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Abstract: Some aspects of management of contamination risks based on monitoring contamination sources are
under consideration. The case when direct measurements are impossible and the values of the contamination
inputs should be estimated through observationsof indirect indicatorsis studied. Standard mathematical models
describing the diffusion of a contaminant in the form of partial differential equations of the parabolic type are
used. A model-based technique for the reconstruction of the evolution of the intensities of point-concentrated
contamination sources through observations of the concentration of the contaminant is presented. Results of

numerical experiments are discussed.
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1 INTRODUCTION

Management of contamination risks is based on
monitoring contamination sources. The most re-
liable monitoring strategy is direct measurements.
However, sometimes direct measurements may not
be possible due to the location of the contamination
sources. In such situations the values of the con-
tamination inputs should be estimated through ob-
servations of indirect indicators. A typical indirect
indicator is the concentration of the contaminant in
an observation area. If the observation areais small
enough, a deficit in data may lead to strong uncer-
tainties in the resulting estimates. The nonstation-
arity of the contamination sources whose intensities
may change over time in a poorly predictable man-
ner, often discontinuously, increasesthe uncertainty.

The uncertainty can be minimised if the estima-
tion technique invokes the structure of the input-
observation map given by an adequate mathemati-
cal model. Standard mathematical models describ-
ing the diffusion of a contaminant have the form of
partial differential equations of the parabolic type.
In our report we present a model-based technique
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for the reconstruction of the evolution of the inten-
sities of point-concentrated contamination sources
through indirect observations. The technique (origi-
nating from the mathematical theory of control of
uncertain systems) alows to estimate the highest
and/or lowest bounds for the “power” of the inten-
sities compatible with a given observation record.

We conclude with a discussion of numerical experi-
ments.

2 CONTAMINATION MODEL

Let usimagine a water reservoir occupying an area
2 and n contamination sources located in subareas
Q,...,Q, of @ Our modelling approach assumes
that the input concentration rate of the contaminant
at every point £ in the source area 2; is modeled
asu;(t)w; (&) wheret isthe current time. The pos-
itive value u;(t) is a measure of the time-varying
intensity of the source located in ;. If w;(¢) is
normalised so that | w; (&) d¢ = 1, thenu;(t) rep-
Q.

resents the current rate of the contamination inflow
in Q;. We assume that the contamination intensities
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do not exceed some values estimated in advance:

0 <wj(t) <uj,

j=1,...,n. (1)
In what follows, z(t, £) is the current concentration
of the contaminant at a point £ in 2. Some infor-
mation on the distribution of z(¢,£) in Q is regis-
tered by m sensors. The sensors are either travel-
ling across 2 or stationary. The travelling sensors
register the concentration at pointsy (¢), .. ., ym(t)
changing their locations in 2; the currently regis-
tered signals are, therefore,

The stationary sensors register weighted average
concentrations zi (t),. .., 2, (t) in fixed subareas
O1,...,0,, of Q:

@m=/m©mmM£w=mem 3

O

the positive weight coefficients py () are supposed
to be given and can aways be normalised so that

[ pr(§)dE =1.
Oy

We are concerned with the following Travelling-
Sensor Intensity Reconstruction (TSIR) Problem,
and Stationary-Sensor Intensity Reconstruction
(SSIR) Problem.

TSR Problem:  Observing the concentrations
z1(t),...,zm(t) (2) of the contaminant at the
travelling points yi(t),...,ym(t), reconstruct
the intensities of the contamination sources,
w1 (t), ..., uy(t), inthesourceareas 4, . .., Q.

SSR Problem: Observing the weighted aver-
age concentrations zi(t),...,zm,(t) (3) of the

contaminant in the areas ©4,...,0,,, recon-
struct the intensities of the contamination sources,
w1 (t), ..., uy(t), inthesourceareas 4, . .., Q.

To solve the TSIR and SSIR Problems, we use the
following parabolic equation describing diffusion of
the contaminant in 2 [Marchuk, 1982]:

ox(t,§)  0z(t,§)  0z(t,§)
ot Mo o

3w (09
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Here ¢; and & are the coordinates of a point £ in
0, A = 0?/0¢2 + 9% /0€2 is the Laplace operator
responsiblefor diffusion, and a, and a- are constant
transition coefficients. The concentration z(¢, £) at
the boundary, T, of Q2 is zero:

z(t,§) =0 (§€T). (%)

We assume that the sensor data cover a bounded
timeinterval, [0 < ¢ < ¢, and the initial distri-
bution of the contaminant is given:

(0, &) = o (£)- (6)

In order to ensure the existence of a solution of (4)
— (6), we assume that the boundary T' of the plain
area(2 issmooth, thefunctionsu;(t) (j = 1,...,n)
are piecewise continuous and the function z (&) is
continuous [Marchuk, 1982].

3 SPECIFICATION OF PROBLEMS

If the number of sensors, m, is small compared
to the number of contamination soarce areas, n,
the data provided by the sensors may be insuffi-
cient for reconstructing all the contamination in-
tensities, uy (t), ..., u,(t), and the TSIR and SSIR
Problems may not be solvable. However, some sig-
nificant — athough partia — information on the in-
put u = (uq(t),...,un(t)) can be delivered even
by poor sensor networks. In this section we specify
the statements of the SSIR and TSIR Problems by
pointing out the reconstructable information on the
input u.

We assume that the sought information on u is the
input performance index

9
ﬂwz/@mmm+m+%m%mw.m
0

Here g1 (t), .- ., gn(t) arefixed time-dependent out-
put weight coefficients. Thisform of the output cov-
ers a broad scope of substantial information on .
For example, if wewant .J(u) to give usthe average
intensity of the sourcelocated in aselected area, say,
Qy, on thetimeinterval marked by ¢, and ¢5, we set
qj(t) = 0forj # k, qr(t) = 1fort; <t <t
and ¢ (t) = 0fort < t; andt > to, thus, getting
J(u) = ttf up(t)dt. If wewant J(u) to give usthe
total average contamination inflow intensity on the



timeinterval marked by ¢; and t», we set ¢;(t) = 1
forty <t <tyandg;(t) =0fort <ty andt > ¢,
( =1,...,n). A moredetailed information on the
input can be gained through using several input per-
formance indecies of the form (7).

Now let us come back to the TSIR and SSIR Prob-
lems.

An observed collection of sensor data, z =
(z1(¢),...,2m(t)), selectsaset of (virtualy admis-
sible) inputs v compatible with z. A (virtually ad-
missible) input u = (uy(t),...,u,(t)) is compati-
ble with z if the solution z (¢, £) of (4) — (6) associ-
ated with this particular input « satisfies (3) for al ¢,
0 <t < 4. Thus, any input u compatible with z is
ableto producethe sensor data =z along the diffusion
process modeled by (4) — (6). If the model (4) — (6)
is adequate, the actual input is necessarily compat-
ible with the sensor data z; conversely, every input
compatible with z is areal candidate for being the
actual one.

Let Jmin(z) and Jmax(2) be, respectively, the mini-
mum and maximum values of J (u) acrossal inputs
u compatible with z. Theinterval between J i (2)
and J,,ax (2) representsameasure of the uncertainty
in identifying the actual value of the input perfor-
mance index subject to the given sensor data z.

Therefore, we specify the TSIR an SSIR Problems
asfollows.

TSR Problem: Observing the collection z =
(z1(t),- -, 2m(t)) (2) of concentrations of the con-
taminant at the travelling points y1(t), ..., ym(t),
find Jimin (2) and Jmax(2).

SSR Problem: Observing the collection z =
(z1(t),- ., 2zm(t)) (3) of weighted average concen-
trationsof the contaminantintheareas© ¢, ..., ©,,,
find Jimin (2) and Jmax(2).

Note that Jmax(2) = —J;, where J}. (z) isthe
minimum value of
s
W= [CaOu) - ...~ aOu o).
0

across the set of al inputs w compatible with the
sensor data z. This simple observation reduces the
problem of finding Jax(2) to a problem identical
to that of finding Jin(z). Therefore, considering
the TSIR and SSIR Problems, we may focus on a
methodology of finding Jmin(z) only.
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4 TSIR PROBLEM: PRELIMINARIES

Here we describe the input-output transformationin
the TSIR Problem, which lies in the basis of our
solution algorithm.

Let X (¢, &) designate the solution of the equation

ox(t,§) ox(t,§) Ox(t,§)
A T T ®
Az(t,€) =0

with the boundary condition (5) and initial state (6),
and X,(t,€) (j = 1,...,n) designate the solution
of (8) with the boundary condition (5) and initial
state (0, §) = w;(€); hereand in what follows, we
set w;(§) = 0for ¢ not belonging to the source area
(2;. Then the solution of (4) — (6) hastheform

(t,€) =

t n
Xo(t, & z0) +/Zua it —T1,&€dr
o J=t

[Marchuk, 1982], which, together with (2), implies

2k (t) = Xo(t, ye(t))+ 9)

t n

/ > X;(t = 7 yk(tus(r)dr.
0o J=t

Introducing the matrix function

C(taT) = (X](t -7, yk(t))a

we rewrite (9) as

t
2 (t) = Xo(t, yr(t +/C
0

here and in what follows we treat
(ui(1),...,un(r)) as a column vector; the latter
formula gives us an analytic representation of the
input-output transformation in the TSIR Problem.



5 TSIR PROBLEM: SOLUTION ALGORITHM

Introduce the vector g(t) = (g1(t),- .., gm(t)):

gk(t) = z(t) — Xo(t,yx(t)), k=1....m.

Let us describe the algorithm solving the
TSIR Problem.

Algorithm.

Parameters: N, [y — naturd, ay > 0.
output: JUm™ g (M#) _ yeq.

Variables: y{™™ (), y{™*)(.) € L%(T, R™).
Initial step:

Letyo() = 5™ () =y ().

i-thstep (0 <4 < Iy — 1): Compute

(r™™ (1)), =

)

{ ui, (B () + ang;(t)/2 <0

0, (BM™™M(t); +ang;(t)/2>0

)

{ ui, (B(); + ang()/2<0

0, (B™™()); +ang;(t)/2>0

where (3™ (#)); isthe j-th coordinate of the vec-
tor

9

B (1) = / 4" (0)' Ot 0)r(t) do dt,

0

9
wgmin) (O’) _ /C(t, U)ygmin) (7_) dr — Zg(o’)/lN
0

(max)

Analogously we compute (5, (t));-
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Let
g () = g ) e )

Y9 () =y () () fy

Final step: ' )

Assume that v ("™ (1) = yl(;fm)(-), o) =
(max) /.

Yin ().

Proposition 1 Let functional J(-) be defined by (7)
and Jnin, Jmax b€, respectively, its minimum and
maximumvalueson U (z(+)). Let

ay — 0+, 1/aNlN—>0—|— (N—)OO)

and JU™™, () be the output of Algorithm for
any N =1,2,.... Then

T S T, T S Jhae (N = 00).

6 SSIR PROBLEM: SOLUTION ALGORITHM

The algorithm solving the SSIR Problem is similar
to the one described above. However, here we as-
sume that

g (t) = (1) — / Eu(t, €)zo(s) ds,
Q

ak-throw of thematrix C(t, o) isann-dimensional
vector ¢y, (¢, o) with the coordinates

ckj(t o) = crj(s —t) = /Ck(a —t,&)w; (&) d,
Q;

(o > t). Here (i (-, -) isasolution of the problem

o(t€) 08 A(tE)
ot oG 206,
AC(t,€) =0,

¢(0,8) = pk(&)



on T with the boundary condition

((t,§) =0 (fel).

See [Kryazhimskii et al., 1995; Maksimov, 2000]
for other algorithms solving the SSIR Problem.

7 RESULTS OF NUMERICAL EXPERIMENTS

The SSIR Problem has been simulated on apersonal
computer. The algorithm has been tested for various
values of the regularisation parameter a.

Other parameters have been chosen as follows:

timeinterval: [0, 1];

domain 2: square 53 x 53;

sizes of spatial gridwp,: 53 x 53;

step of time grid: 1/40;

transition coefficients. a1 = as = 18.33;

parameterst; and ¢o: t; = 0.1, ¢, = 0.5.

Figures 1-3 show the results of calculation of
(Jmin juez) for various values of the parameter
. The bold line represents the exact value J 3" =
JRer = 0.275437 for the function z(t) = sin(t).
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