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Abstract

Small-scale spatial structure is important in plant ecology. Plants interact primarily
with their immediate neighbours and the view of the community as seen by an
individual plant can be quite different from large-scale spatial average. We describe a
spatial statistic that captures the plant's-eye view and use it to illustrate the strong spatial
structure present in a grassland community. Many processes affect small-scale spatial
stucture, including intraspecific competitiodispersal of propagules, interactions with
other species and the spatial structure of the environment. Spatial structure in turn
affects the the vital processes of growth, birth and death; the dynamics of plant
communities thus involve a coupling of spatsructure and the vital processes. We
describe recent work towards making this coupling explicit by means of individual-
based models and the dynes of spatial moments.
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Causes and Effects of Small-Scale
Spatial Structure in Plant Populations

R. Law

D.W. Purves
D.J. Murrell
U. Dieckmann

1. Introduction

If plants in a community were located in & independently of one another, and if
each small part of the space had the same probability of being occupied, the community
would have no spatial structure. Suchndomness is unusual. Plants in mesic
environments are commonly clustered togetim groups of conspecifics, and the spatial
pattern of plants in arid environments can sometimes have the opposite property—a
striking overdispersion of individuals (Cody 1986 Spatial structufa departure from

a homogeneous Poisson process) is the norm.

The existence of spatial structure has profound implications for plant ecology
because plants interact primarily with their close neighbours. The effects of neighbours
of a plant are most evident above ground through shading, and are also felt below
ground through the uptake of nutrients and water. Individuals outside the
neighbourhood have relatively little effect orese processes—in paular, there is no
reason to suppose that density averaged over some large spatial region, the so-called
'mean-field" assumption (Lawt al.2000), is of any significance (Mack & Harper
1977).

These points might seem too trivially obvious to mention were it not for the great
difficulty plant ecologists have had in constructing a theory of papoih dynamics that
holds them properly in place. Historicallplant population dynamics has taken its
framework from animal ecology, together with the mean-field approximation widely
used there. Yet this is not enough: somehow the information on local spatial structure,
on which the growth of plants and ultimately their vital rates crucially depend, has to be
accounted for. Without this, models at thikeeoretical core of plant ecology are
dynamically insufficient (Lewontin 1974:8), and predictions about future states are
liable to be seriously in error.

This chapter is concerned with small-scale spatial structure in plant communities, the
readiness with which such structure is generated, how it can be built into plant-
community dynamics, and the implications of such structure for plant population
genetics. The thread that runs through all this is the need to replace the mean-field



assumption with what might be termed the 'plant's-eye view' (Turkington & Harper
1979; Mahdi & Law 1987) of the community. Gemémterest in the spatial structure of
plant communities goes back to the early days of plant ecology (Blackman 1935), but
building the plant's-eye view into dynamical systems is a recent development.

2. Measuring the Plant’'s-Eye View of the Community

How can the plant's-eye view of the community be defined and measured? An
appropriate measure must make use of theations of individuals relative to one
another, and a sensible starting point is a map showing the positions of individuals, or at
least their presence and absence, at an appropriate spatial scale.

We suggest here a measure for a discrete spatial lattice, based on spatial covariance
functions [see Condiet al (2000) and Law & Dieckmann (2000b) for an equivalent
measure in continuous space]. To show how this is done, we use some maps of the
presence and absence of species living in a flat alluvial meadow in the lower Derwent
Valley National Nature Reserve near Yoifkngland (Purves unpublished data). The
site is cut for hay in the early summer, then grazed regularly by sheep until flooding in
the winter, and is species-poor, dominated by the gra&gesstis stoloniferaHolcus
lanatusandLolium perenneMaps of two of the species in a single quadrat are shown
in Fig. 1a, b; the species are quite abundant, and it is not immediately obvious whether
there is any spatial structure. Nonetheless, if the cells containing the plants are
randomised (Fig. 1c, d), the resulting layouts appear less patchy, suggesting some
spatial structure is present.

The plant's eye looks out at a neighbourhaadrounding the plant, rather than
taking a global view of the mean density or cover (‘global' here means the region
covered by the whole map). One can think of concentric rings of increasing radius
around a plant (Fig. 1b), a 'myopic’ plant sensing only its very nearest neighbours, a less
myopic one sensing the density further awdyear the plant, any local spatial structure
causes departures from the global mean, giving a higher density of neighbours if there is
aggregation, and a lower density if there is overdispersion. The neighbours may be
conspecifics, but they can equally well be other species and ultimately every species ca
contribute to the neighbourhood.

Each plant has its own unique neighbourhood, and it is more helpful to have a
summary statistic of the plant's-eye view averaged over the neighbourhoods of all
individuals of a species in a given area. t®taarity of the spatial process needs to be
assumed, as it does not make sense to think of an average of the neighbourhoods if the
statistical properties of the map changenfrone location to another. Consider a grid of
K cells, writing p* as the density of specidsin cell with coordinatesx = (x,,x,)
(density taking values 1 or 0 in Fig. 1). The mean density is given by

n= 2R @
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Figure 1. Maps showing presence (grey) and absence (white) okga)stis stoloniferand (b)Lolium
perennerooting in a grid of 2 x 2 cm cells measured in an alluvial meadow. Maps after randomisation of
locations of (C)A. stoloniferaand (d)L. perenneThe concentric rings around a plant in (b) are used to
construct the plant's-eye view of the community.

and a statistic for the mean density of neighbours of spg¢displaced by a distancg
= (&,,¢,) from individuals ofi is
1 X X+
Cuf:_DZ pi( ) [pf o, 2
S|

xS,

where S, = {(x,x+ &} is the set of pairs of cells with a displacementnd ‘S‘f‘ is the
number of such pairs and also allows for the finite size of the grid. The statistic can
alternatively be measured in polar coordinates of radiasnd angleg (if there is no
directionality, i.e. if the spatial process sotropic, the radial dependence suffices). In
statistical termsc;, measures the spatial covariance with agn auto-covariance for
conspecific neighbours and a cross-covas@afor neighbours of other species. Notice
that ¢, is not a central moment because the cover is not expressed as a deviation from
the meansr( andn;); the moment is chosen to be as simple as possible because we use
it later as a state variable of a dynamical system. Various alternative statistics are to be
found in the literature (Ripley 1981; Lotek and Silverman 1982; Renshaw & Ford
1984; Burrough 1987).

Fig. 2 shows three covariance functions, each averaged overaeigbtats (like the
one in Fig. 1), randomly located within a visually uniform region of the meadow. To
display the functions, they are expressed in radial fotrm ferennes isotropic, but
there is some anisotropy #. stolonifera The functions are normalised by dividing by
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Figure 2. Spatial covariance functions computed for eight randomly positioned quadratkesling the
one in Fig 1. (a) Auto-covariance function #éfrostis stolonifera(b) cross-covariance function @.
stoloniferaandLolium perenn€gc) auto-covariance function &f perenne Continuous lines are values
obtained from the data, and dashed lines are envelopes, showing the rarigemhitih 99% of the lines
would lie under the assumption of randomness.

the value they would take in the absence pat&al structure, sohiat the functions are

unity if spatial structure is absent; the normalising value is close tay, but also

allows for the finite size and boundaries of the quadrat. In both species, the auto-
covariance functions are peaked at short distances, indicating some clumping of
conspecifics, the clumps tending to be largerAn stoloniferathan in L. perenne
perhaps reflecting the stolon-forming habit of the former (regeneration from seed is
relatively rare in mesic grasslands). €ldecline to around unity means that, as the
neighbourhood becomes large, the auto-covariance function comes close to the mean-
field value; thus, over the spatial scale investigated, structure is confined to a small
neighbourhood. In contrast to the auto-co@ace functions, the cross-covariance
function between species is at a minimum at short distances, suggesting some spatial
separation of the species.

Some variation in covariance functionguld be expected simply as a matter of
chance, and this needs to be distinguished from genuine spatial structure. This could be
done in various ways (e.g. Lotwick & Silverman 1982; Cooreesl 1999); we use the
following Monte-Carlo methods. For auto-caiances, the locations of cells containing
the species are completely randomised, as illustrated in Fig 1c, d, and the auto-
covariance recomputed. For cross-covariances, the spatial structure within species is
held in place and the patterns of one species displaced by a random amount, wrapping
the edges around on a torus (the displacenseabnstrained to be greater than the larger
spatial structure within species, a distance of 10 cm here.). The randomisation is
repeated a large number of times (we used l@@licates) to compute envelopes within
which 99% of the functions would lie unddré assumption of randomness, as shown in
Fig. 2. The envelopes confirm the aggaéign within species, the observed auto-
covariance functions being outside or ive margin of the envelopes up to about 10 cm



in the case ofA. stoloniferaand 4 cm in the case df. perenne There is also some
separation of the species at very short distances.

We suggest that spatial covariance fuont of the kind described above provide a
useful measure of the plant's-eye view of the neighbourhood. How far from the origin
the plants sense their neighbourhoods degeon the context, as the distance is
obviously affected by plant size. But it is clear in the meadow example that the
composition of the immediate neighbourhoodas from the average: individuals find
themselves in an environment in which conspecifics are over-represented and
heterospecifics underrepresented whemgared with the mean-field approximation.

3. Causes of Spatial Structure

There are many processes that contributertalsscale spatial structure and resultin a
plant's-eye view that differs from the mean field.

3.1. Plant growth in even-aged monocultures

You need do no more than grow some plants together from uniform seed under uniform
environmental conditions to break their initial symmetry and generate spatial structure.
Those plants that emerge first are largernthater-emerging neighbours; those that
have more space are larger before they corteecontact with neighbours; larger plants
have an advantage over themaller neighbours in compton for limited resources. A
well-documented size hierehy develops (e.g. Obeiet al 1967; Ford 1975; Weiner
1985), often accompanied by an increased risk of death of small individuals (e.g.
Mithenet al 1984).

Spatial structure in this kind of experimebecomes evident when the locations of
large and small plants are measured. This was first demonstrated by Heruahi
(1955) and Yodeet al (1957), growing corn in rows with 2 cm and 3 cm spacing
between plants. After 16 days, they obsehanegative auto-correlation of the fresh
weight of a plant with its first, third and fifth neighbours, and a positive auto-correlation
with the second, fourth and sixth; as one ntigkpect, the auto-correlations changed
with increasing age (and size) of the plants. Later, using a more elaborate design,
Franco & Harper (1988) grew the annu&bchia scoparian concentric arcs and found
that plants in several odd-numbered arcsentorter in height than those in even arcs;
along a single arc, there was also a negative auto-correlation in weight of successive
plants. It is thought that an arc of relatively large plants leads to suppression of the
plants in the next arc, which releases the next arc from competition, and so on.

The close proximity of two plants may lead to the death of one or both, bringing
about further change in spatial structurgygeegations break up, causing a shift towards
overdispersion (Antonovics & Levin 1980). An experiment by Mitreznal (1984) on
an even-aged stand of the annual plaapsana communitustrates this; Fig. 3 shows
the spatial arrangement of seedlings immediately after germination, distinguishing the
plants destined to die from those still alive fifteen weeks later. The radial covariance
functions (Fig. 3b-d) show strong aggréiga among those that died (the function is
peaked close to distance zero), although tlaeeerather too few surviving individuals to
draw conclusions about their spatial struetuThe cross-covariance drops below unity
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Figure 3. Map of seedlings of.apsana commun& emergence, redrawn from Mithen al (1984);
those still alive 15 weeks later are filled circles, those that died are open circles. (b) Spatial au
covariance function for plants that died; (c) crossamance function for surviving and dead plants; (d)
auto-covariance function for plants that survived. Continuous lines arevahtained from the data, and
dashed lines are envelopes showing the range within which 99% ofirtes Wwould lie under the
assumption of randomness, calculated as in Fig. 2.

at short distances suggesting some separation of the survivors from those that died, but
this is not statistically significant. A similar analysis was carried ouKleykel (1988)

on locations of dead and living individuals in a natural stand of jack pRireus
banksianafollowing synchronous regeneration after a fire in the 1920s. This analysis
also showed spatial aggregation of deadvidiials and independence of the survivors
from those that died, although in this case thevswrs were themselves overdispersed.

3.2. Interaction kernels

At the heart of the structure that emerges in even-aged monocultures must lie some
dependence of growth of an individualnoits own state and the state of its
neighbourhood. The function presumably depends on thessirel locationx of the

plant, and size' and locationx’ of each neighbour, written here as the interaction kernel
w(s s, X— 3. The overall effect of neighbours is the convolution product obtained
from weighting the kernel by the densitp(x,s) of plants of sizes' at x', and
integrating oves' andx'



W(sx B =[[w(ss, x3f s ®-3,('9B,( % dxds 3)

The & are Dirac delta functions introduced so that each plant is not counted as a
neighbour of itself. Ultimately these neighbour-dependent effects on growth impact on
reproductive output and risk of mortality:our understanding of plant population
dynamics would be much improved if eraction kernels could be specified.

Attempts to characterisav have come primarily from theoretical reasoning
(Benjamin & Hardwick 1986). The zone-of-influence model is particularly promising
biologically (Wyszomirski 1983; Firbank & Watkinson 1985; Bonan 1988; Miller &
Weiner 1989) although not altogether tractabiathematically. This model equates the
size of a plant to a zone of influence aroutrd as plants grow, the zones of different
plants meet, leading to competition in areas of overlap; competition can be symmetric,
or asymmetric if the largest plant gets a disproportionate share of the resources (Weiner
1990).

Little is known aboutw from experimental studies. Silander & Pacala (1985) used
an even-aged stand oArabidopsis thalianato search for a function of the
neighbourhood of a plant that would miniraisesidual variation in its reproductive
output. Simply counting the number of neighbours in a circle of 5 cm radius turned out
to be as successful as a function incorpoatirstance to each neighbour. Nonetheless,

a closer examination of the effect of distance, growing plant#\ .ofthalianawith a
single neighbour matched in size but ieasingly distant, does show the expected
quantitative dependence (Fig. 4).

3.3. Dispersal kernels

The neighbourhood interactions above gpmhce plants are rooted to the spot. Beyond

the context of plant growth and mortality iven-aged monocultuse spatial structure

is affected by the new locations that individuals come to occupy through reproduction
and dispersal of propagules. Passive dispktypically counteracts the breakdown of
aggregations because most seeds fall close to the parent plant even if there are specific
adaptations for dispersal (e.g. Harper 1887et seq.); events such as occasional wind
gusts that cause seeds to travel much farther (van Bioigd.1996) would not normally
change this. Seed dispersal by animals,d@aowever, lead to movement over much
longer distances (Isagt al 2000; Ennos 2001).

Dispersal kernels have been studied more than interaction kernels because of the
insight they give into two important phenomena. First is the size of the area over which
individuals can be thought of coming from a panmictic unit, which depends both on
pollen and seed dispersal (Crawford 1984; Meagher & Thompson 1987). Second are
the paradoxically high rates of migratioobserved, for instance, in the northern
movement of tree species after the last ice age (&ar&l 1998). Dispersal kernels can
have fat tails with importantonsequences for rate of spread of populations (Nathan &
Muller-Landau 2000). But, for small-scale $jad structure, the sipe of the tail is less
important than its shape at short distances, and the latter is easier to determine as it does
not depend on rare events. Relatively sienfiinctions may give enough information
for this purpose; Greene and Johnson (1996), for instance, found that a negative
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Figure 4. Mean (+/- standard error) plant dry mass after 32 dayArabidopsis thalianagrown from
seed with a single neighbour placed at various distar{Besves unpublished data)

exponential function gave a good approxtroa to the distance travelled by winged
seeds from the edge of a forest into the surrounding landscape.

3.4. Environmental heterogeneity

Beneath the contributions to spatial sture caused by growth, birth and death, the
abiotic environment leaves its own imprint. For example, Fig. 5a gives soil depth in a
small area of species-rich calcareoussgtand in the southern Pennines of England
(Derbyshire Wildlife Trust Nature Reserve, Priestcliffe Lees). A spatial auto-
covariance function for these data can be constructed, in the same way as for species-
distribution data; Fig. 5b shows soil depths to be similar at the short spatial lags and
somewhat different at intermediate lags; in addition, Fig 5c indicates some
directionality (anisotropy). Plantago lanceolat&ig. 5d) is associated with the deeper
soils at lag zero, andthymus druc€Fig. 5f), with shallower ones; the spatial structure

of these species thus reflects that oflsdepth. One should however resist the
temptation to think of coexistence of spegiin this diverse community as an outcome

of niche separation on a soil-depth gradjdr@cause there remain more than thirty other
species, likeSanguisorba minan Fig. 5e, distributed independently of depth; niche
differentiation on this, and other axebBought to be important, is not sufficient to
explain the high diversity (Mahait al 1989).
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Figure 5. Spatial structure of soil depth and depth x species associations in a calcareous grassland. (a)
Map of soil depth in an area 1 x 1 m, sampled at 5 cm intervals. (b) Radial auto-covarianterfuic

soil depth. (c) Angular covariance function of soil depth; this is constructéteisame way as the radial
auto-covariance, except that the lag is indexed by angle instead of by distance. Cross-cevarian
functions of soil depth with species from a larger grid of area 4 x 4 m sampled at 20 cm int¢heals
species being: (dPlantago lanceolatde) Sanguisorba minand (f) Thymus drucetContinuous lines

are values obtained from the data, and dashed lines are envelopesghtivswiange within which 99% of

the lines would lie under the assumption of randomness, calculated as in Fig. @re((Minpublished

data)

Obviously the biotic environment can alsaffect small-scale spatial structure,
although, unlike the abiotic environment which tends to be fixed on the timescale of
plant-community dynamics, the biotic envhment has a spatial structure that itself
changes over time. Well-known example® dhe host-specific pathogens that cause
mortality of tree seedlings close to the mother plant (e.g. Augspurger 1984; Packer &
Clay 2000). Such pathogens counter the buildup of local aggregations in host
populations, and have the potential to prevent single tree species from coming to
dominate a community—the Janzen (1970n€ell (1971) hypothesis. However, other
species in the vicinity are not inevitably negative in their effects (Stoll & Weiner 2000).
Neighbouring plants can improve conditiofw growth in various ways, including
amelioration of extreme environmehtanditions (Brooker & Callaghan 1998) such as
high insolation in arid environments (Holzapfel & Mahall 1999) and cold in subarctic
tundra (Carlsson & Callaghan 1991).



4. Dynamics of Spatial Structure

The plant's-eye view is evidently determined (1) by interactions among conspedics th
typically tend to break up aggregations anspecifics, (2) by dispersal that tends to
generate aggregations, (3) by spatial dtiee of the abiotic environment, and (4) by
interactions with other species that generate or break up aggregations, depending on the
kind of interaction. The examples above show repeatedly that the plant's-eye view can
be far from the mean-field. Neither is the plant's-eye view fixed. As plants grow, give
birth and die, there is continual flux in dal spatial structure: the vital processes
determine local spatial structure, and local spatial structure determines the vital
processes. The challenge is to construtheory of plant community dynamics that
couples them together.

Here we describe some work towards this coupling. We develop the ideas in a
continuous space because this is a good representation of the space that plants in reality
occupy, and assume that edge effects are negligble by using periodic boundaries. [See
Wissel (2000) for simulations in spatiatifiges and Rand (1999) for pair approximation
methods to describe the dynamics.]

4.1. Individual-based models (IBMs)

The approach favoured by ecologists when faced with complex spatial ecological
processes is to simulate them as individoated models (IBMs), in effect to compute
realizations of the stochastic process (e.g. Gairal 1995; Pacalat al 1996; Wissel
2000); this is the so-called Lagrangiappaoach (Turchin 1998:36). There is much to
recommend this approach to the ecologist: it has appeal because it is algorithmic rather
than mathematical; it allows much biological detail to be included, and gets closer than
other approaches to the complexity of real ecological systems. We illustrate stochastic
IBMs with two examples below.

The first example describes the growth of an even-aged monoculture of plants, in the
absence of births and deaths. The IBM is specified by the gigdex) at some point in
time, comprising the size (masspand locationx of each plant, together with the rate at
which plants loseg™ and gaing” area

g (9 =als (4a)

g'(xs P =BE"[fi+Wsxp) . (4b)

The termsa 3 and B3* describe size changes of asolated plant: losses are
assumed to be proportional to mass, andantents proportional to area; parameters
andf scale to rate of change of mass . The remaining term in Eq. (4b) reduces the rate
of gain of area in the presence of neighlmuand thus depends on the spatial pattern;
this uses the convolution product Eq. (3), with an interaction kernel

10
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, y» [1
s s, %= (X' = x)? E{1—&:
(Thomas & Weiner 1989). The paramejedenotes the overall strength of competition
and ¢ determines competitive asymmetfWeiner 1990), from symmetrice(= 0) to
completely asymmetricg(= 1); the strength of competition attenuates with the square
of the distance between the plants, asiglioportional to the area of the neighbour.

Fig. 6a, b show the outcome of two realizations of the IBM, contrasting in the
asymmetry of competion, the plants being positioned at the same locations at the start.
Asymmetry has large effects on local sphasifructure: neighboring plants show mutual
inhibition under symmetric competition, wheas one plant gets an advantage over
another under asymmetric competition. As auteghe spatial covaainces of plant size
develop differently over time (Fig. 6¢,)d Under symmetric competition, adjacent
individuals become similar in size, and deviations in the covariance from the mean field
decrease nearly monotonically with increasing distance between plants. Under
asymmetric competition, small plants tend to have large plants as neighbours at
intermediate distances, in keeping with the results of experiments (Hazu@adi1955;

Yoda et al 1957; Franco & Harper 1988), and the covariance function develops a
minimum.

The second example is a simple birth-death process of a single species in a spatial
setting, taken from Law & Dieckmanr2Q00) [similar to IBMs used by Bolker &
Pacala (1997) and Dieckmamt al [1997)]. The IBM is specified by the locations of
plants p(X) , together with the death and birth rate for an individual at location

D(x,p) =d ¢Jwx-YPEN-5,(X] o (5a)
B(X = X) =bn(X' - x). (5b)

The death rat®(x, p) contains an intrinsic death teroh and a neighbour-dependent
term; the latter makes use of the interaction kermélk' — X) (for simplicity now
independent of size) to give each neighbour a weight according to its distance, and sums
over all neighbours (the iEac delta functiond excludes the target individual itself),
finally scaling the overall effect of neighbours loy. B(x — X) is the rate at which an
individual atx gives rise to a new individual at' , assumed here to depend only on an
intrinsic birth rateb and the dispersal kernef( X — X .

Fig 7 shows the outcome of some realizations of the IBM. In Fig. 7a, the kernel
parameters are set such that the neighbourhobdsteraction and dispersal are large,
giving little spatial structure (Fig 7d); thpopulation then settieslightly below the
mean-field density of 200 in the unit area. Reducing the neighbourhoods of interaction
and dispersal by the same amount emphasises the role of the dispersal kernel in
generating aggregations (Fig. 7b, e). The plant's eye then perceives a crowded
neighbourhood, and the population declinesattmwer density (~140). A sufficiently
big reduction in the interaction neighbdwood on its own has the consequence that two
plants living close together are unlikely both to survive; the population thus becomes
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Figure 6 An IBM of growth of plants in an even-aged monoculture. Attime 0, 100 inldials of mass

0.1 units are placed at random locations in an area 0X7@0 units; individuals grow as shown in Eqs

(4) depending on their current size and the size of neighbouring individuals with wiaglttimpete. (a)

Size of individuals (area of circle proportional to mgs)safter 32 days with symmetric competitio& (=

0); (b) size of individuals with asymmetric competitio& (= 0.9); locations of individuals are the same

in the two realizations. Time series of the radial covariance of plant mass averaged over 50 reslization
(c) with symmetric competition, and (d) with asymmetric competition. Théatadoment is centralised

by taking the deviation of plant mass from the mean plant mass at the current @tieer parameter
values ares =2.8, 5 =14,y =4.1x 10, 5 =0.05.

over-dispersed at very short distances (Fig. 7c, f). To the plant's eye, the area is
sparsely inhabited, and the population irages to a greater density (~270). Throughout
these simulationb, d and d' are held constant; the changes in population density are
caused entirely by the effects the kernelsénawn spatial structure. Evidently, even in

this particularly simple ecological stochastic process (essentially a spatial, stochastic
version of the logistic equation), the kernel parameters can lead to anything from a
decline to low densities (some parameters can even cause rapid extinction), to densities
much greater than the mean-field value. Hpatial extension has fundamental effects

on the dynamics.

4.2. Dynamics of spatial moments

Insightful though IBMs are, there are limits to what they can tell us about, for instance,
the equilibrium states, attractors, and parameter dependencies of the dynamics. If you
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Figure 7. An IBM of growth of a single species population. At time 0, 200 individuals are ramgom
located in an arena of unit area; individuals dig ajive birth according to the rates shown in Egs (5).
Spatial patterns (a), (b), (c) depict the locations of individuals after 50 time units have elapsed; (d), (e),
() give the corresponding auto-covariance functions. Gaussian kernels are used, truncated at a 3 x
standard deviatiorsfl). The realizations differ in their kernel parameter valuess(h)= sd, = 0.12; (b)

sd, = sd, = 0.04; (c)sd, = 0.02,sd,, = 0.12; parameter values common to all realizationslare0.4,d =

0.2,d’' =0.001.

doubt this, consider how hard it would be to establish the main features of competition
in the Lotka-Volterra model from simulations of IBMs. To gain deeper insights it helps
to have dynamical systems that give good approximations to the IBMs. Recent research
shows that dynamical systems of spatial moments can be derived from the stochastic
processes, and in a sense these form a natural extension of the non-spatial dynamics
used in ecology in the past. [The derivations are somewhat technical and are given
elsewhere (Bolker & Pacala 1997; Pacala & Levin 1997; Bolker & Pacala 1999; Bolker
et al 1999, 2000; Dieckmann & Law 2000; Murrell & Law 2000).] Here we
concentrate on the general form of the equations and give an example to illustrate the
ideas.

First some notation: We consider a multispecies community comprising a set of
speciesL={12K [} , living in a continuous, two-dimensional space of afgdarge
enough for edge effects to be negligible. The spatial moments are defined as:

NGB =2 P09 ox . (6a)

G, (£ p) =—itf p (P (x+&-0,B(H dx @ z>@ (6b)
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Eﬂpk(x"'{') — 0y D5(4“)] dx (6¢)

where p,(x) is the density of plants of speciesat x, and theds are Dirac delta
functions that remove self pairs. The diagram beside each equation tries to make clear
the object being averaged across space; each circle represents a plant. Thus Eq. (6a) is
the average density of single plants, thetfgpatial moment, and is a continuous version

of Eq. (1). Eg. (6b) is the average density of pairs of plants displacef] the second

spatial moment, a continuous version of Eq. (2); we take the second moment as
measuring the plant's-eye view and normalise by dividingNyyp) LN, (p for graph

plotting (which gives the second moment a value of unity if the plants are randomly
dispersed). The hierarchy of moments carcbetinued: Eq. (6¢) is the average density

of triples of plants displaced b§and &, the third spatial moment, and so on.

Moment dynamics deal with the average change of the moments over time, the
average being over the ensemble of stochastic realizations; we therefore rempve the
argument, and introducé to emphasise the dependence on time. For notational
simplicity, we use the sets N={N(9|i0OLk, C={C({9]|ijOL},

T={T, (&<, 910 j,kOL} . In principle, a system of diffential equations describing
the rate of change of the spatial moments with respect to time can be constructed of the
form:

N, (t)=F (N,C) forall i OL (7a)
C, (£ =F,(N,C,T)  foralli,jOL (7b)
T, (6.6, =F, (N,C,TK )  foralli,jkOL. (70)

Eqgs (7a) deal with the flux in average density of individuals, a familiar-enough concept
in ecology. Less familiar are Eqgs (7b): they describe the flux in density of pairs of
individuals displaced by, in effect accounting for changes in the second-order spatial
structure caused by growth, birth andath of individuals. In other words, Eqs (7b)
track the changing plant's-eye view (Sections 2 and 3). And Egs (7a) and (7b) are just
the start of a hierarchy of equations: (7c) describes the dynamics of density of triples,
and so on.

Consider, for instance, the spatial version of the logistic equation (Law &
Dieckmann 2000a); variations on this theme were given by Bolker & Pacala (1997),
and Dieckmanret al (1997), with a detailed analysi$ the model in the case of Bolker
& Pacala (1997). The stochastic process in Eqgs (5) gives dynamics of the first moment:

N(t) =b [N(t) (@) ®

- dIN(Y) (b) o
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In case it is not intuitive what these contributions to flux of the first moment are, the
diagrams on the right summarise the egetith the convention here and below that a
grey circle represents birth of a new imdiual, an open circle a death, and a double
circle a neighbour. Term (a) on the right-hand side is thus the contribution to the flux
due to birth, (b) is the contribution due to intrinsic tendency to die, and (c) modifies the
death rate due to interactions with other widuals in the vicinity. It is instructive to
compare Eqg. (8) with the familiar non-spatial (mean-field) logistic equation

N() =bIN(t) -dIN(t) -d'mN2(t) : (9)

the only difference is that the density-dependent t&fmis replaced by an integral
weighting the plant's-eye view by the indetion kernel. In other words, the density-
dependent effects in Eq. (8) are mediatgdother plants in the neighbourhood, rather
than by the average density; the dynamics of the first moment are now coupled to the
second moment as in Eq. (7a).

Dynamics of the second moment are inevitably a good deal more more complicated
than those of the first moment, because they deal with the flux in densipaio§ of
individuals displaced by. From Eqgs (5)

C(Et) =bOm(E)T(-¢+&,H)dé’ (a) .33;
;;@
+b m&) IAE+¢", Y o (b) oo
+2[b (&) IN() ©@ ©°r@® &g
- 2[d [T(&, t) (e) (f) 029 020
P - ®
-0 W) T (€6 +&,9d€ © X
Q?O
A" W& NEE, ) of (h) 5
O?Q
- 20’ (&) [C(£,1) @)  op»® @p0 (10
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This is less daunting than it might seem at first sight: each term still has a precise
geometric interpretation, which we try to make intuitive in the corresponding diagram.
Terms (a) and (b) describe the rate at which new pairs are formed due to births at a
distanceé from the parent; the integration accounts for all locations of the parent, and
makes use of the dispersal kernel of seedg’). Terms (c) and (d) arise because one
of the pair can itself be the parent. Terms (p§l &) describe the intrinsic rate at which
individuals die. Terms (g) and (h) modify the death rate due to neighbours located at a
distance &, using the interaction kerneWw(¢£'), the integration allowing for all
individuals in the neighbourhood. Terms (i)dag) allow for modifications to the death
rate due to the other individual in the pair.ofice that all these terms come in groups of
two because each kind of change applies to both individuals in the pair. Notice also that
this equation has the general form of Eq (7b), depending on the first, second and third
moments.

The extension from a single species to a two-species (or multispecies) community is
straightforward. For two species, tldgnamics of first and second momenty, (t),
N,(t), C,(& 1), CL(é 1), Cu(é,t) keep track of local spatial structure both within
and between species (Bolker & Pacala 19989y & Dieckmann 2000b). The extension
to a spatially heterogeneous physical environment, such as that caused by the variation
in soil depth in Fig. 5, also raises no further difficulties. Environmental heterogeneity
can be treated as fixed on the timescale of population dynamics, but as having effects on
local birth and death rates. Thus, for smgle species (indexed 1) living in a
heterogeneous environment (indexed 2), dynamicsNoft), C,,(,t), C, (¢ t)are
used, the information about the environment entering through the cross-covariance. A
version of this was given by Murrell & Law2000) to describe the dynamics of
movements of beetles in a complex ecological landscape, further simplified by the
absence of births and deaths, with the result that the average density (firggmjom
could not change, leaving only the second mome@g(é,t), C,(&,t) as state
variables.

4.3. Moment closures

It should be understood that Eqgs (7) do not teeimes form a closed dynamical system.
The dynamics of the first moments depasmdthe second moments, the dynamics of the
second moments depend on the third, and so on; the hierarchy of equations is coupled
such that each depends on the next. To obtain a dynamical system, somehow the
moment hierarchy has to be closed. Moment closures are unfamiliar in ecology,
although the mean-field approximation, whibas served ecology since the early part of

the 20th century, can be thought of as a first-order closure Wit(¥,t) replaced by

N; (t) N, (1), leaving a dynamical system

N, (t) =F(N) foralliOL; (11)
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This can be seen, for instance, by comparing dynamics of the first moments in the
spatial and non-spatial veesis of the logistic equation, Egs (8) and (9). The step plant
ecology needs to make to hold the plant's-eye view in place is to replace the first-order
closure with a second-order closure. This means replacing the third moment by some
function of the first and second moments, to get a closed dynamical system of the form

N.(t) =F(N,C) forall iDL (12a)

C, (&) =F,(N,C)  foralli,j OL. (12b)

The choice of closure is an important reseagolestion that has yet to be fully resolved,;
Dieckmann & Law (2000) describe some aloss and investigate their properties. To
illustrate the use of a dynamical system to approximate the stochastic process, we use
here a new power-2 closure (Murrell unpublished). Fig. 8 shows the fit between the
first and second moments of the stochastic process and the moments obtained by
integrating Eqs (8) and (10). The dynamicgsem captures some important features of

the first and second moments, the density moving above or below the mean-field value
of 200 given by the non-spatial logistic edioa (Fig 8a, b). This comes about because

the dynamical system keeps track of changethe second moment, i.e. changes in the
plant's-eye view. Corresponding to the aggregations that build up in the IBM in Fig 7b,
the second moment of the dynamical system increases at short distances (Fig 8c), and
this feeds back to the dynamics of the first moment (Eqg. 8, term c¢). Where over-
dispersion develops in the IBM (Fig 7c¢), the second moment of the dynamical system
decreases at short distances (Fig. 8d), which again feeds back to the dynamics of the
first moment.

We suggest that important effects oicéd spatial structure on populations can be
dealt with by dynamical systems with second-order moment closures. These systems in
effect introduce the dynamics of the plant's-eye view of the community, and eliminate
the mean-field assumption that penetrates so deeply into ecological theory. ®&ut tw
notes of caution. First the success of the second-order closure depends on the absence
of important higher-order gpial structure, and theregeaconditions under which it must
fail as a satisfactory approximation. Second, there is still much to learn about
appropriate moment closures, and it may be premature to go too deeply into analysis of
the dynamical systems until isssiabout closures are resolved.

5. Local Spatial Structure in Population Genetics

The dynamical consequences of local spatteucture are potentially profound. This
should not come as a surprise. Compare,ifstance, the intricate feedbacks in the
spatial version of the logistic equation Eqs (8) and (10) with the much simpler non-
spatial version Eq. (9); it would be uniesic to expect properties of a mean-field
model in general to carry over to a spé#tiastructured one. New phenomena are
already emerging from spatial dynamics theory, such as the dependence of the
equilibrium densities on the interaction and dispersal kernels shown above (see also
Bolker & Pacala 1999; Rand 1999; Bolket al 2000; Law & Dieckmann 2000b). It
would be surprising if plant community dymacs in the field were not also contingent
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Figure 8 Comparison of first and second spatial moments of a single-speciesagiopubver time,
modelled as an IBM (continuous lines) and as a dynamical system (dotés). li®imulations of the IBM

start with 200 individuals randomly distributed over space, and periodic boundary conditions are used.
Parameters are as in Fig. 7, with 'low density' valsés= sd,, = 0.04 in (a) and (c), and 'high density'
valuessd, = 0.02,sd,=0.12 in (b) and (d). Moments of the IBM are computed from the spatial patterns
and averaged over 20 realizations. Moments of the dynamical system are found from numerical
integration of Egs (8) and (10); distance units of the auto-covariancessanerig. 7. The dashed line in

(a) and (b) gives the mean-field dynamics obtained from solving thstlogquation Eq. (9).

on local spatial structure. For examplin dune annual plants, aggregation of
conspecifics and segregation of hetgmgfic individuals have major effects on
competitive interactions (Reed al 1996); in weeds, aggregation of conspecifics can
promote persistence of species that are weaker competitors (Stoll & Prati 2001).
Having said this, there are clearly circumstances under which mean-field models would
be good approximations, for instance, if there is little spatial structure, or if individuals
compete over large distances. Pacala Sndnder (1990), for example, describe an
experiment on two annual weed species with relatively weak sp#tigitsre, where the
mean-field approximation worked well.

What implications does local spatial structure have for plant population genetics?
Broadly, this depends on the extent to which results from population genetics depend on
the mean-field assumption.

Invasion of new mutantsConsider, for instance, the fate of a rare mutant gene. When
calculating the mutant's initial rate of increase in a well-mixed, mean-fiedtesy, one

would assume a mutant frequency close to zero and a resident gene frequency close to
one. However, in a spatially-structured system with limited seed dispersal, a local
cluster of individuals carrying the mutantrge builds up, giving a frequency of mutant
individuals in the neighbourhood far in excess of the mutant's mean frequency in the
population. The initial growth of the mutant is then not settled by the dynamics of the
first spatial moment alone: it also depends on the local spatial structure of the resident
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and mutant, given above by the dynamics of both their first and second moments.
Invasion criteria allowing for spatial structihave been suggested both for lattices (van
Baalen & Rand 1998; Ferriere & Le Galliard 2000) and for continuous space (Bolker &
Pacala 1999). It is evident from these studiest results from population genetics that
depend on the rate of increase of mutants, such as protected polymorphisms and ESSs,
can be altered by small-scale spatial structure.

Maintenance of polymorphism It is well known that spatial structure in the abiotic
environment combined with limited moweent can permit genetic polymorphism
(Levene 1953). This was nicely demonstrated in cultureéBsgudomonas fluorescens
initially comprising a single genotype. Cultures without stirring (little movement)
became polymorphic within three days and showed some spatial separation of the
predominant phenotypes, whereas thoséh vstirring (much movement) remained
monomorphic (Rainey & Trawano 1998). Small-scale spdtstructure generated by
biotic processes increases the potential for genetic polymorphism still further. In a
population with spatial aggregation, competition in small neighbourhoods can cause
stronger inhibition of genes of common maternal ancestry at least (Katlisd 1999),
promoting the coexistence of genes of different ancestries.

Evolution of dispersal Particularly interesting are mutants that affect local spatial
structure itself (Olivieri 2001). Many plmetypic traits have effects on dispersal
kernels, including plant growth form, inflescence size, and mechanisms for pollen and
seed dispersal, and genetic variation in such traits has been documented for many years
(e.g. Clauseret al 1948; Aston & Bradshaw 1966). The capacity of such genes to
increase when rare is very likely to be influenced by the small-scale spatial staicture
they generate (van Baalen & Rand 1998; Ferriere & Le Galliard 2000). Individuals
carrying genes with low dispersal cluster more closely together than those with genes
for greater dispersal, and are more adversely affected by their neighbours (also tending
to carry the gene for low dispersal); Hamilton & May (1977) gave a schematic model to
show the advantage of dispersal in these circumstances. On the other hand, in a
spatially heterogeneous environmentthwsmall patches suitable for growth, poor
dispersal could be a positive asset (Bolker & Pacala 1999). Models for evolution of
dispersal that fail to keep track of local spatial structure could be misleading.

You have only to scratch the surface of plant population genetics to see the
importance of local spatial structure of plants on the fate of genes; some of the most
interesting predictions have in fact come from abandoning the mean-field assumption,
for instance in the spread of populations (Antonowtsal). There already exists a large
body of theory in population genetics for the dynamics in metapopulations on lattices
with constant population size and no selection, stemming from the work of Wright and
of Malécot (see review by Nagylaki 1989). Arghesis that brings together population-
genetic and ecological theory, allowing for small-scale spatial structure, would be o
much interest.
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