addition, one may impose lower and 

upper bounds on the model, )x()x(h)x(y y≤′≤ β , Xx∈ , that also amount to constraints on β , 

namely: 

 

 0))x(h)x(y(max)( Xx1 ≤′−= ∈ ββψ , (2.14d) 

 0))x(y)x(h(max)( Xx2 ≤−′= ∈ ββψ . (2.14e) 

 

We remark that the inequalities generated by these constraints are convex in β , and therefore fit 

within a convex programming framework, but the evaluation of the functions 21i ,,,, ψψψϕϕ  will 

generally be a difficult task.  

 Finally, integral restrictions may have to be imposed on the model. For example, suppose 

that the variable x  expresses geographical coordinates and ),( βxH  the supply distribution, as 

before. If empirical data are available on aggregate supply 
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  (2.14f) ∫ ∑ ∫== =X
n

1j X jj dx)x(hdx),x(H)(I βββ
 

in region X , the parameter β  may have to satisfy a linear equality. Alternatively, if aggregate 

supply is known to lie within given bounds, the parameter β  is constrained by linear inequalities 

b≤)Ia ≤ (β .  

 

Incorporating non-parametric regression in constrained risk minimization  

 

Our approach amounts to choosing parameter values β  in a compact convex set B generated by 

constraints as in (2.14), so as to minimize the integral square deviation between a parametric and a 

non-parametric form, where the non-parametric form offers a representation in a continuum of the 

discrete and finite set of empirical observations. Formally: 

 

 , (2.15) )(Fmin N
B

βθβ∈
 

for the risk functions 

 dydxyx
N

gxhyLr
R

N
F ∫ −= ),())'(()( θββθ ,  (2.16a) 

or 

 ,  (2.16b) ∫ −= dxx
N

gxhx
N

yLrR

N
F )())'()(()( θβθβθ

 

where x is the r-dimensional vector of exogenous variables, )(⋅L

)x(Nθ

 is some nonnegative, strictly 

convex loss function, h(x) is a vector function  compatible with β,  is a kernel density 

regression function estimated on the basis of  N observations and with given parameter value θ 

(usually a scalar referred to as window size), and, finally,  is the associated, 

nonparametrically estimated density of x. For 

)x(y Nθ

g

0=θ  this density reduces to the empirical one. Thus, 

if observations (  have density function , the underlying true risk function has the form: ), yx ),( yxg

 

 ,  (2.17a) ∫ −= dxdyyxgxhyLrR
F ),())'(()( ββ

or 

 ∫ −= dxxgxhxyLF rR
)())'()(()( ββ ,  (2.17b) 

 

where ∫= mR dy)x|y(yg)x(y  is a regression curve and ∫= rR dy)y,x(g)x(g  is a marginal density 

and  is a conditional density. For )x(g/)x,y(g)x|y( =g
2

  
2

1
)(L ⋅=⋅

)(F

, we obtain a least squares 

estimate. Other examples of smooth and nonsmooth convex risk functions can be found in Huber 

(1981; section 7.3). For the quadratic loss function, the function β  in (2.17a) or (2.17a) can in 

principle be written in closed form, and the terms with integrals can be treated as data that can be 

obtained by means of numerical integration.  

 This is not possible for general loss functions or when β  has to meet convex constraints. 

Then, we can apply SQG to avoid explicit calculation of the integrals at every iteration. If a convex 

constraint set B  is given by means of complex inequalities (2.14a)-(2.14f), it can be represented by 
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an infinite system of linear inequalities in β . In this case problem (2.15) becomes a semi-infinite 

programming problem (see Hettich and Kortanek, 1993).  

=

B

)(x

x(H

 

3.  Parameter estimation on the basis of the empirical distribution 

 

This section applies the computational approach to the problem of parameter estimation for a model 

that is linear in parameters. For this model, we prove strict convexity of the risk function as well as 

identification and consistency of the estimators. We also consider various constraints on parameters, 

and estimate these by sequentially outer-approximate the constraint set by a family of randomly 

chosen linear inequalities on β . Model βEy  of the mean is now replaced by the linear regression 

 model:  

 

 εβ += *)'x(hy   for fixed ,  (3.1) nR* ⊂∈β
  

where    is a given continuous (n×m)-matrix-function, say, the terms of a 

multivariate polynom and h  denotes the  matrix transpose;  is the vector of observable 

dependent random variables (net supply in (2.13)), for given values of independent random 

variables ,  is an unknown vector of parameters and 

,RRR:h mnr ×→

rRXx ⊆∈ *β

)(xh

)'x( mRy∈
ε  is an unknown error term 

(random variable). 

 The parametric form (3.1) of simultaneous nonlinear equations is quite flexible. If, say, 

 is a scalar function from a certain functional space Y , then  can contain the first  

elements of a basis in this space and elements of 

)(xy )'x(h n

*β  can be thought of as Fourier coefficients for 

this basis. Hence, a general relationship  can be modeled in (3.1) by allowing for a sufficiently 

large number  of basis elements. Furthermore, if the functions from 

y

n Y  possess certain properties 

such as homogeneity, then it is reasonable to choose in Y  a basis that possesses the same properties. 

If  is a vector, the form (3.1) would have to be a vector function. This function could relate 

specific elements of 

y

*β  to different components of . It might also allow for common coefficients 

across equations. For example, for vector function (2.13), the elements of 

y

*β  are Fourier 

coefficients of the scalar model *))x( βΠ ′=  as in (2.14), and in this case one has to take 

.   *
x

(H β∂
∂= )x

'

)x(y

Regarding estimation, let us assume that there is a finite data set {  of inputs-

outputs of model (3.1) drawn from some unknown theoretical distribution G  with density 

. We assume that the data were obtained as through random sampling, that is that the 

individual observations are independent (i.i.d.). Hence, we disregard any serial correlation. We 

denote by  a probability distribution (with density ) reconstructed from 

observations { . This could be an empirical distribution, a nonparametric kernel 

density estimate or a member of some parametric family. Also denote the marginal distribution by 

.  As a prerequisite for consistency, we formulate an assumption on 

convergence of :  

}y,x,...,y,x NN11

)y,x(

)y,x(

)y,x(g

N N
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)y,x(G

y,x 11

∫ )y,x(g N
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g

}y,x,...,

dy

)y,x
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Assumption D (convergence of measures). The sequence of measures  is such that for 

any continuous function  convergence  

)y,x(G N

 ∫∫ === ∞→∞→ )y,x(dG)y,x(f)y,x(Ef)y,x(dG)y,x(flim)y,x(fElim N
N

N
N  

holds with probability one. ◊ 

This assumption certainly holds if  is bounded and  weakly converge to G  as )y,x(f NG

. Given this specification of the model and its data, the underlying risk minimizing 

problem (2.6) for estimation of parameter *β  can be written: 

+∞→N

 . (3.2) ∫ →′−=′−= ∈B
NN min)y,x(dG))x(hy(L))x(hy(EL)(F ββββ

 

Thus, this problem is fully specified by the risk function L , the probability measure G  and the 

constraint set .  A typical and convenient choice of risk function is 

N

B
2

  
2

1
)(L ⋅=⋅ .  In this case, if 

the optimum  of (3.2) lies in the interior of set Nβ B , a closed form solution is available: 

 ( ) ( ) ( ) ( ))y,x(ydG)x(h)y,x(dG)x(h)x(hy)x(hE)x(h)x(hE
N

X

1N
X

N1NN ∫∫ ′=′= −−β .  (3.3) 

 

Since the inverse on the right-hand side of this expression should exist, to ensure that  can be 

identified, we need further assumptions. 

Nβ
 

Assumption M1 (Model assumptions).  

(a) The model error has zero conditional mean: 0}x|{E =ε . 

(b) True model parameter *β  belongs to constraint set B . 

(c)   Matrix h  is nonsingular with positive probability:  )'x(h)x(

∫
A

N )x(g)'x( dxh)x(h  is nonsingular for some . rRA ⊆
 (d)  Vector-function  is continuous and bounded on )x(h X . ◊ 

 

Note, since  is semipositive definite by definition, condition (c) amounts to requiring 

h(x)h(x)′  to be positive definite on some set of positive measure. It is fulfilled, for example, if 

 − the number  of columns of  is greater or equal to the number of rows − and 

 contains  linear independent rows on the set of positive measure in 

)'x(h)x(h

m

n

nm ≥
)(xh

)(xh n

X .  Condition (c) is a 

generalization of nonsingularity assumption on matrix ∑ ′i ii )x(h)x(h
N

1
 for a classical linear 

regression when  is a column vector-function.    )x(h

 

Assumption L (loss function).  

The loss function , )(zL mRz∈ ,   

(a) is continuous and strictly convex; 

(b)  and  for any 0)0(L = 0)z(L > 0z ≠ . ◊ 
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Lemma 3.1 (strict convexity of the integral risk function). 

Under assumptions M1(c) and L(a) the integral risk function 

 

 ∫ ′−= nR
NN )x,y(dG))x(hy(L)(F β  

 

is strictly convex. 

 

Proof.  By strict convexity of the loss function (Assumption L(a)), for any  and  
10

zz ≠
10 << λ  the following strict inequality holds: 

 

 )z(L)z(L)1()zz)1((L
1010

λλλλ +−<+− . (3.4) 

 

Let us take 00 )x(hy)x,y(z β′−=  and  11 )x(hy)x,y(z β′−=  with 
10

ββ ≠ . Then, with 

positive probability , since equality )x,y(z)x,y(z 10 ≠ )x,y(z1)x,y(z0 =  implies 

0)
1

=−()x(h
0

′ ββ  and 0)
1

(
0

)x(h)x(h =−′ ββ , which is impossible for x  such that 

 is nonsingular. Substituting  and  into (3.4), we obtain inequality )()( ′xhxh )(0 x )(1 xzz

 

 ))x(hy(L))x(hy(L)1()))1(()x(hy(L 0010 βλβλλββλ ′−+′−−≤+−′− , (3.5)                     

 

where strong inequality happens with positive probability. Integration yields the required property 

 

 . )(F)(F)1())1((F
1

N
0

N
10

N βλβλλββλ +−<+−
 

This lemma only gives sufficient conditions for the integrated risk function to be strictly convex 

and thus for single-valuedness of solution of (3.2). Assumption L(a) is fulfilled for quadratic but 

not for least norm estimates. 

 

Corollary 3.1 (identifiability and asymptotic consistency). For a quadratic risk function )(⋅L , 

under assumptions M1(a)-(c)  problem (3.2) has a unique solution  that converges to a true 

vector parameter 

*

Nβ
*β  as +∞→N . 

 

Proof. Consider a true risk function 

 =−+−=−= 22
)'x(h]x|y[E]x|y[EyE

2

1
)'x(hyE

2

1
)(F βββ  

  )*()'x(h)x(Eh)*(
2

1
)*()'x(hEE

2

1 2 ββββββεε −′−+−′+=          . 

 

Since by Assumption M1(a), 0]|[ =xE ε , it follows that 

 

)*()'x(h)x(Eh)*(
2

1
E

2

1
)F(          

2 ββββεβ −′−+= . 

 

As  is positive semidefinite, by Assumption M1(b),  can be written as the 

sum of a positive semidefinite and a positive definite term, and is therefore positive definite and 

)'x(h)x(h )'x(h)x(Eh
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hence nonsingular. Thus by assumption M1(b), *β  is the unique minimizer of )(βF  on B . By 

Assumption D, lim , for any )(F)(F N
N

ββ =∞→ β  with probability one. By convexity, sequence 

 uniformly converges to )(βNF )(βF

*

 (in any compact set) with probability one. Thus, minimizers 

 converge to the unique minimum *
N

β β  of the limit function )(βF  with probability one. 

 

N

 ⋅)(L ⋅
∑ ′−= i iiiN

)x(hy)(R(a β
R β)x(

i
yr

i
′= r1 )(N ⋅

∑ = 0)i(

N

)( t
t

t
B

ξρβ − ∞= 2

)t

,1t

x~(h

β
tβ

(N

y~(L)x~(h)y~,x~( ttt ∇−=
)x~ N

∑ −=N
1k kkB

))'x(hy(L
N

1 β
tξ

−k (hy t )kx

 

Calculation by an SQG-algorithm with Cesàro averaging 

 

Solving risk minimization problem (3.2) for the general case can be a nontrivial task. First, the 

approximate distribution G , for instance, a nonparametric estimate, may not permit to take, in 

combination with a general risk function, the integral in (3.2) in closed form. Secondly, the risk 

function L  could be nonsmooth as in  =  or  

 

))(L β ,  (3.6) 

 

where  is the rank of the number 
i

h
i
−  in the row ( )r,..., N , a  is some 

monotonic weighting function satisfying i N
a , the so-called R-estimates, see Huber 

(1981, section 7.3). Thirdly, the convex constraint set  may take the form of a large (possibly 

infinite) number of linear inequalities.  

B

Nonsmooth optimization methods make it possible to solve (3.2) in the general case.  For 

example, if the distribution G derived from the given sample of size N does not lead to a closed 

form for the integral, approximate by a stochastic quasi-gradient (SQG-) method is possible, as in 

(2.5). For this, one constructs a sequence of length M of estimators: 

    

 , t Πβ = +≤M,..., , (3.7)        

 

where ,  the stochastic quasigradient , i.e. the estimator of  a (sub)gradient ∇  at 

,  of the form: 

B1 ∈ tξ )F β
 

 ,  (3.8) )ttt βξξ ′−=
 

pairs y~,(  are independently (for different 
tt

t ) drawn from the given . If G  is the 

empirical measure, problem (3.2) reduces to:  

NG

 

 ∈minβ , (3.9) 

 

and one can take  in (3.7) as a deterministic gradient vector of the form:  

 

 ∑ ∇= =N
1k k

t )'(L)x(h
N

1 βξ  (3.10) 

 

The convergence of a sequence of estimators for ∞→M  is established in the next theorem. 
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Theorem 3.1 (convergence of SQG method (3.7)). Consider the process (3.7) and assume that tρ  

is -measurable and satisfies  ),...,( t1 ββσ
 0t ≥ρ  a.s.,   a.s.,     .  (3.11) ∑ +∞=∞=1t t

ρ ∑ ∞<∞=1t
2

tE  ρ
Then, with probability one,  converges as 

Mβ ∞→M  to the global optimum of  on a 

compact set B.◊ 

)(F N β
 

Noting that, by uniform boundedness of h(x), constt <ξ , the proof of this theorem follows from 

Theorem A.1(a) of the Appendix. 

 Furthermore, to reduce the variance of the estimator , we can consider the Cesàro 

averaging of the sequence { : 

Mβ
}tβ

 

 ∑∑=+−= ==− t
1

t
1

t
t

1t
t

t )1( τ ττ ττ ρβρβσβσβ ,         +∞≤= M,...,2,1t ,  (3.12) 

 

for 11 ββ = ,  t , and where 1> ∑= =t
1tt τ τρρσ . Under condition (3.11), the estimate  

tβ  

converge jointly with  to the optimum tβ *
NB  of (3.2). Suppose that the stepsize multipliers 

t
ρ  are 

deterministic and are sufficiently small, then, by assumption M1(b) and Theorem A.1(b), we can 

compute a bound on the variance of this estimator around the true value for the case that 

2
  

2

1
)(L ⋅=⋅ , as follows: 

 

 


 ∑


 ∑+−≤− ==
t

1
N

t

1

2
2

*1
2

t LCE*E τ ττ τ ρρββββ ,  (3.13) 

 

where 
2

t
t

supC ξ= , and  is a lower bound for the minimal eigenvalue of .  

We will see in the next section that the consistency properties are stronger for the Cesàro estimate 

than for the SQG-estimate. 

NL )x(h)x(hE N ′

 Finally, the stochastic optimization method is particularly well suited to calculate a large 

number of derived statistics. Note that so far we have only considered the problem of point 

estimation of parameters β  on the basis of N observations. In applications, it is usually necessary to 

compute several other values which are functions of β  that involve integrals, or expected values. 

An obvious example is the function . Though process (3.7) is designed to compute an 

optimum of , it does not evaluate this function. Yet, the calculation is readily performed. 

For example, in case of least squares, the following consistent estimate is available (Ermoliev and 

Norkin, 1998): 

)(F N β
)(F N β

 

 )),)'x(hy(LF(F(F tttt
t

t
F

1t βνΠ −−−=+  ,...2,1t =    (3.14) 

where   

 0t ≥ν ,       0ttt =lim ρν ,      ∑ +∞=t tν ,         , ∑ +∞<t
2
tν

 

 12



 

 

 

 

and the projection )(F ⋅Π  is on the interval ]F,0[ . Sequence (3.14) gives a consistent estimate of 

the , and provides an indication of the quality of fit for model (3.1). Other statistics 

that involve the calculation of expectations can be evaluated in a similar way.  

)β(Fmin N
Bβ∈

  

Approximation of the constraint set 

 

In the previous section, we stressed the possibly complex structure of constraint set B , which 

may include inequalities like (2.14a)-(2.14e). Here we present a tractable approximation technique 

to address this difficulty. 

  Suppose that {  is an i.i.d. sample of variable }x,...,x t1 x , obtained during t iterations of 

the stochastic quasi-gradient method. In this case, the function (2.14a) can be approximated by  

 

 ∑ ∂∂= =∈
n

1j jij}x,...,x{x

t
i

x)x(hmin)(
t1

ββϕ .      

 

By construction  is a convex function and bounded from below: . If  

functions 

)(t
i
βϕ )()(

i
t
i

βϕβϕ ≥
i

x) ∂
j

x(h∂  are continuous on  and {  are sampled from a positive measure 

on , then by the law of large numbers, functions  pointwise converge to 

X }x,...,x t1

)(t
i
βϕX )(

i
βϕ  with 

probability one. However, because of the convexity of  and the separability of )(t
i
βϕ nR , the 

function uniformly converges to  )(t
i
βϕ )(

i
βϕ  on any compact set in  with probability one 

(see Rockafellar, 1970).   

nR

 Alternatively, to approximate function  (2.14b), we must, besides { , also 

independently sample the directions (  from the set 

}x,...,x t1

),..., t1 ll }1| ≤+ lr{ ∈=+ lr RL  and evaluate 

the sequence: 

 

 ( )∑ ∑ ∂∂= =∈
n

1j ji iji)},x(),...,,x{(),x(

t x)x(hmin)(
tt11

ββϕ l
lll

.  (3.16)   

 

By the same argument as for (2.14a), these functions satisfy , are convex and 

uniformly convergent to 

)()(t βϕβϕ ≥
)(βϕ  with probability one. Functions from (2.14c)-(2.14e) can be 

approximated in a similar way, whereas the function from (2.14f) is linear and need not be 

approximated. Replacing constraint functions by their approximations, we obtain an outer 

approximation  of the original feasible set BB t ⊆ B . If the replaced inequality constraints satisfy 

Slater’s condition, then 
tB  converges to B  in the sense of  “set convergence” as defined in 

Rockafellar and Wets (1998).  

 The next step is to formulate the stochastic quasi-gradient estimation procedure for this 

specification with a nonstationary feasible set: 

 

 ,  (3.17)  )( t
t

t

B

t
t

ξρβΠβ −=
 

If after iteration T , we stop updating set 
tB  then method (3.17) becomes (3.7) and the results on 

convergence (Theorem 3.1), statistics (3.12) and variance estimate (3.13) apply to (3.17) with B  
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replaced by 
TB .  The properties of a fully nonstationary estimation procedure are summarized in 

Theorem A.1 of the Appendix. Remark that sets 
tB  are defined by a growing system of linear 

inequalities. Projection on 
tB  amounts to a quadratic programming problem and every previous 

projection can be used as a starting point for the next. It is also possible to apply a technique for 

dropping nonbinding constraints (see, for example, Hiriart-Urruty and Lemaréchal, 1993). 

Therefore, procedure (3.12) is implementable numerically. We also mention that techniques are 

available which avoid solving optimization subproblems at each iteration of the stochastic quasi-

gradient algorithm, such as the constraint aggregation principle (Ermoliev et al., 1997), Polyak’s 

method (Polyak, 1983), and average gradients methods (Mikhalevich et al., 1987). 

)x(

z

z(δ)z(

)z( N
k∑ =

dydx

(g Nθ

(h−)( β

                                                  

  

4.  Parameter estimation on the basis of kernel density distributions 

 

So far, we supposed that the densities  are known. In this section, we apply nonparametric 

(kernel density) estimation to obtain this density and we also consider the alternative problem that 

makes uses of a regression function to estimate the regression function  and the marginal 

density . We show that both approaches are equivalent in case of least squares. 

)y,x(g N

)x(y N

g N

Our approach can be looked at as building on Härdle and Mammen (1993) who propose a test to 

compare the non-parametric and parametric fits. In fact their proposed test function is almost 

identical to our risk function.1 

 We start from the sample of observations { . The empirical 

distribution defined by this sample can be represented by the empirical density: 

}N,...,1k),x,y( kkk ==
 

 ∑ −= =N
1k

kN )z
N

1
G  (4.1) 

 

where z denotes the vector (y, x) and  is the delta-measure concentrated at point . 

Alternatively, for a given smooth kernel density such that K(z)≥0, 

)( kzz −δ kz

∫ =+mrR 1dz)z(K , we have the 

smoothed empirical density: 

  

 )/)zz((K
N

1
g 1

k

mr

N −= + θθθ .  (4.2) 

 

  The corresponding risk minimization problem similar to (3.2) reads: 

 

 
B

NN min)x,y(g))'xy(L
2

1
F ∈→∫= βθθ β .  (4.3) 

  

There are a number of reasons to use a smooth density  rather than the empirical form 

(4.1). First, at the practical level it is easier to interpret the data pattern on the basis of a smooth 

density than from the spikes of the empirical density that produce a field of “needles”. Second, as 

 goes to infinity the estimated kernel density  uniformly converges to a true density. 

)x,y(g Nθ

)xN ,y

 
1 Härdle and Mammen (1993) draw many samples of fixed size to calculate both a parametric and a nonparametric 

regression and in this way derive an empirical distribution of the risk. Here we only draw one sample from the 

kernel regression but we could repeat the sampling (bootstrapping) and develop similar tests for our estimators. 
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Unlike the empirical density that only converges weakly, i.e. in distribution. Third, smoothing 

suppresses outliers, and interpolates to fill data gaps. Fourth, it helps to avoid singularities in data, 

making it possible to improve the identifiability. Finally, smoothing makes estimators more stable to 

data updating. In a certain sense, smoothing as defined by the choice of kernel and window width, 

implements informal knowledge how the data should actually look like, thus supplementing the 

parametric model that incorporates the a priori information about the relationship between the 

variables. 

 Function (4.3) could be a candidate criterion for risk minimization. However, as in (2.12) 

there is scope for further simplification. Assume that )y(K)x(K)z(K
yx

= , where , )(K
x
⋅ )(K

y
⋅  

are also densities. Define the conditional and marginal densities 

 

 )x(g)/)xx((K)/)yy((K
N

1
)x|y(g Nk

x
N

1k
k

ymr

N θθ θθθ −∑ −= =+   (4.4) 

and 

 )/)xx((K
N

1
)x(g N

1k
k

xr

N ∑ −= = θθθ . (4.5) 

 

Substituting these in (4.3) yields for 
2

  
2

1)(L ⋅=⋅  : 

 

 dx)x(g dy)x|y(g)'x(hy
2

1
)(F NN2N θθθ ββ ∫ −= .  (4.6) 

 

Hence, it becomes possible, as in (2.12), to reduce (4.3) to 

 

 dx)x(g)'x(h)x(y)x(ydy)x|y(gy2/1)(F N
2

N
2

NN2N θθθθθ ββ ∫ 


∫ −+−=   (4.7) 

 

where  is a given nonparametric regression curve. For given window size 

θ, since the first two terms in (4.7) are constants, this amounts to minimizing  

∫= dy)x|y(yg)x(y NN θθ
 

 dx)x(g)'x(h)x(y
2

1
)(F N

2
NN θθθ ββ ∫ −= ,   (4.8) 

 

which means that we must compute the value β  that minimizes the integral square error of deviation 

between the nonparametric function  and the parametric function )x(y Nθ β)'x(h , as in (2.16). We 

can deal with this problem either by calculating the terms of the estimation via Monte Carlo before 

we apply ordinary least squares, or with an SQG-algorithm of  section 3. In case of a more general 

risk function 

 

 dx)x(g))'x(h)x(y(L
2

1
)(F NNN θθθ ββ ∫ −= , (4.9) 

 

ordinary least squares does not apply. In (4.8) and (4.9) we see data smoothing of two types: y-data 

are smoothed via the nonparametric regression curve, and x-data are smoothed via the kernel density 

estimator. As a stochastic quasi-gradient  in (3.7), (3.12) and (3.13) one could use an expression 
tξ
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similar to (3.8): , where  is sampled from empirical density 

, or expression   with   uniformly sampled 

in

))()()(( tNtttt xyxhxh θβξ −′=
)'x(h)(x(h tttt βξ −=

tx

g)))x(g Nθ )x(x(y tNtN θθ tx

X . 

NB
min) ∈→ β

θNF ∞
B N →

Mβ

=
,...}t (g N

∑∑ −= ==
N

1

x,y{ 11 )y,x

−
k

k
N

1k

kk ((K/)/)xx((Ky θ )xx /) θ
∑ −= =
N

1k

k

r
)/)xx((K

N

1 θθ
K

0g N

)x(g Nθ
,...,x,y{ 11=ω

0=

)x

,...}

(y Nθ
x,y tt

θ
∑= =
N

1

−
k

k )xkN
0

x(y)x(y δ )k(δ
xx( −δ

5.  Consistency of estimators 

 

In this section, we study the consistency  properties of a sequence of estimators obtained as exact or 

approximate solutions of  

 

 ,  (5.1) N (Fθ β
 

with , defined in (4.3) or (4.9),  an increasing sample size )(β →N  and  0)N( →θ , 

. Below we consider three kinds of solutions for (5.1), one is the set  of optimal 

solutions of (5.1), the other is an approximate solution  obtained after 

B *
N

B

M  iterations of the 

SQG-method applied to (5.1), and the third is the corresponding Cesàro average Mβ . In case of 

least squares, we may suppose that the Monte Carlo integration was sufficiently accurate to ensure 

that all three yield more or less the same solution but in the general case where SQG is required, the 

distinction is important. We proceed as follows. Referring to a theorem by Bierens (1988), we 

establish strong point-wise consistency of kernel density and kernel regression estimates. Next, we 

show uniform convergence of the risk functions. Finally, we turn to the consistency of the 

parameter estimates, and prove strong consistency for the case with exact solutions, weak 

consistency for the Cesàro averaging, and weak consistency for the approximate solution in case of 

a quadratic norm. 

 

Strong point-wise consistency of kernel density and kernel regression estimates  

 

We treat the use of the empirical density in (4.3) as a special case with 0θ . The kernel regression 

curve and the kernel density estimate constructed with  the sequence of observations 

sampled from density , have the following forms: x,y,..., t

N )x(yθ , (5.2a) 

N )x(gθ ,  (5.2b)        

where  is a density. Functions  and  are random and depend on the  )x(

path (sequence of observations)  . To unify notations we suppose  

that  (i.e. )(x ) corresponds to the empirical distribution and that  defines an 

empirical regression curve, 

)(0 xy N

 , where 1=xx −   if   and kxx =
0=)k  otherwise.  

First, we consider convergence (consistency) of solutions  of (5.1) to the unique *
N

B

solution  of the true estimation problem  *β
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B

min)(F ∈→ ββ  , (5.3) 

 

where )(F β  is given by (2.17),  is a convex compact set in . It can be shown that if B nR

0(= )N →θθ  as ∞→N , then  approximates a marginal density )x(g Nθ ∫= mR dy)y,x(g)x(g

)x(g/dy

  

and    approximates the  true regression curve)x(Nθy )y,x()x(y ygmR∫=   

(consistency). Many − weak, strong point wise and uniform − consistency results are available 

(see e.g. Bierens, 1987; Haerdle, 1990).  Here we cite a theorem by Bierens (1988) that 

establishes strong point wise consistency of these estimators. Similar results can be found in 

Nadaraya (1989) and Noda (1976).   

 

Theorem 5.1 (strong point-wise consistency of kernel density and regression estimates, Bierens, 

1988).  

Assume that 

(i)   ∫ =rR 1dx)x(K ,     ∫ ∞<rR dx)x(K ,      ∞<)x(Ksup
x

; 

(ii)  ,   ∞<)x(gsup
x

∞<)x(g)x(ysup
x

,  sup ,   ;  ∫ ∞<dy)y,x(gy4
x ∫ ∞<dydx)y,x(gy4

(iii) ∞<∑∞= −−
1t

r32 )N(N θ . 

 

Then, with probability one  at every continuity point of , and  

 at every continuity point of  such  that .◊ 

)x(g)x(glim N
)N(N

=∞→ θ )x(g

)x(y)x(ylim N
)N(N

=∞→ θ )x(y 0)x(g >
 

Now if we take )x(K  and  to be continuous and to have bounded supports, then 

conditions (i), (ii) of the above theorem are satisfied and we can state the following lemma: 

)y,x(g

 

Uniform convergence of the risk function 

 

Lemma 5.1 (uniform convergence of  risk functions).   

Assume that  

(i)  functions  and  have bounded supports, and )x(K )y,x(g )x(K  is bounded; 

(ii)  functions  and  may be discontinuous only on the set of Lebesgue measure 

zero; 

)x(y )x(g

(iii)  with probability one  at every continuity point of   )x(g

 ; )x(g)x(glim N
)N(0)N(,N

=→∞→ θθ
(iv)  with probability one at every continuity point of   and , for ,     )x(y )x(g 0)x(g >
 ; )x(y)x(ylim N

)N(0)N(,N
=→∞→ θθ

(v)  and  are continuous. )(⋅h )(⋅L

 

Then, the approximate risk functions  from (5.2) uniformly converge, in every compact )(F N
)N(
βθ

nRA⊂ , to the true risk function (2.17): 

  

∫ ′−= rR dx)x(g))x(h)x(y(L)(F ββ . 
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Proof. Fix any . Remark that due to the separability of space , convergence with 

probability one in (iii), (iv) holds not only separately at each point of continuity of  and 

 but jointly for all such points. So we may consider sample paths 

nR∈β rR

)x(y

)x(g 1Ωω∈  such that (iii) 

takes place for all points of continuity of  while (iv) holds at all )x(g x , such that  and )(g ⋅ )(y ⋅  

are continuous at x  and . Thus, the probability measure of the set 0)x(g > 1Ω  equals one. Since 

by assumption (i) and boundedness of )N(θ , all functions  have uniformly bounded 

supports, integral in (5.2) is taken over some bounded set .  Functions  are bounded 

by (i),  is bounded on  by continuity assumption (v), and  are bounded due to 

boundedness of kernel 

)

()N

x(g N
)N(θ

g N
(θ

S )x(yN
)N(θ

)x)x(h S

K . Therefore, integrand  in 

(5.2) is bounded on  and functions   converge point-wise with probability one to 

)x()x(Nϕ = g N
)N(θ))'x(h)x −(y(L N

)N(θ β
S

)'x(h)

)x(Nϕ
)x(g)x(y(L)x( βϕ −= : (a) for all Sx∈  such that  0)x(g =  and g  is continuous at x , 

by (iii),  (b) for all Sx∈  such that   and 0>)x(g g,y  are continuous at x ,  by (iv), (iii), i.e. 

convergence may fail only for points of discontinuity of  or   that are negligible by (ii). 

Now for paths 

)x (y(g )x

1Ωω∈  (i.e. with probability one) convergence of   to )( βF N
)N(θ )(F β  follows 

from the Lebesgue dominance convergence theorem. 

 

Strong consistency of exact risk minimizers 

 

Not surprisingly, for a sequence of convex optimization problems (5.1) we have convergence of 

exact minimizers . 
N

NB )(θ
 

Lemma 5.2 (convergence of exact risk minimizers with probability one). If in (5.3) with 

probability one the convex objective functions  converge to the strictly convex 

function

)(F N
)N(
βθ

)(F β  (point wise) and feasible sets 
NB  are monotonically decreasing ( 1NN BB −⊆ ) 

and converge to a nonempty convex compact set B  (in the sense of set convergence of 

Rockafellar and Wets (1998)), then any sequence  of minimizers of (5.1) converges to the 

minimizer  of (5.3) with probability one.◊ 

*
N

B

*β
 

Note that by similar arguments, the minimizers of  the problem that use the empirical distribution  

 

 
NB

N

1k

kkN
0

min))x(hy(L
N

1
)(F ∈= →∑ ′−= βββ  (5.4) 

 

converge to the minimizer  of **β
 

 
BR0

mindxdy)y,x(g))x(hy(L)(F mr ∈→∫ ′−= + βββ . (5.5) 

 

This minimizer differs from problem (5.3) because here the objective function penalizes 

deviations between all y and β)'x(h , whereas (5.3) uses the function y(x) and thus aggregates 
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over all y at given x before penalizing, i.e. it does not penalize for the spread of  y at given x. The 

minimizers  and  coincide in case *β **β 2
  

2

1
)(L ⋅=⋅

Mβ

, similar to (4.8). 

)

*β

∞N

[ t
N

β1 =

y(L∂

F N
N(θ∂

h−∈

x,..., t

t

k

kβ+
=∑=

A⊂

)(

1=
NM

τ
) 2N

τρ

 

Weak consistency of Cesàro estimates.  

 

Now consider convergence of SQG-approximations , obtained after a finite number 

 of iterations of SQG-method and corresponding Cesàro estimates N(MM = Mβ , to solutions 

 of problem (5.1). If to apply SQG-iterations to (5.1) infinitely many times one can approach 

to 

*
N

B

NB  and hence to  with probability one. The problem is to give a reasonable stopping 

criterion for the number of iterations. Condition (ii) of Theorem 5.2 below gives such minimal 

stopping requirements that  guarantee (weak) convergence of obtained approximations to the true 

value     as .    *β →
 In a general case to approximate the optimum *

NB , , one can 

apply 

)(Fmin)B(F N
)N(B

*
N

N
)N( N

βθβθ ∈=
M stochastic quasigradient iterations: 

 

 , , ]t
tB

t ξρΠβ −+ 11 B∈β M,...,2,1t = , (5.6) 

where  

  ))x(h)x()x( tttN
)N(

tt βξ θ ′−
 

is a stochastic gradient of the function , i.e. the conditional expectation 

, for 

)(F N
)N(
βθ

}{)(}x|{E t
)

1t βξ ∈ ⋅∂  denoting a subdifferential of the corresponding 

function. The corresponding Cesàro estimates are of the form 

 

          1t
1t

t
1t

1t

1k
k

1

1
k

1t )1( +++
+
=

+ +−=∑ βσβσρρβ ,    ∑= +
=++
1t

1k
k1t1t

ρρσ .  (5.7) 

 

We can now prove the following consistency properties. 

 

Theorem 5.2 (weak consistency of Cesàro estimates for a general risk function / stopping 

criterion for SQG-method with Cesàro averaging). 

Assume that  

(i) with probability one functions  uniformly converge to a strictly convex function  on 

compact set 

N
)N(Fθ F

nR  and monotonously decreasing feasible sets 
NB  ( ) converge to a 

nonempty convex compact set ; 

1NN BB −⊆
A⊆B

(ii) number of iterations of SQG-method ∞→)N(M , average step sizes 

0
(

1
→= ∑∑ =

M

N ττ ρρ  and  as ∑ ∞→=
)N(

1
t

ρM

t

∞→N . Then, the Cesàro estimates 

)N(Mβ  converge in probability to the true estimate  (solution of (5.1)) as . *β ∞→N
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Proof. By Theorem A.1(b) Cesàro estimates 
)(NMβ  satisfy condition 

 ≤


 ∑


 ∑+≤− ==
)N(M

1

)N(M

1

2*
N

12*
N

)N(MN
)N(

2C)B,(distF)(EF τ ττ τθ ρρββ  

       0C2)B,(dist N

)N(M

1

*
N

12 →+


 ∑≤ = ρρβ τ τ . 

Then, 

 +−+−≤− *
N

)N(MN
)N(

)N(MN
)N(

)N(M*)N(M F)(FE)(F)(FEF)(EF ββββ θθ   

0FF **
N →−+ , 

and hence sequence *)N(M F)(F −β  converges to zero in probability. By continuity, for any 

0>ε  there exists 0)( >εγ  such that  whenever distance . 

Thus, probability 

)(F)(F * εγβ ≥− εββ ≥),( *dist

 0)}(F)(F{P}),(dist{P *)N(M*)N(M →≥−≤≥ εγβεββ . 

 

Weak consistency of SQG  

 

We only prove consistency for the quadratic case. Condition (vi) of Theorem 5.3 below gives a 

minimal (stopping) requirement on the number of iterations  of SQG-method to guarantee 

(weak) convergence of obtained approximations to true value  as 

)(NM

*β ∞→N . 

 

Theorem 5.3 (weak consistency of SQG-estimates in case of quadratic risk function). 

Assume that  

(i) with probability one functions  uniformly converge to a strictly convex function  on 

compact set 

N
)N(Fθ F

nRA ⊂  and monotonously decreasing feasible sets 
NB  ( ) converge to 

a nonempty convex compact set ; 

1NN BB −⊆
AB ⊆

(ii) H)x(h t ≤ ,       m)'x(h)x(h tt ≤ ,         22

t
N≤ε ; 

(iii) 
2tt L)'x(h)x(h' βββ ≥  for all , where  are positive constants. lR∈β NLmH ,,,

Suppose that  

(iv)  step sizes 
t

ρ ,  t , in procedure (5.6) satisfy conditions )N(Mt
0

≤≤
   

2t
m3

L

t

R

t

r ≤≤≤ αα ρ ,     0 }2,1min{ Lr≤<α ,  

where α,,, bRr  are deterministic positive constants;  

(v)  number of iterations of SQG-method ∞→)N(M  as  ∞→N . 

Then, SQG-estimates  converge in probability to the true estimate  (solution of (5.1)) 

as . 

)N(Mβ *β
∞→N

 

Proof. By (i) sets  are uniformly bounded for sufficiently large , hence  NB N b*
N

t ≤− ββ  for 

 and some constant . By Theorem A.2  0NN ≥ b

 20



 

 

 

 

 
)N(M

Q
E

2
*
N

)N(M αββ ≤− ,      }
3

,max{
222

2 α−=
Lr

NmR
bQ ,      ,  (5.8) 0)( tNM ≥

and 0*
N

)N(M →− ββ  in probability as ∞→N  . By Lemma 5.2 0**
N

→− ββ  with 

probability one (and hence in probability) as ∞→N .  

Since **
N

*
N

)N(M*)N(M ββββββ −+−≤−  then  0*)N(M →− ββ  in probability as 

.   ∞→N

 

6. Conclusion 

 

We have described a risk minimization approach to estimate a flexible form that meets a priori 

restrictions on slope and curvature by means of constraints on both the estimated parameters and the 

function values. The resulting constrained risk minimization combines parametric and 

nonparametric estimation and contains integrals and implicit constraints. We found that the 

simulation approach, which is common in econometrics, only applies when the model is linear in 

parameters, has simple constraints on parameters and a quadratic risk function. To deal with other 

cases, we use a stochastic optimization technique known as the stochastic quasi-gradient method 

with Cesàro averaging. This method is also applicable to an expanding series of random 

observations, and produces asymptotically (weakly) convergent estimates.  

 With respect to further research, formulation of tests on parameters and predictions would 

be a first priority and for this the simulation approach of Härdle and Mammen (1993) discussed in 

section 4 would seem practicable. Furthermore, building on the nonstationary version presented in 

section 3, serial correlation between observations could be allowed for.   
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Appendix: Mathematical background 

 

The following lemma is a stochastic version of the Lyapunov function method for discrete time 

stochastic processes and is used to prove convergence of SQG-estimates. 

 

Lemma A.1 (Ermoliev and Norkin, 1998).  

Let , 0v
t
≥ 0

t
≥ρ , w , 

t t
γ , , be a sequence of random variables (scalars). Suppose that 

each of the following conditions is fulfilled with probability one: 

1t ≥
 

  (i)  ,wvv
tttt1t

γρ +−≤+     all ;                                                                          1t ≥
  (ii)  lim ,0

tt
=ρ       ;                                                                                  ∑ +∞=∞

=1t
t

ρ
  (iii)  ;                                                                                                     

      

+∞<∑+ ∞
=1t

tt
v γ

  (iv)  for any {  if  then lim                                   }t
s

∞→ 0vinflim
s

ts
> 0winf

s
ts
>

  (v)  for any {  if }t
s

∞→ +∞<
s

ts
vsuplim  then lim .                       +∞<|w|sup

s
ts

Then, , with probability one. ◊ 0vlim
tt
=

 

The next lemma establishes the rate of convergence to zero for sequences satisfying some 

recurrent inequality. 
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Lemma A.2 (Katkovnik, 1976, p.282).  

Let {  be a sequence of nonnegative numbers such that 
0

} tttv ≥

  (i)  γαα
ρ

++ +


 −≤
t

C
v

t
1v

t1t
,   +∞<

1
v ;     

  (ii)  10 ≤<α ,   ργ <<0 ,    . 0>C

Then,  

 γt
Q

v
t
≤ ,      }

C
,vmax{

0
t αρ −=Q ,     t .◊ 0t≥

 

Lemmas A.1 and A.2 are used in the proofs of Theorems A.1 and A.2, respectively.  

 

Theorem A.1 (convergence of stochastic quasi-gradient method and corresponding Cesàro 

sequence). 

Let  

(i) convex functions (F t  uniformly converge to function )β )(F β  on some compact set 

nRA ⊂ , 

(ii) monotonic (decreasing) sequence of convex compact sets }ABB{ 1tt ⊂⊆ −  

 converges to a compact set  AB ⊆ ; 

(iii) sequence of approximations { tβ is constructed by stochastic quasi-gradient method: }

 ,      ,      t)]([ tt
t

t

B

1t
t βξρβΠβ −=+ 11 B∈β ,...2,1=  ,                                    

with stochastic quasi-gradients  such that  and  )( tt βξ )(F}|)({E ttttt βββξ ∂∈
C)( tt ≤βξ , adjustment coefficients 0≥tρ  are measurable with respect to .   },...,{ t1 ββσ

Then,  

(a) for adjustment coefficients such that 0≥tρ  a.s.,  a.s. , , with 

probability one, the sequence  converges to 

∑ ∞=∞=1t t
ρ

(Fminarg B

∑ ∞<∞=1t
2

t
E  ρ

tβ )ββ∈  and 

; )(Fmin)(Flim B
t

t ββ β∈=
(b) for any nonnegative deterministic adjustment coefficients tρ , the Cesàro sequence 

 ∑∑=+−= ==− t
1

t
1

t
t

1t
t

t )1( τ ττ ττ ρβρβσβσβ ,                                              

satisfies estimates 




 ∑


 ∑ −+∑+≤− == ∈=
t

1

t

1
A

t

1

212t 2)(F)(FmaxE2C*)B,(Ed*F)(EF τ ττ
τβττ τ ρββρρββ  

where bmin*)B,(d
*Bb

−= ∈ ββ  . 

 

Proof. The proof of statement (a) is based on sufficient conditions from Lemma A.1 for 

convergence to zero of a nonnegative sequence of random variables with probability one. Let  

be the set of minimizers of 

*B

F  on , B *B*∈β  and *)(F*F β= . Denote  and the )( ttt βξξ =
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conditional expectation by }|)({E tttt ββξξ = . As Ct ≤ξ  by assumption, it follows that 

Ct ≤ξ . Since *β  belongs to all ,  tB

− tρ2
*β

− 2

2−
tF− * −

tF(tβ
(F β

t )

)βAβ∈
( tβ
( β
( β

d) ≤
)t

tγ+

} ∑∞=t

t
(1 ) ρ
1=

≤
+1tβ (2 τ

( τβ(EF β

 =−−≤−=−+ 2
t

t
t

2
tt

B

1t **][t ξρβββξβΠβ  

         =+−−= 2
t2

t
tt

t

2
t *,* ξρββξρββ  

                
2

t2
t

ttt
t

tt
t

2
t *,2*,* ξρββξξρββξρββ +−−+−−= . 

By convexity 

 tttt ,)(*)(F ββξββ ≥ , 

and, therefore, 
2

t2
t

ttt
t

tt
t

22
1t *,2))(F*)(2** ξρββξξρββρβββ +−−+−+−≤−+  

    +−−+−+ *,2))(F*)(2* ttt
t

t
t

2 ββξξρβρβ−≤ tβ  

    
2

t2
t

t
t

tt *)(F*)(F2(F)( ξρββρββ +−+−t F2ρ+ . 

Denote (F)(Fsup tt β∆ −= . Now let us introduce function bd Bb −= ∈ ββ *min)(  and 

choose  such that *
tβ )d*

t
t ββ =− . Then, )(d 1t*

t
1t ++ ≤− βββ  and we obtain inequality 

 *
t

ttt2
t

2t
t

t
t

t1t ,C4*)F)F(2)((d ββξξρ∆ρρββ −−+++−−+ .  (A1) 

Denote ν , , (t d β= t
tt

t C4))F*F(2w ρ∆ ++−= *
t

ttt
tt ,2 ββξξργ −−= .  Thus, 

,wvv ttt1t ρ−≤+

{ t

    all t . Sequence {  constitutes a martingale with respect 

to a sequence of σ-algebras  generated by . By assumptions (iii) and (a), 

martingale 

1≥
t

F

}
t

1
t

∑= =τ τγµ
,x,...,y,x{ t11 }y t

µ  a.s. converges, i.e.  a.s. Quantities +∞<
1

t
γ tttt ,,w, γρν  satisfy conditions of 

Lemma A.1, hence { }tν  converges to zero with probability one. Since convergence with 

probability one is preserved under continuous transformations, lim  a.s. *F) =(F t
t ∞→ β

 To prove assertion (b) we follow Nemirovski and Yudin (1983). Taking expectations from 

both sides of (A1), we obtain 

 22CE4*)F)(EF2)(Ed(Ed ττττττ ρ∆ρβββ ++−−+ . 

Summing these inequalities from τ  until , we get t

 . ∑+∑+∑−∑−≤≤ ====
t

1

2
t

2
t

1

t

1

t

1
t

1 CE4)*F)(EF)(Ed)(Ed0 τ
τ

τ ττ ττ ρ∆ρρβρβ
By convexity, ∑∑≤ ==

t

1

t

1
t

t )EF) τ ττ ρρ . Finally we obtain 

 


 ∑


 ∑+∑+≤− ===
t

1

t

1

2
t

2
t

1

1t 2CE4)(Ed*F)(EF τ ττ
τ

τ τ ρρ∆ρββ  
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Theorem A2 (rate of convergence of SQG-method in case of quadratic risk function). Assume 

that B is a convex set and  for all : t

(i) Hxh t ≤)( ,       m)'x(h)x(h tt ≤ ,         
22

Nt ≤ε ; 

(ii) 
2tt L)'x(h)x(h' βββ ≥  for all ,  lR∈β

where  are positive constants. Suppose that for all t , NLmH ,,, 0t≥
(iii) b*

N
t ≤− ββ ;  

(iv)  
23m

L

t

R

t

r
t ≤≤≤ αα ρ ,     0 1≤<α ,       Lr20 <<α ;  

where α,,, bRr  are deterministic positive constants.  Then, 

 αββ
t

Q
E

2
*
N

t ≤− ,      }
Lr

NHR3
,bmax{

222
2 α−=Q ,      t . 0t≥

 

Proof. The following estimates hold true 
2

**
2

*1 )])()'()(([ tN

tt

t

t

ttN

t

N

t xhxh εββρββββ −−−−≤−+
 

       t

t

tN

t

tN

tt

t

t

tN

t

tN

t xhxhxh εββρββββρββ )'()(2)()'()()'(2 ***
2

* −+−−−−≤         

++−+ 22
2

2
*

2
2 )(3)'()((3        t

t

ttN

tt

t

t

tt xhxhxh ερββρ  

    +−−−−≤ )()'()()'(2    **
2

*

N

tt

t

t

tN

t

tN

t xhxh ββββρββ  

≤+−+−+ 222
2

*22* 3 3m)'()(2        tt

t

tt

t

tN

t

t NHxh ρββρεββρ  

  
222*

2
*2

2
*

3)()'(2

)32(

tt

t

tt

t

t

t

t

ttt

t

NHxh

mL

ρεββρ
ββρρββ

+−+
+−−−−≤

.        (A2)     

 

From (A2) by (iii), (iv) for all we have  t

 αα εββρββββββ
2

222
*

2
*

2
*

2
*

1

1 3
)()'(2

t

RNH
xhL

t

r
t

t

tt

t

tt

t

t

t

t

t +−+−−−≤− ++
. 

Taking expectations from both sides of this inequality and denoting 
2

*
t

t
t

Ev ββ −= , for all  

,  we get 0tt ≥
α21 )1(

t

C
v

t

Lr
v tat +−≤+ ,         .                                                      

2223 RNHC =
Then, by Lemma A.2 for },1min{0 Lr<<α  we have 

 αt
Q

vt ≤ ,      },max{
0 α−=

Lr

C
vtQ . 

 

This theorem estimates the mean rate of progress of method (4.10) for all t. To estimate the rate of 

convergence we can strengthen (iii) to require boundedness of B . Step sizes tρ  can be random 

but by (iv) lie within deterministic bounds (note that ).  ∑ +∞∞==T tt t
0

ρ =
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