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Abstract: Some aspects of management of contamination risks based on monitoring contamination sources are
under consideration. The case when direct measurements are impossible and the values of the contamination
inputs should be estimated through observations of indirect indicators is studied. Standard mathematical models
describing the diffusion of a contaminant in the form of partial differential equations of the parabolic type are
used. A model-based technique for the reconstruction of the evolution of the intensities of point-concentrated
contamination sources through observations of the concentration of the contaminant is presented. Results of
numerical experiments are discussed.
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1 INTRODUCTION

Management of contamination risks is based on
monitoring contamination sources. The most re-
liable monitoring strategy is direct measurements.
However, sometimes direct measurements may not
be possible due to the location of the contamination
sources. In such situations the values of the con-
tamination inputs should be estimated through ob-
servations of indirect indicators. A typical indirect
indicator is the concentration of the contaminant in
an observation area. If the observation area is small
enough, a deficit in data may lead to strong uncer-
tainties in the resulting estimates. The nonstation-
arity of the contamination sources whose intensities
may change over time in a poorly predictable man-
ner, often discontinuously, increases the uncertainty.

The uncertainty can be minimised if the estima-
tion technique invokes the structure of the input-
observation map given by an adequate mathemati-
cal model. Standard mathematical models describ-
ing the diffusion of a contaminant have the form of
partial differential equations of the parabolic type.
In our report we present a model-based technique
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for the reconstruction of the evolution of the inten-
sities of point-concentrated contamination sources
through indirect observations. The technique (origi-
nating from the mathematical theory of control of
uncertain systems) allows to estimate the highest
and/or lowest bounds for the “power” of the inten-
sities compatible with a given observation record.

We conclude with a discussion of numerical experi-
ments.

2 CONTAMINATION MODEL

Let us imagine a water reservoir occupying an area

 and n contamination sources located in subareas

1; : : : ;
n of 
 Our modelling approach assumes
that the input concentration rate of the contaminant
at every point � in the source area 
j is modeled
as uj(t)!j(�) where t is the current time. The pos-
itive value uj(t) is a measure of the time-varying
intensity of the source located in 
j . If !j(�) is
normalised so that

R

j

!j(�) d� = 1, then uj(t) rep-

resents the current rate of the contamination inflow
in 
j . We assume that the contamination intensities
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do not exceed some values estimated in advance:

0 � uj(t) � u
�

j
; j = 1; : : : ; n: (1)

In what follows, x(t; �) is the current concentration
of the contaminant at a point � in 
. Some infor-
mation on the distribution of x(t; �) in 
 is regis-
tered by m sensors. The sensors are either travel-
ling across 
 or stationary. The travelling sensors
register the concentration at points y1(t); : : : ; ym(t)
changing their locations in 
; the currently regis-
tered signals are, therefore,

zk(t) = x(t; yk(t)): (k = 1; : : : ;m) (2)

The stationary sensors register weighted average
concentrations z1(t); : : : ; zm(t) in fixed subareas
�1; : : : ;�m of 
:

zk(t) =

Z

�k

pk(�)x(t; �) d� (k = 1; : : : ;m); (3)

the positive weight coefficients pk(�) are supposed
to be given and can always be normalised so thatR
�k

pk(�) d� = 1.

We are concerned with the following Travelling-
Sensor Intensity Reconstruction (TSIR) Problem,
and Stationary-Sensor Intensity Reconstruction
(SSIR) Problem.

TSIR Problem: Observing the concentrations
z1(t); : : : ; zm(t) (2) of the contaminant at the
travelling points y1(t); : : : ; ym(t), reconstruct
the intensities of the contamination sources,
u1(t); : : : ; un(t), in the source areas 
1; : : : ;
m.

SSIR Problem: Observing the weighted aver-
age concentrations z1(t); : : : ; zm(t) (3) of the
contaminant in the areas �1; : : : ;�m, recon-
struct the intensities of the contamination sources,
u1(t); : : : ; un(t), in the source areas 
1; : : : ;
m.

To solve the TSIR and SSIR Problems, we use the
following parabolic equation describing diffusion of
the contaminant in 
 [Marchuk, 1982]:

@x(t; �)

@t
+a1

@x(t; �)

@�1
+a2

@x(t; �)

@�2
��x(t; �) = (4)

nX
j=1

uj(t)!j(�):

Here �1 and �2 are the coordinates of a point � in

, � = @

2
=@�

2
1 + @

2
=@�

2
2 is the Laplace operator

responsible for diffusion, and a1 and a2 are constant
transition coefficients. The concentration x(t; �) at
the boundary, �, of 
 is zero:

x(t; �) = 0 (� 2 �): (5)

We assume that the sensor data cover a bounded
time interval, [0 � t � #], and the initial distri-
bution of the contaminant is given:

x(0; �) = x0(�): (6)

In order to ensure the existence of a solution of (4)
– (6), we assume that the boundary � of the plain
area
 is smooth, the functionsuj(t) (j = 1; : : : ; n)
are piecewise continuous and the function x0(�) is
continuous [Marchuk, 1982].

3 SPECIFICATION OF PROBLEMS

If the number of sensors, m, is small compared
to the number of contamination soarce areas, n,
the data provided by the sensors may be insuffi-
cient for reconstructing all the contamination in-
tensities, u1(t); : : : ; un(t), and the TSIR and SSIR
Problems may not be solvable. However, some sig-
nificant – although partial – information on the in-
put u = (u1(t); : : : ; un(t)) can be delivered even
by poor sensor networks. In this section we specify
the statements of the SSIR and TSIR Problems by
pointing out the reconstructable information on the
input u.

We assume that the sought information on u is the
input performance index

J(u) =

#Z

0

(q1(t)u1(t) + : : :+ qn(t)un(t))dt: (7)

Here q1(t); : : : ; qn(t) are fixed time-dependent out-
put weight coefficients. This form of the output cov-
ers a broad scope of substantial information on u.
For example, if we want J(u) to give us the average
intensity of the source located in a selected area, say,

k, on the time interval marked by t1 and t2, we set
qj(t) = 0 for j 6= k, qk(t) = 1 for t1 � t � t2,
and qk(t) = 0 for t < t1 and t > t2, thus, getting
J(u) =

R
t2

t1
uk(t)dt. If we want J(u) to give us the

total average contamination inflow intensity on the
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time interval marked by t1 and t2, we set qj(t) = 1
for t1 � t � t2 and qj(t) = 0 for t < t1 and t > t2

(j = 1; : : : ; n). A more detailed information on the
input can be gained through using several input per-
formance indecies of the form (7).

Now let us come back to the TSIR and SSIR Prob-
lems.

An observed collection of sensor data, z =
(z1(t); : : : ; zm(t)), selects a set of (virtually admis-
sible) inputs u compatible with z. A (virtually ad-
missible) input u = (u1(t); : : : ; un(t)) is compati-
ble with z if the solution x(t; �) of (4) – (6) associ-
ated with this particular input u satisfies (3) for all t,
0 � t � #. Thus, any input u compatible with z is
able to produce the sensor data z along the diffusion
process modeled by (4) – (6). If the model (4) – (6)
is adequate, the actual input is necessarily compat-
ible with the sensor data z; conversely, every input
compatible with z is a real candidate for being the
actual one.

Let Jmin(z) and Jmax(z) be, respectively, the mini-
mum and maximum values of J(u) across all inputs
u compatible with z. The interval between Jmin(z)
and Jmax(z) represents a measure of the uncertainty
in identifying the actual value of the input perfor-
mance index subject to the given sensor data z.

Therefore, we specify the TSIR an SSIR Problems
as follows.

TSIR Problem: Observing the collection z =
(z1(t); : : : ; zm(t)) (2) of concentrations of the con-
taminant at the travelling points y1(t); : : : ; ym(t),
find Jmin(z) and Jmax(z).

SSIR Problem: Observing the collection z =
(z1(t); : : : ; zm(t)) (3) of weighted average concen-
trations of the contaminant in the areas�1; : : : ;�m,
find Jmin(z) and Jmax(z).

Note that Jmax(z) = �J�
min

where J�
min

(z) is the
minimum value of

J
�(u) =

#Z

0

(�q1(t)u1(t)� : : :� qn(t)un(t))dt:

across the set of all inputs u compatible with the
sensor data z. This simple observation reduces the
problem of finding Jmax(z) to a problem identical
to that of finding Jmin(z). Therefore, considering
the TSIR and SSIR Problems, we may focus on a
methodology of finding Jmin(z) only.

4 TSIR PROBLEM: PRELIMINARIES

Here we describe the input-output transformation in
the TSIR Problem, which lies in the basis of our
solution algorithm.

Let X0(t; �) designate the solution of the equation

@x(t; �)

@t
+ a1

@x(t; �)

@�1
+ a2

@x(t; �)

@�2
� (8)

�x(t; �) = 0

with the boundary condition (5) and initial state (6),
and Xj(t; �) (j = 1; : : : ; n) designate the solution
of (8) with the boundary condition (5) and initial
state x(0; �) = !j(�); here and in what follows, we
set !j(�) = 0 for � not belonging to the source area

j . Then the solution of (4) – (6) has the form

x(t; �) =

X0(t; �;x0) +

tZ

0

nX
j=1

uj(�)Xj(t� �; �)d�

[Marchuk, 1982], which, together with (2), implies

zk(t) = X0(t; yk(t))+ (9)

tZ

0

nX
j=1

Xj(t� �; yk(t)uj(�)d�:

Introducing the matrix function

C(t; �) = (Xj(t� �; yk(t));

(j = 1; : : : ; n; k = 1; : : : ;m);

we rewrite (9) as

zk(t) = X0(t; yk(t)) +

tZ

0

C(t; �)u(�)d� ;

here and in what follows we treat
(u1(�); : : : ; un(�)) as a column vector; the latter
formula gives us an analytic representation of the
input-output transformation in the TSIR Problem.
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5 TSIR PROBLEM: SOLUTION ALGORITHM

Introduce the vector g(t) = (g1(t); : : : ; gm(t)):

gk(t) = zk(t)�X0(t; yk(t)); k = 1 : : : ;m:

Let us describe the algorithm solving the
TSIR Problem.

Algorithm.

Parameters: N , lN — natural, �N > 0.

Output: J (min)
N

, J (max)
N

— real.

Variables: y(min)
i

(�); y
(max)

i
(�) 2 L2(T;Rn).

Initial step:
Let y0(�) = y

(max)

0
(�) = y

(min)

0
(�).

i-th step (0 � i � lN � 1): Compute

(r
(min)

i
(t))j =

8<
:

u
�

j
; (�

(min)

i
(t))j + �Nqj(t)=2 � 0

0; (�
(min)

i
(t))j + �Nqj(t)=2 > 0

;

(r
(max)

i
(t))j =

8<
:

u
�

j
; (�

(max)

i
(t))j + �Nqj(t)=2 � 0

0; (�
(max)

i
(t))j + �Nqj(t)=2 > 0

;

(j = 1; : : : ; n);

where (�(min)
i

(t))j is the j-th coordinate of the vec-
tor

�
(min)

i
(t) =

#Z

0

 
(min)

i
(�)0C(t; �)r(t) d� dt;

 
(min)

i
(�) =

#Z

0

C(t; �)y
(min)

i
(�) d� � ig(�)=lN :

Analogously we compute (� (max)
i

(t))j .

Let

y
(min)

i+1
(�) = y

(min)

i
(�) + r

(min)

i
(�)=lN ;

y
(max)

i+1
(�) = y

(max)

i
(�) + r

(max)

i
(�)=lN :

Final step:
Assume that v(min)

N
(�) = y

(min)

lN
(�), v(max)

N
(�) =

y
(max)

lN
(�).

Proposition 1 Let functional J(�) be defined by (7)
and Jmin, Jmax be, respectively, its minimum and
maximum values on U(z(�)). Let

�N ! 0+; 1=�N lN ! 0 + (N !1)

and J (min)
N

, J (max)
N

be the output of Algorithm for
any N = 1; 2; : : :. Then

J
(min)

N
! Jmin; J

(max)

N
! Jmax (N !1):

6 SSIR PROBLEM: SOLUTION ALGORITHM

The algorithm solving the SSIR Problem is similar
to the one described above. However, here we as-
sume that

gk(t) = zk(t)�

Z




�k(t; �)x0(s) ds;

a k-th row of the matrixC(t; �) is an n-dimensional
vector ck(t; �) with the coordinates

ckj(t; �) = ckj(s� t) =

Z


j

�k(� � t; �)!j(�) d�;

(� � t). Here �k(�; �) is a solution of the problem

@�(t; �)

@t
� a1

@�(t; �)

@�1
� a2

@�(t; �)

@�2
�

��(t; �) = 0;

�(0; �) = pk(�)
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on T with the boundary condition

�(t; �) = 0 (� 2 �):

See [Kryazhimskii et al., 1995; Maksimov, 2000]
for other algorithms solving the SSIR Problem.

7 RESULTS OF NUMERICAL EXPERIMENTS

The SSIR Problem has been simulated on a personal
computer. The algorithm has been tested for various
values of the regularisation parameter �.

Other parameters have been chosen as follows:

� time interval: [0; 1];

� domain 
: square 53� 53;

� sizes of spatial grid !h: 53� 53;

� step of time grid: 1=40;

� transition coefficients: a1 = a2 = 18:33;

� parameters t1 and t2: t1 = 0:1, t2 = 0:5.

Figures 1–3 show the results of calculation of
(Jmin

N
, Jmax

N
) for various values of the parameter

�. The bold line represents the exact value Jmin

N
=

J
max

N
= 0:275437 for the function z(t) = sin(t).

Figure 1. � = e�8

Figure 2. � = e�10

Figure 3. � = e�12
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