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The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS:
Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly
Faithful Reproduction.
IIASA Working Paper WP-95-099.

In: van Strien SJ, Verduyn Lunel SM (eds.): Stochastic and Spatial Structures of Dynamical
Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen),
North Holland, Amsterdam, pp. 183–231 (1996).

No. 2 Dieckmann U, Law R:
The Dynamical Theory of Coevolution: A Derivation from Stochastic
Ecological Processes.
IIASA Working Paper WP-96-001.

Journal of Mathematical Biology (1996) 34, 579–612.

No. 3 Dieckmann U, Marrow P, Law R:
Evolutionary Cycling of Predator-Prey Interactions: Population Dynamics
and the Red Queen.
Journal of Theoretical Biology (1995) 176, 91–102.

No. 4 Marrow P, Dieckmann U, Law R:
Evolutionary Dynamics of Predator-Prey Systems: An Ecological
Perspective.
IIASA Working Paper WP-96-002.

Journal of Mathematical Biology (1996) 34, 556–578.

No. 5 Law R, Marrow P, Dieckmann U:
On Evolution under Asymmetric Competition.
IIASA Working Paper WP-96-003.

Evolutionary Ecology (1997) 11, 485–501.

No. 6 Metz JAJ, Mylius SD, Diekmann O:
When Does Evolution Optimise? On the Relation between Types of Density
Dependence and Evolutionarily Stable Life History Parameters.
IIASA Working Paper WP-96-004.

No. 7 Ferrière R, Gatto M:
Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic
Populations.
Theoretical Population Biology (1995) 48, 126–171.

No. 8 Ferrière R, Fox GA:
Chaos and Evolution.
Trends in Ecology and Evolution (1995) 10, 480–485.



No. 9 Ferrière R, Michod RE:
The Evolution of Cooperation in Spatially Heterogeneous Populations.
IIASA Working Paper WP-96-029.

American Naturalist (1996) 147, 692–717.

No. 10 Van Dooren TJM, Metz JAJ:
Delayed Maturation in Temporally Structured Populations with Non-Equilibrium
Dynamics.
IIASA Working Paper WP-96-070.

Journal of Evolutionary Biology (1998) 11, 41–62.

No. 11 Geritz SAH, Metz JAJ, KisdíE, Meszéna G:
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Evolutionary Branching and Coexistence of Germination Strategies.
IIASA Interim Report IR-99-014.

No. 35 Dieckmann U, Doebeli M:
On the Origin of Species by Sympatric Speciation.
IIASA Interim Report IR-99-013.

Nature (1999) 400, 354–357.



No. 36 Metz JAJ, Gyllenberg M:
How Should We Define Fitness in Structured Metapopulation Models? In-
cluding an Application to the Calculation of Evolutionarily Stable Dispersal
Strategies.
IIASA Interim Report IR-99-019.

Research Report A39 (1999), University of Turku, Institute of Applied Mathematics, Turku,
Finland.

No. 37 Gyllenberg M, Metz JAJ:
On Fitness in Structured Metapopulations.
IIASA Interim Report IR-99-037.

Research Report A38 (1999), University of Turku, Institute of Applied Mathematics, Turku,
Finland.
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Abstract

Dead shoots of colonies of a leafy hepatic speciesLophozia silvicolaBuch are replaced
by shoots developing from asexual propagules, the gemmae. Observations of two
populations ofL. silvicolashowed a strong decreasing seasonal trend in germinability of
the gemmae. We suggest that the non-germinating gemmae enter dormancy, and that the
proportion of gemmae entering dormancy is season-specific. We assume that there are
two types of gemmae, dormant and non-dormant and that only the dormant gemmae can
survive during winter. Using a stochastic individual-based cellular automaton model, we
investigated whether selection on season-specific dormancy fraction would lead to a
decreasing proportion of germinating gemmae. Thus the germination schedule is the
evolving trait in the model. Parameter estimates for the model were based on data
collected from a population ofL. silvicola in southern Finland over a three-year study
period. In the simulations, the germination schedule shaped by evolutionary change was
similar to the observed pattern. Thus the modelling results give support to the dormancy
hypothesis. The qualitative pattern of decreasing germinability towards the end of the
growing season is robust. Quantitative predictions are influenced by changes in
parameters; for example, if winter mortality of shoots increases relative to mortality
during the growing season, production of an increased fraction of dormant gemmae is
favoured, especially at the end of the season.
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Clonal dynamics and evolution of dormancy
in the leafy hepatic Lophozia silvicola
Sanna Laaka-Lindberg
Mikko Heino

Introduction
Dormancy of propagules is widespread in both the animal and plant kingdoms, and it
can play a crucial role in population dynamics. Dormancy has been considered as an
evolutionary response to unpredictable environmental variability (e.g., Evans & Cabin
1995). Furthermore, dormancy and dispersal can be seen as alternative adaptations in
temporally and spatially variable environments (e.g. Venable & Brown 1988, Cohen &
Levin 1991, McPeek & Kalisz 1998). Generally, dormancy can be seen as a risk-
spreading strategy that enhances survival, effective resource use and avoidance of
competition in populations in temporally or spatially heterogeneous environments
(Symonides 1989, Rees 1996, Hyatt & Evans 1998).

Most plant studies on dormancy have been made on vascular plants, where the
ungerminated fraction of seeds forms a persistent seed bank in soil. In lower plants
including bryophytes, dormancy of diaspores is less well known (Knoop 1984),
although presence of spores or other propagules has been demonstrated in diaspore
banks in chalk grasslands, arable lands and forest soil (During & Horst 1983, Jonsson
1993, Bisang 1996). In hepatic diaspores, dormancy has previously been reported in the
thalloid speciesSphaerocarpos donelliiAust., S. texanusAust. andBlasia pusillaL.
(Kurz 1976, Duckett & Renzaglia 1993, McLetchie 1999). Harper (1977) distinguished
two types of dormancy in plants: enforced dormancy with no germination because of
unfavourable conditions, and innate and induced dormancy with no germination even in
favourable conditions without a specific stimulus required to break the dormancy. In
bryophytes, survival of diaspores in the soil usually seems to be due to enforced
dormancy, whilst the frequency of innate or induced dormancy is unclear (reviewed in
During 1979, Mogensen 1981, 1983).

About 46 % of hepatic species have been reported to produce asexual propagules at
least occasionally (Laaka-Lindberg et al. 2000). Therefore, it is surprising that so little
attention has been paid to dynamics and evolution of asexual reproduction in hepatics,
even though its role has often been considered essential (Wyatt 1982, Mishler 1988, see
also Anderson 1963). The topics of population dynamics and life history evolution of
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bryophytes have, however, been dealt with in a number of recent studies on mosses (e.g.
Newton & Mishler 1994, Økland 1995, Hedderson & Longton 1995, 1996, Longton
1997, Rydgren et al. 1998). The few studies on population ecology of leafy hepatics
include those by Jonsson and Söderström (1988, Söderström & Jonsson 1989) on
Ptilidium pulcherrimum (Web.) Hampe, and Laaka-Lindberg (1999) onLophozia

silvicolaBuch.
The importance of asexual reproduction becomes clear when considering the hepatic

life cycle (Fig. 1) with alternating haploid (gametophytic) and diploid (sporophytic)
generations (e.g. Schofield 1985). Gemmae are produced by mitotic cell divisions on
leaves of the gametophyte shoot. Upon germination, a new juvenile shoot develops on a
short protonemal tube in a similar fashion as in germinating spores, and this warrants
the use of the concept of “asexual reproduction” in gemmiferous hepatics (see Mogie
1992). In species with facultative reproductive modes, sexual and asexual reproduction
have different ecological and evolutionary roles (Newton & Mishler 1994), and in
species inhabiting a system of habitat patches, randomly varying within-patch fitnesses
favour propensity for both dispersal and dormancy (McPeek & Kalisz 1998).

Observations on natural populations ofLophozia silvicolain central Norway (Laaka-
Lindberg 1999) and in southern Finland (this paper) have shown that germinability of
gemmae decreases strikingly towards the end of the growing season. We put forward a
hypothesis that some of the gemmae do not germinate because they have become
dormant. If only the dormant gemmae can successfully overwinter, non-dormant and
dormant gemmae will have different functional roles in clonal dynamics. Dormant
gemmae can quickly colonise empty space created by shoot mortality during the winter,
whereas non-dormant gemmae can replace the shoots that die during the growing
season. Thus, the seasonal decline in germinability could actually be a consequence of
an adaptive strategy, involving dormancy dependent on the time of gemma production.

In this paper, we first present field data on germinability and life history
characteristics ofLophozia silvicolaBuch, a leafy hepatic, which reproduces frequently
by producing asexual uni- or bicellular gemmae in masses at the tips of the uppermost
leaf lobes.L. silvicola is a dioicous species with separate female and male shoots.
Frequency of sexually reproducing colonies is 16 % (n = 92) in the sampling area. In
contrast, asexual gemmae are abundant in all colonies. The data on life history
characteristics are used to construct an individual-based model of clonal dynamics in
this species. The model is used to investigate whether a seasonally increasing frequency
of dormancy is a likely outcome of adaptive change in the ecological setting. Finally,
the results of the model are compared with field observations ofL. silvicola.
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Figure 1. Sexual and asexual reproductive cycles of gametophytes ofLophozia silvicola,
and sporophyte generation as a result of sexual reproduction. Non-gametangia-bearing
(NGB) shoots represent the mature gametophyte stage in the asexual cycle.

Materials and methods

Study site

The study site is a spruce-dominated old-growth forest in Kotinen Nature Reserve at
Lammi commune, southern Finland (61º 14´N 25º 03´E). We sampled five colonies
picked randomly in a 100 ha grid over three growing seasons from 1997-1999. The
sampling was repeated in each of the colonies once a month during the growing season,
from May to October. The data on production of gemmae and survival of shoots and
gemmae are based on observations in the field and in the laboratory. The long-term
averages of traits measured are used as parameter estimates in the individual-based
model.
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Gemmae counts, germinability and vitality

At each sampling time, we estimated the numbers of gemmae by counting the gemmae
in a haemacytometer (Laaka-Lindberg 1999). As it was not possible to measure the
production and release rates of gemmae directly in the field from the data on numbers of
gemmae present on shoots, we made rough estimates of these parameters using an
indirect method described in the section “Model of the dynamics ofLophozia silvicola“
below. We tested the germinability of gemmae in Knop´s liquid-culture medium
(Nehira 1988) with the incubation time extended from two to three weeks (see Laaka-
Lindberg 1999). Five replicates were used for each month's test. We estimated the
vitality of dormant gemmae during the growing season 1999 by monitoring the state of
non-germinated gemmae under a microscope after the three weeks incubation in the
liquid-culture. Non-germinated gemmae with chloroplasts, intact cell walls and opaque
cell contents were interpreted as being healthy, and the gemmae with transparent,
deformed cells with contracted protoplasm as being dead.

Shoot survival and density

The survival of shoots over the winter and during the growing season was estimated by
counting dead individual shoots in 1 cm2 sample squares, assuming that shoots that died
between sample times were still present, i.e. they had not decayed too much. The shoot
density was measured in the same 1 cm2 squares. The samples were collected from five
colonies, divided into sectors sampled in a systematic sequence in order to avoid any
effect of the destructive sampling on colony density. The sampling was repeated over
the three-year period in the same colonies during the growing season. The proportion of
living shoots in the first sampling in May was used to calculate an estimate of winter
survival. To estimate the average colony size, we measured the surface area of all theL.

silvicolacolonies present on a 50x50 m sample plot.
The differences between sampling periods and between years in germinability,

gemma production and shoot density were tested by ANOVA with repeated sampling
design and Huyhn-Feldt statistics. Changes in germinability were further tested by a
linear regression model. The tests were calculated by SYSTAT for Windows (1992)
statistical software.

Field results

The average colony size ofLophozia silvicolain the sample area was 24.9 cm2 (n = 92,
S.D. 52.7). The average shoot density in the colonies was 21.0 shoots per cm2 (n = 18,
S.D. 5.55). No differences in shoot densities (Table 1) were detected, either between
sampling months (F=1.210, df = 5,10, P =0.372, H-F=0.372), or between years (F =
0.475, df = 2,10, P = 0.635, H-F = 0.635). Average monthly mortality of shoots (Table
1) in L. silvicola over the three years was fairly constant during the growing season, on
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average 3.5 %. The proportion of dead shoots in the colonies was highest in the first
sampling period, on average 13 %, reflecting mortality in the preceding winter.

The average numbers of gemmae present on shoots during the growing season varied
from 1088 to 2653 (Table 2). The difference between years was significant (F = 9.845,
df = 2,10, P = 0.004, H-F = 0.004, Table 2), the three year average showing a slightly
parabolic trend over the season (Fig. 3). The monthly averages are, however, not
significantly different (F = 1.824, df = 5,10, P = 0.196, H-F = 0.196). At the start of the
growing season in May, 69 % of the gemmae germinated in the culture, and
germinability decreased towards the end of the season to less than 20 % (Table 1, Fig.
3). The linear regression model revealed a significantly decreasing trend in
germinability through the growing season (r2 = 0.815, F = 17.639, P < 0.014, Fig. 2).
The proportion of dead, non-germinated gemmae varied between months (Table 1),
being on average 51%.

Model of the dynamics of Lophozia silvicola

Model structure

We used an individual-based cellular automaton model (Judson 1994, Solé &
Bascompte 1998) to model the dynamics ofLophozia silvicolain a patch. This is a
suitable approach because patches are small, reproduction mainly asexual, gemmae are
only dispersed locally and lack of space limits growth. We assumed that clones differ in
the fraction of dormant gemmae produced during different parts of the season and that
the type of gemma is influenced only by its mother’s genotype. The variation in
germinability is maintained by mutations that may occur in the gemmae. Evolutionary
change in the model is driven by between-clone differences in ecological performance:
competition occurs between the clones when gemmae germinate and replace dead
shoots. The clones with high germination of gemmae at the times when replacement
opportunities arise will contribute relatively many new shoots, and as the consequence
these clones will increase in frequency.

Space was modelled as a square lattice, where each cell in the lattice supports at most
one shoot, as well as an unlimited number of gemmae. The lattice size was 23 x 23
cells, corresponding to the typical size of aLophoziacolony in the field, 24.9 cm2 with
21 shoots/ cm2. The growing season in the model was divided into the six months
corresponding to the months of field sampling. The strategy of a clone is a vector of the
probabilities that each newly produced gemma is non-dormant,pi, i = May, June, July,
August, September, October.
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Sampling month

May June July August September October

Shoot density

Mean n/cm2 17.6 21.4 24.0 21.3 20.1 21.8

S.D. 2.35 2.30 4.62 1.51 2.17 4.47

Proportion of dead shoots; shoot mortality

Mean proportion 0.13 0.038 0.037 0.028 0.040 0.032

S.D. 0.031 0.001 0.011 0.011 0.014 0.009

Germinability of gemmae

Mean proportion 0.690 0.413 0.308 0.307 0.195 0.197

S.D. 0.132 0.184 0.065 0.121 0.039 0.027

Proportion of dead gemmae; gemma mortality

Mean proportion 0.68 0.68 0.36 0.70 0.32 0.34

S.D. 0.252 0.171 0.371 0.228 0.068 0.079

Table 1. Three-year mean values with S.D. of monthly shoot density, germinability of
gemmae, and proportions of dead shoots, and dead gemmae in liquid culture of
Lophozia silvicolaused for model parameterisation.

Sampling month

May June July August September October

Y97 n/shoot 2130 2354 4391 3891 3781 1989

S.D. 1680.6 876.5 2637.7 1371.3 4247.2 1393.8

Y98 n/shoot 533 1719 1417 1833 735 1016

S.D. 480.8 976.5 2239.5 1505.0 3029.9 1138.9

Y99 n/shoot 602 787 1308 1333 3444 1384

S.D. 515.8 775.3 556.0 875.7 1773.4 392.7

Y97-Y99 n/shoot 1088 1620 2372 2352 2653 1463

S.D. 902.8 787.6 1749.4 1355.8 1670.4 491.3

Table 2. Numbers of gemmae present on shoots ofLophozia silvicoladuring the
growing season from May to October over the three years study. The monthly numbers
of gemmae are mean values (n = 5) with S.D. Values in bold represent three year
average numbers.



7

0

0.2

0.4

0.6

0.8

1

May June July Aug. Sept. Oct.

G
er

m
in

ab
ili

ty
of

ge
m

m
ae

y=0.664 - 0.089 x, r2 = 0.815

Figure 2. Linear regression of germinability of gemmae inLophozia silvicolaalong the growth
season from May (x = 1) to October (x = 6). The decline in germinability is statistically
significant (F = 17.638, P < 0.014).
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an average shoot ofLophozia silvicola. The model assumes a parabolic seasonal pattern in
production of gemmae, and release of a constant fraction of the gemmae present at each time
interval. Integration of release rate for each month gives the monthly numbers of released
gemmae presented in Table 1.
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At the beginning of each time step of the model, every mature shoot (at least 2
months old) releases a total number offi gemmae. The number of non-dormant gemmae
released is a binomial variate with meanpi fi; the remaining gemmae enter dormancy.
Half of the gemmae remain within the cell in which they were released; the other half
are distributed uniformally randomly among the neighbouring eight cells. All gemmae
that fall outside the lattice immediately die, whereas the others enter the diaspore bank.
In the bank, dormant and non-dormant gemmae survive with monthly probabilitiessds

and sns, respectively. Shoots have a monthly survival probabilitysss. At the end of a
month, empty cells are colonised by non-dormant gemmae through lottery competition
(Chesson & Warner 1981). Only one gemma can take over the cell, and all other non-
dormant gemmae in that cell die.

During the winter, all non-dormant gemmae die (snw = 0). Each dormant gemma has
a survival probabilitysdw, and each shoot has a survival probabilityssw. In spring, empty
cells (i.e., without a shoot) are colonised by dormant gemmae from the gemma bank. A
randomly chosen gemma becomes established as a new shoot, while all other gemmae
in that cell die.

The germination schedule was the evolving strategy in the model. This strategy was
discretised such that probabilities of being a dormant gemma,pi, can only have values 0,
0.25, 0.5, 0.75 and 1. Mutations occured with probabilitym = 0.01 per gemma. The
effect of a mutation was to change one of the dormancy probabilitiespi either up or
down one step. Mutations that would have resulted in a value not in the range 0…1
were ignored.

Simulation procedure and parameter estimation

The simulations were initialised with one mature shoot with a germination strategy
without dormancy placed into a randomly selected cell. The model was run for 1000
’years’. During this time, the population evolved to a stochastic equilibrium maintained
by mutation-selection balance, and the common clones were all similar to each other. At
this stage, the coexisting clones formed an evolutionarily ‘optimal’ coalition in the
sense that there was no directional selection for altered germination strategy. The last
200 years were used to calculate mean population strategy, which we refer to as an
‘evolved germination schedule’. The robustness of the results against uncertainty in
parameter values was checked by letting parameters assume other feasible values.
Below we introduce the default parameter values, henceforth referred to as the ‘basic
parameters’.

Survival probability of shoots during summer was estimated as the geometric mean
of survival probabilities in June–October, obtained from the mortality values in Table 2.
This yields an estimatesss = 0.96. Mortality observed in May (0.13) is assumed to be a
result of within season mortality (1-sss) and overwintering mortality. Thus we can
estimate overwintering survival of shoots to bessw = (1-0.13)/sss = 0.90. The fraction of
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dead gemmae is known from the germinability assays. However, dead gemmae are all
alike, and we have assumed equal survival between the two types,sds = sns = 0.70.
Overwintering survival of dormant gemmae cannot be known; here we assumedsdw =
0.50.

No direct measurements of production and release rates of gemmae exist. However,
using the data on actual numbers of gemmae present, we can obtain rough estimates by
assuming that production of gemmae has a seasonal, parabolic pattern, and that a
constant fraction of the gemmae present is released during a time unit (see Fig. 3). In the
model, we specifically assumed that production was zero on 1 May (the time when
snow cover disappears) and on 15 October (just before appearance of new snow). This
idea can be expressed as a differential equationdN(t)/dt= at(5.5-t)-cN(t), whereN is the
number of gemmae present,t is time in months starting from 1 May,a is a parameter
that scales the maximum rate of gemma production, andc>0 is the release rate of
gemmae. This equation was integrated, and the resulting equation was fitted to the data
in Table 1 using non-linear regression. Although the parameter estimatesa = 336 (S.E.
216) andc = 0.844 (0.582) were not significantly different from zero, the model fits
well the observed pattern of presence of gemmae, and the predicted rates are
biologically reasonable (Fig. 3). The resulting model was used to calculate monthly
estimates of gemmae released (Table 2).

Simulation results

Dormancy arose very rapidly in the model, especially during the latter part of the
growing season (Fig. 4). After ca. 500 years, the germination schedule had reached a
stochastic equilibrium: there were some fluctuations in the population means of the
proportion of non-dormant gemmae, but no long-term trends are apparent.

In the model selection favours the germination schedule with increasing tendency of
dormancy towards the end of the growing season: the germinability was uniformly high
during the first months, but then declined strongly (thick line in Fig. 5). Thus, the result
of our model is in qualitative agreement with the field observations (Fig. 2), although
the predicted germinability was somewhat higher than that observed during most of the
season.



10

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

Time (years)

P
ro

po
rt

io
n

of
no

n-
do

rm
an

tg
em

m
ae

aa
aa

October

August

May

Figure 4. An example of the evolution of the germination schedule in the individual-
based model. In the beginning of the simulation, there is a strong directional selection
towards production of higher numbers of dormant gemmae, especially late in the growth
season. For clarity, only the trajectories for germinability in May, August and October
are shown.

Figure 5 also illustrates the sensitivity of the predictions to changes in some
parameter values. We see that germinability late in the season is influenced by survival
of shoots during the growing season and in winter. If survival in winter is decreased, or
survival during the growing season increased, the fraction of dormant gemmae produced
increases, especially at the end of season. Conversely, when winter mortality is less
severe, or mortality during the growing season higher, the frequency of dormancy
decreases (Fig. 5).

The survival of dormant gemmae during winter only has a small effect on the model-
predicted germination schedule, although slightly more dormant gemmae were
produced when their survival was higher (Fig. 6). The germination schedule was also
insensitive to changes in within-season survival, where both types of gemmae had the
same survival probability (Fig. 6). Where only the survival of dormant gemmae was
increased, the overall number of dormant gemmae produced remained similar, but on
average, they were produced slightly earlier in the season.
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Figure 5. Evolved germination schedule in the basic model (thick line) and when
survival probabilities of shoots are varied (thin lines). In all cases, dormant gemmae
become more frequent towards the end of growth season. Parameter values: basic, lower
and higher winter survival,ssw = 0.90,ssw = 0.75 andssw = 0.95, respectively; basic,
lower and higher within-season survival,sss = 0.96, sss = 0.90 and sss = 0.99,
respectively.
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Figure 6. The evolved germination schedules when survival probabilities of gemmae are
varied. Parameter values: basic, lower and higher winter survival,sdw = 0.52,sdw = 0.25
andsdw = 0.75, respectively; basic, lower and higher within-season survival,sds = sns =
0.70,sds = sns = 0.60 andsds = sns = 0.80, respectively.
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Discussion

Germinability of gemmae ofLophozia silvicolashows a strong seasonal decline. We
hypothesise that this decline is the consequence of an increasing frequency of dormant
gemmae being produced. Our hypothesis is supported by the results of the simulation
model developed forL. silvicola: there is a clear pattern of increasing frequency of
dormancy towards the end of the growing season. Even though changes in parameter
values cause changes in quantitative predictions, the overall seasonal pattern is
remarkably robust. This also indicates that the gross ecological processes are captured
well by the model.

Direct evidence for existence of dormant gemmae inL. silvicola is still lacking. For
example, we have no evidence that the gemmae that do not germinate in the liquid
culture would do so after winter, nor that the gemmae that do germinate would have
died during winter. However, presence ofL. silvicola in the diaspore bank in boreal
forest soil has been demonstrated previously by Jonsson (1993), although it is unknown
whether the diaspores were gemmae or spores. Dormant gemmae are known in other
hepatics: in the thalloid hepaticBlasia pusilla, two morphs of gemmae with
differentiated roles have been reported (Duckett & Renzaglia 1993): stellate gemmae
germinate instantly, but ellipsoid gemmae germinate only after overwintering. In
Lophozia silvicola, no morphological differences can be observed between germinating
and non-germinating gemmae. Thus, our results emphasize the need for further
experimental studies on dormancy inL. silvicolagemmae.

The model predicts the observed pattern of germinability well, but there is a
quantitative discrepancy: for most of the season, the predicted germinability is too high.
One reason might be that the estimated survival of shoots during the growing season is
too low (cf. Fig. 5). Current estimation of within-season survival assumes that a dead
shoot will disappear in a month. If decomposition of dead shoots takes longer, then our
survival estimates are too low. This is not unlikely as decomposition rate is affected by
varying humidity.

Time-dependent dormancy (or diapause) has also been modelled in a number of
earlier papers. Some models assume a sudden switch, from all diaspores germinating
immediately, to all diaspores entering dormancy (e.g. Taylor 1980), whereas more
flexible models allow gradual seasonal responses (Cohen 1970, McNamara 1994). In
these models, gradual increase in dormancy requires environmental stochasticity in
some form, either unpredictable season length or stochastic demographic rates. Thus,
the results from our stochastic individual-based model agree with the earlier work.

Field data on the population ecology and life history ofLophozia silvicolaare
difficult to obtain. Thus, in addition to uncertainty in parameter values, some
assumptions in the model structure are very tentative --- they are based on observations
rather than on quantitative measurements. These assumptions include the age at which
shoots start to produce gemmae. The new shoots develop from germinated gemmae
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relatively slowly. In liquid culture, the germination of gemmae takes about three weeks.
A shoot bud develops on the short protonemal tube emerging from a germinated gemma
(Knoop 1984, Laaka-Lindberg 1999), but the differentiation of a new shoot occurs
slowly. Juvenile shoots start to appear in the colonies during the first half of the growing
season, but these do not carry gemmae until they reach a certain size (Buch 1911). Thus
two months was taken as a feasible estimate of the age at which the first gemmae are
produced.

In general, Lophozia silvicola shoots are perennial, and capable of nearly
indeterminate growth by branching. However, individual shoots with segments,
indicating that growth occured during more than three growing seasons, are rare. Shoot
mortality is related to environmental conditions. The frequency of dead shoots was
highest in May, after winter mortality has taken place (Table 2). The mortality rate, as
judged from the number of dead shoots present, appears to be low during the growing
season. However, roughly two-thirds of the yearly mortality takes place during the
growing season (assuming decomposition time of one month for the dead shoots, see
above). Variation in mortality is very high especially because of between-year and
between-month variation in humidity.

Shoot density does not vary significantly between sampling months or between years
(Table 1), indicating fairly stable dynamics at population level, at least within the period
under consideration here. The relative stability of shoot density indicates that repeated
sampling itself does not affect the shoot density in the colonies.

The role of dormant asexually produced diaspores in turnover ofLophozia silvicola

populations supports the view of asexual reproduction is an important means of
maintaining local populations. In the study site in southern Finland, colonies ofL.

silvicola are covered by snow for half of the year. Mortality occurs also during the
winter, but no colonisation can take place and vacant sites accumulate. Winter mortality
is then compensated for by renewal of the colonies from dormant diaspores which
readily germinate in the spring. During the growing season variation, especially in
humidity, causes variation in mortality. In summer, dead shoots are replaced by new
individuals germinating from available non-dormant diaspores. High between-year
variation in monthly numbers of gemmae present onL. silvicola shoots is probably a
consequence of varying weather conditions. This can be intepreted as an indication that
environmental variability causes selective pressure in favour of the production of
dormant gemmae (see Rees 1996, Hyatt & Evans 1998).

On the basis of our simulations, the amount of free space created by winter mortality
relative to the free space becoming available during the growing season is expected to
have a high impact on frequency of dormancy in a population. If mortality during the
winter increases, then an increase in the proportion of dormant gemmae produced is
favoured, while if within-season mortality is increased, the opposite will be true. These
predictions could be tested by comparing populations living in different environments.
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