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Abstract

In this paper we describe a test for Nijhout’s (1978, 1980a) hypothesis that the eyespot
patterns on butterfly wings are the result of a threshold reaction of the epidermal cells to
a concentration gradient of a diffusing degradable morphogen produced by focal cells at
the centre of the future eyespot. The wings of the nymphalid butterfly,Bicyclus�
anynana, have a series of eyespots, each composed of a white pupil, a black disc and a
gold outer ring. In earlier extirpation and transplantation experiments (Nijhout 1980a,
French and Brakefield, 1995) it has been established that these eyespots are indeed
organised around groups of signalling cells active during the first hours of pupal
development. If these cells were to supply the positional information for eyespot
formation in accordance with Nijhout’s diffusion-degradation gradient model, then,
when two foci are close together, the signals should sum, and this effect should be
apparent in the detailed shape of the resulting pigment pattern. We give an equation for
the form of the contours that would be obtained in this manner. We use this to test the
morphogen gradient hypothesis on measurements of the outlines of fused eyespots
obtained either by grafting focal cells close together, or by using a mutation (Spotty)
that produces adjacent fused eyespots. The contours of the fused patterns were found to
satisfy our equation, thus corroborating Nijhout’s hypothesis to the extent possible with
this particular type of experiment.
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Butterfly Eyespot Patterns:
Evidence for Specification by a
Morphogen Diffusion Gradient

Antónia Monteiro
Vernon French
Gijs Smit
Paul M. Brakefield
Johan A.J. Metz

Introduction

A butterfly wing starts developing as a double sheet of epidermal cells (or epidermal
sac), that grows first inside the larval body as an imaginal disc, and later evaginates, at
pupation, to form the pupal wing (Nijhout 1980b). During further development of this
pupal wing there is differentiation of a groupof large cells, neatly arranged in rows,
which will produce colourlesscuticular projections, the scales. Just before adult
emergence each scale cell starts synthesising and incorporating a specific pigment in its
cuticular projection and a mosaic of coloured scales is formed. The resulting patterns
are complicated and varied and seem to be produced by apparently rich and
unconstrained developmental mechanisms.

One of these patterns, the eyespot, has been the object of considerable study. Nijhout
(1980a) identified cells at its centre, the focus, that organise the pattern during the first
48 hours of pupal development. Damaging the focus can remove the adult eyespot or
reduce its size (Nijhout 1985, Brakefield and French 1995). Grafting the focus to
another site on the wing induces the formation of an ectopic eyespot (Nijhout 1980a,
French and Brakefield 1995). Nijhout (1978, 1980a) proposed that the different colour
rings in an eyespot result from a concentration-dependent response to a single
morphogen being produced at and diffusing and degrading away from the focus. High
concentrations closer to the source would activate genes, and later pigment synthesis
pathways, different from those activated by lower concentrations further away. If
Nijhout’s hypothesis is correct, the contours of adult eyespot patterns are spatial
indicators of where a threshold-dependent response of genes involved in pigment
synthesis pathways took place.

Here we attempt to test whether the form of experimentally manipulated eyespots
patterns in the nymphalid butterflyBicyclus� anynana are compatible with Nijhout’s
model. According to Nijhout's model, epidermal cells beyond the sharp outer contour of
unmanipulated eyespots still receive low levels of morphogen, experiencing part of the
"tail" of the concentration gradient. These low concentrations, however, do not enable
these outlying cells to differentiate into part of the pattern. This implies that if a sub-
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threshold area of the wing receives morphogen from a second source (also individually
influencing this area at sub-threshold levels), the two concentrations can sum, pass the
threshold level, and thus produce an extra area of pattern.

In the experiments described below, we used naturally occurring and experimentally
manipulated fused eyespot patterns to detect whether this additive effect is present. We
give an equation which should be satisfied by the contour of a fused pattern established
by diffusion from two point sources combined with degradation, and test whether this
equation is satisfied by the points on acontour of real fused eyespot patterns

Materials and Methods

The butterflies

We used 4 different lines ofB.� anynana: the STOCK, the selected HIGH and LOW
lines and theSpotty mutant line. The HIGH and LOW lines were previously selected for
an increase and decrease, respectively, of the size of the large posterior eyespot on the
dorsal forewing (Monteiro et al. 1994). The size difference in these lines was to found
to be mainly due to differences in the focal cells.Spotty is a single, autosomal allele
showing incomplete dominance that causes the appearance of two extra eyespots in both
the dorsal and the ventral surfaces of the forewing, between the normal anterior and
posterior eyespots (Fig 1a). A homozygous mutant line was used for the experiments
below. These individuals have the black and gold regions of the eyespots fused and
display the characteristic pattern of an outer gold ring enclosing a single black ellipse
with a row of four white pupils (Brakefield and French 1993).

All butterflies were reared at 28º C, 12L:12D light cycle and high (90%) relative
humidity. Pre-pupae from all lines were timed for their individual pupation times within
±15 minutes. Signalling from the foci and differentiation of a dorsal wing eyespot at this
temperature inBicyclus lasts around 24 hours (French and Brakefield, 1995).

Grafting and wing damage operations

We aimed to analyse fusion patterns between the normal eyespots on the dorsal
forewing ofB.� anynanaand additional ectopic eyespots induced by grafting a focus into
an adjacent, more distal, position on the same wing-cell (area between two wing veins).
The foci used for grafting came from the HIGH line in order to produce large ectopic
eyespots. Both posterior foci of HIGH line donor pupae (from left and right wings) were
grafted into distal positions, next to the normal anterior and posterior foci, respectively,
of STOCK pupae (Fig. 1b). Grafting operations were performed 3 to 5 hours after
pupation. Control operations were made inorder to measure the proximal-distal
symmetry of isolated ectopic eyespots, unfused with the normal eyespots. In these
operations, the anterior and posterior foci in the STOCK host pupa were pierced with a
fine tungsten needle before grafting the two foci into distal positions (Fig. 1c). The
eyespots resulting from the damaged foci become very reduced or absent and cannot
fuse with the eyespots from the grafted foci. In some control operations, LOW line
pupae were used as hosts for HIGH line foci. Here, no damage was applied to the foci
of the host pupae since the dorsal eyespots characteristic of the LOW line were too
small to fuse with the ectopic eyespots from grafted foci.
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Figure� 1.Schematic representation of pupae fromBicyclus� anynanaand dorsal surface of adult forewing.
A) Adult wing with normal anterior and posterior eyespot patterns.Spotty mutants have two additional
eyespots (represented by the dashed circles) on wing-cells III and IV. B) Foci from the HIGH line were
grafted onto two distal sites on the wing of STOCK or LOW host pupae. Dots on the wing indicate foci;
squares, pieces of grafted tissue; wing-cells are labelled from II-V; p, proximal; d, distal; ant, anterior;
post, posterior. C) Pupa fromSpotty line showing wing-cells where damage was applied to foci, by
piercing with a fine needle. The undamaged foci, on right and left wings, will fuse together in pairs.

Butterflies from theSpotty line were used to study fusion patterns between eyespots
in adjacent wing-cells, i.e., along the anterior-posterior axis of the wing. The fusion
patterns were studied in two pairs of eyespots: the normal anterior eyespot and the one
just posterior to it (in wing-cells II and III; see Fig. 1a) and the normal large posterior
eyespot and the one just anterior to it (in wing-cells IV and V). In order to obtain
isolated two-eyespot fusion patterns, instead of the fusion of all four eyespots, two of
the foci were damaged early in development.Using a fine tungsten needle, at 4-5 hours
after pupation, the two most anterior foci were damaged in one wing and the two most
posterior foci were damaged in the other wing (Fig. 1c).
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Measuring the fused patterns

After adult emergence, the eyespot patterns in operated wings were drawn on paper with
a camera lucida attachment. Contours of the white pupil, the black disc and the outer
gold ring of the eyespots were drawn, along with the position of the veins and the distal
wing margin.

From the most symmetric looking patterns (symmetry is important since we assume
a gross scale homogeneity of the medium where diffusion takes place) we took several
measurements were made from points along the outer contour line of each fusion
pattern (at approximately 30points), at similar spaced intervals, to the centre of each
white pupil (r1 andr2; Fig. 2), in order to test whether the eyespot contours satisfied the
analytical relationship predicted by the diffusion model to be described below. Note that
the assumption of gross scale homogeneity of the diffusion medium is only made in
order to arrive at a closed solution of thediffusion equations that can be used as a
vehicle for data analysis. What mattersis whether the right amount of additional
pigmented area is in the right location, compared to what single eyespots would look
like if there had been no signal addition. There is no reason to suspect that selecting for
pattern symmetry will produce a bias for thisadditional area. However, by doing so we
remove substancial parameter noise that otherwise would make the discriminatory
power of our data analysis technique very slim.

Modelling

Assumptions�

In our reference model it is assumed in accordance with Nijhout (1978) that the
coloured eyespot regions correspond to different, adjacent, concentration ranges in the
stationary profile generated by a process in which a morphogen diffuses away from
either one or two point sources while decaying at a constant relative rate. We shall refer
to the values of the morphogen concentration at the boundary between two such ranges
as thresholds.

It can be shown that the idealisation of a spatially extended area of focal cells as a
point source approximates well the stationary concentration gradient for roughly
circular sources both of the constant strength type assumed by Nijhout (1978), and of a
constant level type, in which a constant morphogen concentration is maintained inside
the source cells, as considered by Bard and French (1984), provided our interest is in
patterns that are considerably larger than the source diameter.

An� equation� satisfied�by� the� contours�

A single point source gives rise to an equilibrium morphogen concentrationm of the
form m = cK0(λr), with r the radial distance from the source in cm,c� =� S/(dD), S the
source strength in mol/sec,D the diffusion coefficient in cm2/sec,d the thickness of the

wing tissue, Dk /=λ , k the decay constant in sec-1, and� K0� the so-called modified
Bessel function of the second kind of order zero. Graphs ofK0, tables and handy
approximation formulas can be foundin Abramowitz and Stegun (1965). LetT denote
the threshold value of morphogen concentration bounding the outer contour of a single
eyespot. Then the points on the contour satisfym� =� T. By dividing through byT we find
that that the points on the model contour satisfy the equation
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�

Figure� 2.Drawing of aSpotty fusion pattern between eyespots IV and V. Distancesr1 andr2 were taken
from approximately equidistant points (marked with crosses) from the outercontour of the fused eyespots
to both pupil centres.�

p� K0(λr)� =�1, (1)

with p� =� c/T. Not unexpectedly, the contour is a circle with radius depending on the two
parametersp andλ.�

The model formulation excluded any interaction between the morphogen molecules
away from the source. We can, therefore, get the local morphogen concentration due to
more than one point source by simply adding the contributions from the various sources.
In the case of two sourcesm� =� c1K0(λr1)� +� c2K0(λr2), with r1 and r2� being the radial
distances from each point along the contour to the respective sources, andc1 andc2 the
corresponding source strengths. The model contour satisfies

p1K0(λr1)� +� p2K0(λr2) = 1, (2)

with pi = ci/T. Unfortunately, equation (2) is more easily written down than solved but it
permits the derivation of a statistical method, to be described below, to determineλ
from a fusion contour of two eyespots, and to test the diffusion model in an analytical
manner

Statistics

Estimation� of�λ
In the case of a single point source it is not possible to estimatep andλ separately from
an estimate of the radius. Given a radius and the value of eitherλ�or� p, we can calculate
the value of the other parameter by taking recourse to tables ofK0. However, if we have
more that one source it is possible to do better.

From a drawn fusion contour of two eyespots we can determine the distance for
several points along that contour to the centre of the two white pupils (r1 and r2 from
expression (2), above). Expression (2), which describes the relation between all these
variables, has the form of a linearequation in the transformed radiiK0(λr1) andK0(λr2).
If the diffusion gradient hypothesis is correct, a plot ofK0(λr1) against� K0(λr2) should
show a straight line, providedλ has been given the right value. Therefore,λ� can be
estimated as the value that maximises the correlation coefficient between the two Bessel
transformed radii. Onceλ is estimated in this manner, the strength of a source relative to
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the threshold level (pi) can be estimated from an orthogonal regression (see e.g. Sprent
1969).

Testing� the� model

Once the correctλ is found, the plot of the two Bessel transformed radii provides an
informal test to determine whether or noteyespot development is consistent with
Nijhout’s diffusion model. If and only if the points in the plot fall on a straight line, the
diffusion model is corroborated. This test is the strongest possible one that can be
achieved with the type of data under consideration.

Results

The grafting of a focus distal to the normal anterior or posterior eyespot resulted in the
formation of an ectopic eyespot (with a white pupil, black disc and outer gold ring) that
fused with the adjacent eyespot (Fig. 3a, b). The damage to pairs of foci inSpotty
individuals greatly reduced these eyespots and resulted in restricted fusion patterns
involving the undamaged anterior or posterior pairs of eyespots (Fig. 3c). Note that in
both type of experiments the colour patterncrosses the veins and these don't seem to
play any role in limiting the diffusion of the putative morphogen.

Estimating λ and testing the diffusion model with Bessel plots

The parameterλ was estimated from the most symmetric fused patterns (Table 1). The
plots of the Bessel transformed radii (Fig. 4)show that the data from the fused eyespots
fits well onto a straight line, producing high correlation coefficients (Table 1).

In order to have an idea about the shape of the plot of the Bessel transformed radii
for another type of signalling model, we performed the same operation for an artificial
fusion pattern produced by union of two drawn intersecting circles. This control pattern
can represent a model based on a simple cell to cell relay system. In this case, points
will always be found lying on two straight lines parallel to the axes (apart from some
measurement error), whatever value ofλ is chosen (the “optimal”λ will depend on the
location of the chosen measurement points along the contour). The results are depicted
in figure 4d for comparison.

The Bessel plots provide the best possible test of the diffusion model, as this
technique uses all pattern information available in the fused eyespot data. As such, it has
also the greatest possibility to lead to a rejection of the diffusion model due to
confounding factors such as a wrong guess about the precise location of the foci. The
results of Fig. 4 corroborate the diffusion model.

Discussion

When two eyespot foci are close on the wing surface they can produce a fused
pattern in which more cells than just those expected from the intersection of two circles,
differentiate as part of the pattern. The observed pattern is consistent with the presence
of a long-range morphogen gradient established from each focus, and influencing cells
beyond the outer contour of the eyespot. The outer contour would correspond to a
threshold morphogen concentration, below which no pattern is produced, but not to an
abrupt end of a signal. In the area of overlap of the two gradients, an additive effect
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Figure� 3. The operated wings ofBicyclus� anynana. A) A STOCK wing showing ectopic eyespots,
induced by grafted HIGH foci, fusing with the normal anterior and posterior eyespots. B) A posterior
eyespot fused with an eyespot induced by a piece of rotated focal epidermis. C)Spotty wing where the
two most anterior eyespots are reduced in size, due to early damage to their foci, and were unable to fuse
with the two most posterior eyespots.

Table� 1.�Estimatedλ’s and correlation coefficients for the most symmetric fused patterns.

Fused pattern Estimatedλ Correlation
coefficient

n�

Spotty III + IV

0.35*
0.45
0.65
0.55
0.53

0.97
0.97
0.96
0.96
0.96

27
27
28
28
25

Spotty V + VI

0.51*
0.53
0.95
0.61
0.86

0.97
0.94
0.91
0.94
0.94

30
32
34
35
30

STOCK VI +
ectopic eyespot

0.89*
0.75
0.64
0.79
0.84

0.98
0.96
0.97
0.97
0.94

31
34
33
34
33

Control 3.62* 0.83 29
n is the number of points along the contour used to calculater1 andr2 (see “Estimation� of�λ” in the M &
M section). Control refers to a drawn pattern of two circles that intersect. Patterns shown in Fig. 4 are
identified by an asterisk (*).

would raise the morphogen levels above the threshold and produce the extra area of
pattern observed.

An alternative model for long-range patterning from a signalling group of cells is the
cascade model. In this model signalling occurs via a sequence of short-range
interactions where cells receiving signal A generate signal B, which is perceived by the
neighbouring cells, leading them to produce signal C and so on. Propagation of a signal
(and therefore determination of its final range), will depend mainly on the type of signal
rather than on the amount received (reviews in Perrimon 1995; Blair 1995). The
experiments described in this paper, along with the following lines of evidence, strongly
indicate that the focus provides one long-range signal, rather than merely the first of a
cascade of short-range signals:
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Figure� 4. Bessel plots forλ�maximising the correlation coefficient between the two Bessel transformed
radii. r1 and r2 are the distances from several points along a fused contour to the centre of each white
pupil (or to the centre of the drawn circles in the control pattern ). A) and B)Spotty fused patterns. C) A
large posterior eyespot fused with an ectopic eyespot. D) The control pattern is a drawing of two
intersecting circles (to introduce some noise in the measurements the central point of one of the circles
was moved slightly off centre).

1) Progressive later damage applied to the focus, in early pupal development, leads to
a progressive increase in adult eyespotsize (Nijhout 1980a; French and Brakefield
1992; Monteiro et al. 1994). If eyespot size is dependent on a cascade of signals, only
the first of which is produced in the focus, it is difficult to envisage how late damage to
the focus can still affect eyespot size. With a gradient model, the later the damage the
smaller the effect on the final eyespot size,until the complete gradient is established.

2) Damaging a focus often leads to a small pattern on the adult wing consisting only
of scale cells containing pigment from theouter colour rings (French and Brakefield
1992). Early damage to a focus might result in a very shallow concentration gradient,
that can only rise above the lower thresholds of gene activation - producing the
outermost colour rings in an eyespot. Influencing the production of the first signals in a
cascade model should always affect first the cells targets of those signals, i.e., the ones
producing the outer colour rings, which is not the case.

Morphogen gradients have been known to exist sincebicoid was discovered in the
early syncytial state of theDrosophila embryo (Driever and Nusslein-Volhard 1988a,
b). At this stage of development, the egg is still devoid of cell membranes and large
proteins can diffuse freely in the common cytoplasm. But proof has been accumulating
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that even in solid tissue (Gurdon et al. 1994) or in an epidermal layer (Heemskerk and
DiNardo 1994, Katz et al. 1995, Zecca et al. 1995, Nellen et al. 1996, Lecuit et al.
1996), cells are responding to particular substances, synthesised some distance away, in
a concentration dependent manner. More recently, however, two research groups have
directly visualised the establishment of a morphogen gradient in a cellularised
environment (Entchev et al. 2000, Teleman and Cohen 2000). They accomplished this
by fusing theDrosophila growth factor Decapentaplegic (Dpp) to the small green
fluorescent protein, GFP, and observing the establishment of a fluorescence gradient of
Dpp in the pupalDrosophila wing. They showed by a series of experiments that Dpp-
GFP moves rapidly, at a speed of more than 4 cells per hour and that it reaches its
steady state between 6 and 8 hr (Entchev et al. 2000). Dpp-GFP diffuses through the
epidermis via receptor-mediated endocytosis (forming intracellular punctate structures)
rather than through the extracellular space. Additionally, endocytic trafficking and
degradation in the receiving cells play an essential, rate limiting role for establishing the
Dpp signalling range. Entchev et al. (2000) propose a model where the balance between
recycling and degradation of the Dpp molecule determined the shape of the gradient.
Here, to establish and maintain the gradient it is sufficient to have a similar rate of
endocytosis and degradation in all receiving cells. In the present modelling of eyespots,
we have also assumed a constant diffusion coefficient,D, and a constant decay constant,
k, as well as a constant source strength,S. This leads to a stable morphogen gradient
profile that becomes visible in the outer eyespot contour.

It is noteworthy that the average radius of the posterior eyespot inB.� anynana
corresponds to about 0.7 mm or 90 cell diameters on the pupal wing epidermis (French
and Brakefield 1995), which is more than 3 times the range of the Dpp range in the
Drosophila wing (up to 25 cell diameters from its source). On the other hand, eyespot
signalling in Bicyclus takes at least 24h till completion. If the rate of morphogen
diffusion in the butterfly tissue is the same as that of Dpp in Drosophila (4 cell
diameters per hour), 24 h of signalling would reach up to 96 cell diameters, the average
size of an eyespot. Modifications in the ratio between recycling and degradation of the
morphogen by the target cells, around the focal signalling cells, would allow the steady
state of the morphogen in the butterfly wing to be different to that in the fly wing.

A few undetermined issues, however, still remain when simulating focal signalling.
The first is whether concentration gradients can be read before equilibrium is reached
(Gurdon et al. 1995). The second is whether afocus is a constant level or constant rate
source of morphogen. Although these two types of sources are conceptually quite
different and constant level sources biologically more plausible (see Nijhout 1991), the
patterns at equilibrium should be essentially the same for foci with a narrow diameter.

Some of the wobbliness about the regression line, especially visible in Fig. 4b, may
be due to some size asymmetry about the line connecting the centres of two fused
eyespots inSpotty wings (data not shown). This is probably related with the different
epidermal cell arrangements encounteredalong the proximal-distal axis of the wing
(Monteiro et al. 1997), thus producing some non homogeneity in the diffusion medium.

In summary, we conclude that the present experiments provide an inexpensive way
of testing the morphogen gradient hypothesis for butterfly eyespot formation. A better
test, using more sophisticated molecular techniques, will become possible only when
the putative morphogen is identified in this system. Carroll et al. (1994) have started
cloning Drosophila homologues of important patterning genes in the imaginal disc of
Precis� coenia, and looking at their expression patterns. The dorsal-ventral, anterior-
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posterior and proximal-distal axis of the butterfly wing disc and that ofDrosophila are
specified in a similar way. For instance,apterous is expressed in dorsal cells,engrailed
in the posterior domain, andwingless in presumptive wing-margin cells.Distal-less
(Dll) is a gene expressed in the centre of the leg imaginal disc in the fruitfly, that gives
rise to the most distal structures of the leg, and also in a distal zone in the wing disc of
P.� coenia. Dll is also expressed in the future centres of the eyespot patterns inP.� coenia
andBicyclus� anynana(Brakefield et al. 1996). Additionally,Spalt andEngrailed, have
recently been found to be expressed in two concentric circles in the pupal wing ofB.�
anynana, correlating to the rings of black and gold scales respectively (Brunetti et al., in
prep.). To get a handle on the morphogen underlying the establishment of eyespot
patterns research into the upstream regulators of the latter genes is needed.
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Appendix A:
The stationary diffusion profile
We start from the diffusion model
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Since we concentrate on the rotationally symmetric case we transform to polar co-
ordinates (see e.g. Crank 1975):
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To this equation we have to add a boundary condition at zero representing a source atr
= 0, producing a massS per unit of time. This mass should equal the mass flowing per
unit of time over an infinitesimally small circle surrounding the source. For a
rotationally symmetric mass profile, the diffusion flux over a circle of radiusr equals
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Since there is only one source of morphogen we may add the second boundary
condition
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At equilibrium (A2) can be replaced by
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Differentiating out the left most expression, and multiplying the whole equation with
r2/D, leads to
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As a final step we absorb the factork/D by setting Dkz /= r to arrive at
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Abramowitz and Stegun (1965) tell us that the solutions of (A7) can be written as a
weighted sum of the Bessel functionK0(z) and I0(z). (A4) excludes� I0. Therefore, we
have to consider solutions of the formcK0 only. To determinec we use formula 9.6.8
from Abramowitz and Stegun (1965):K0(z) ≈ -ln(z). First we substitutez� =�λr, with

Dk /=λ . This tells us that nearr = 0
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rrd

rKd 1)(0 −≈
λ

(A8)

Substituting (A8) form in (A3) finally tells us that

m(r)� =� c� K0(λr), (A9)

with c� =� S/D.
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Appendix B:
Comparing fixed strength with fixed level sources
We consider the diffusion model (A1), together with some central source.As a first step
we consider a circular fixed level or fixed strength source at the equilibrium between
inflow over the source boundary and decay away from the source. We have rotational
symmetry and at infinity the morphogen concentration approaches zero. So both (A4)
and (A5) apply, but with a different boundary condition atr� =� rs, the radius of the
source. This means that the stationary profile is again given by (A9), though with a
different value ofc.

Next, consider a spatially extended fixed strength source of finite extent and arbitrary
form. The morphogen molecules originating at different locations in the source area
move and decay independently. Therefore, we can calculate the solution for any shape
of the source by just adding the contributions of all the minute point sources filling the
source area. This means that at a large distance any sufficiently narrow fixed strength
source looks like a point source.

For a non-circular, fixed level source the previous argument no longer works. We
have to embark on a slightly more complicated argument; as long as it does not hit the
source boundary, a molecule that has moved away from the source moves
independently from all other molecules. Molecules entering the source area effectively
cancel the production of some other molecules through the homeostatic process that
keeps the source level constant. By a change of names, in which we let a molecule that
has just arrived from the outside stand in for the molecule whose production it
suppresses, we may do as if the source area becomes an effective sink for molecules,
once they have left that area, while the production of molecules is not affected by the
arrivals from outside. From now on we shall keep to this picture. At equilibrium we
have a steady net outward flow of molecules over the source boundary. These molecules
start wandering around in the plane, and decaying. But in a plane which has an effective
hole. However, for molecules that have come a sufficiently long distance from the hole,
the effect of that hole on their future becomes negligible. So we may draw a large circle
around the source, and start noticing molecules for the first time when they cross that
circle. This replaces the original fixed level source with an equivalent circular fixed
strength source surrounding it at a large distance. We should keep in mind, though, that
the plane still has that tiny hole at its centre. However, if we consider a sufficiently large
circle, and consider the morphogen concentration at an even larger distance, we get a
concentration profile which is effectively indistinguishable from that of a point source at
the origin. Conversely, if we consider a very narrow fixed level source, it will at some
distance be effectively indistinguishable from a circular fixed level or fixed strength
source.

If we have more than one fixed strength source we can just add the solutions for the
separate sources, due to the independenceof the movement and decay of the morphogen
molecules.

Now consider two narrow fixed level sources at some distance away from each other.
The molecules coming from those two sources do not move independently. If the
molecule from source 1 hits source 2, it is effectively absorbed by the same argument
that we used before. It is clear that if the sources are very narrow and far away from
each other, the probability of such a hit is negligible.
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If we combine the last argument with the previous ones we find that two narrow
fixed level sources at a good distance away from each other are effectively
indistinguishable from two narrow fixed strength sources.
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