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The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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Evolutionarily Singular Strategies and the Adaptive Growth and Branching
of the Evolutionary Tree.
IIASA Working Paper WP-96-114.

Evolutionary Ecology (1998) 12, 35–57.

No. 13 Heino M, Metz JAJ, Kaitala V:
Evolution of Mixed Maturation Strategies in Semelparous Life-Histories: the
Crucial Role of Dimensionality of Feedback Environment.
IIASA Working Paper WP-96-126.

Philosophical Transactions of the Royal Society of London Series B (1997) 352, 1647–
1655.

No. 14 Dieckmann U:
Can Adaptive Dynamics Invade?
IIASA Working Paper WP-96-152.

Trends in Ecology and Evolution (1997) 12, 128–131.
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Abstract

We present a new mechanism promoting cooperative behavior among selfish indi-
viduals in the public goods game. This game represents a straightforward general-
ization of the prisoner’s dilemma to an arbitrary number of players. In contrast to
the compulsory public goods game, optional participation provides a natural way
to avoid deadlocks in the state of mutual defection. The three resulting strategies
– collaboration or defection in the public goods game, as well as not joining at all
– are studied by means of a replicator dynamics, which can be completely analysed
in spite of the fact that some payoff terms are nonlinear. If cooperation is valuable
enough, the dynamics exhibits a rock-scissors-paper type of cycling between the
three strategies, leading to sizeable average levels of cooperation in the population.
Thus, voluntary participation makes cooperation possible. But for each strategy,
the average payoff value remains equal to the earnings of those not participating in
the public goods game.
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Oscillations In Optional Public Good Games

Christoph Hauert

Silvia De Monte

Karl Sigmund

Josef Hofbauer

1 Introduction

Most theories on the emergence of cooperation among selfish individuals are based
on kin selection (Hamilton, 1963), group selection (Wilson & Sober, 1994) and recip-
rocal altruism (Trivers, 1971). In all three models, cooperative behavior is attained
through basic mechanisms of discrimination enabling individuals to target their al-
truistic acts towards certain partners only.

In this article, we present another mechanism to achieve sizeable levels of coop-
eration in a population. The following investigation is based on the public goods
game (see Fehr & Gächter, 1999; Kagel & Roth, 1995), which represents a natural
extension of the prisoner’s dilemma to an arbitrary number of players (see Boyd &
Richerson, 1988; Dawes, 1980; Hauert & Schuster, 1997).

In a typical public goods game, an experimenter gives 10 dollars to each of six
players. The players may contribute part or all of their money to some common
pool. The experimenter then triples this amount and divides it equally among the
six players, irrespective of the amount of their individual contribution. If all six
players contribute maximally, they will end up with 30 dollars each. But each
individual is faced with the temptation to exploit, as a free rider, the contributions
of the co-players. Since investing one dollar yields only a return of 50 cents to the
investor, the dominating strategy is to invest nothing at all. If all players do this,
they will not increase their initial capital. In this sense, the ‘rational’ equilibrium
solution prescribed to ‘homo oeconomicus’ leads to economic stalemate. In actual
experiments, players tend to invest a lot, however (see Fehr & Gächter, 1999).

Public goods games are abundant in human and animal societies, and can be
seen as basic examples of economic interactions (see e.g. Binmore, 1994; Dugatkin,
1997).

Their essence was already brought to light by Jean Jacques Rousseau (1755)
in his ‘Discourse on Inequality,’ when he described a dilemma experienced by the
participants in a stag hunt. The success of a stag hunt depends on the cooperation
of a group of hunters. Each hunter can improve his lot by defecting, and joining
only for dinner. However, if all hunters defect, there will be nothing for dinner.

Actually Rousseau’s example is a bit more complex, and this in a highly relevant
way. In Rousseau’s example, individuals have the option either to join a group
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of stag hunters, or else to hunt for a hare on their own. If we include this asocial
‘fallback’ solution, we shall see that a certain amount of cooperation indeed emerges.

We mention that a ‘stag hunt game’ motivated by Rousseau’s example plays an
important role in game theory, and in particular in equilibrium selection (see for
instance Samuelson, 1997) or Young (1998)), who however does not use the term,
but this is not related to the following model.

2 The Model

We consider a large population of players. From time to time, N such players are
chosen randomly – the ‘stag hunt party.’ Within such a group, players can either
contribute some fixed amount c or nothing at all. The return of the public good, i.e.
the payoff to the players in the group, depends on the frequency of cooperators. If nc
denotes their number among the public goods players, the net payoff for cooperators
Pc and defectors Pd will be given by:

Pc = −c+ rc
nc
N

Pd = rc
nc
N

,

where r denotes the interest rate on the common pool. For a public goods game
deserving its name, we must have:

1 < r < N. (1)

The first inequality states that if all do the same, they are better off cooperat-
ing than defecting; the second inequality states that each individual is better off
defecting than cooperating. Selfish players will therefore always avoid the cost of
cooperation c, so that a collective of selfish players will not cooperate. Defection is
the dominating strategy. Hence both classical and evolutionary game theory predict
that all players will defect, and obtain payoff 0.

We now extend the public goods game. In this optional public goods game,
players can decide whether to participate in the public goods game or not. (For
a similar approach in the prisoner’s dilemma, see Batali & Kitcher (1995); Orbell
& Dawes (1993).) Individuals unwilling to join the public goods game are termed
loners. These players prefer to rely on a small but fixed payoff Pl = σc with

0 < σ < r − 1, (2)

such that the members in a group where all cooperate are better off than loners,
but loners are better off than members in a group of defectors.

In the stag hunt example, players unwilling to join the stag hunt can hunt hares,
an activity for which a collective effort is not necessary. Players joining a stag hunt
or participating in a public goods game are effectively speculating that it will contain
few free riders.
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For the optional public goods game, there are thus three behavioural types in the
population: (a) the loners unwilling to join the public goods game, (b) the coopera-
tors ready to join the group and to contribute their effort, and (c) the defectors who
join, but do not contribute. Assuming that groups form randomly, the payoffs for
the different strategies Pc, Pd and Pl are then determined by the relative frequencies
x,y and z of the three strategies.

3 The Equations of Motion

Evolutionary game theory assumes that a strategy’s payoff determines the growth
rate of its frequency within the population. More precisely, following Weibull (1995);
Schlag (1998) and Hofbauer & Sigmund (1998), we postulate in our model that
players using strategies i = 1, ..., n occasionally compare their payoff with that of
a randomly chosen ‘model’ member of the population, and adopt the strategy of
their model with a probability proportional to the difference between the model’s
payoff and their own, if this is positive (and with probability 0 otherwise). In the
continuous time model, the evolution of the frequencies xi of the strategies i is given
by

ẋi =
∑

j

xixj(Pi − Pj) (3)

with 1 ≤ i, j ≤ n, which reduces to the replicator equation

ẋi = xi
∑

(Pi − P̄ ) (4)

where P̄ =
∑

xjPj is the average payoff in the population.
For simplicity and without loss of generality, we set the cost c of cooperation

equal to 1. The payoff for loners is then given by the constant

Pl = σ.

In order to compute the payoff values for cooperators and defectors, we first
derive the probability that S of the N sampled individuals are actually willing to
join the public goods game. In the case S = 1 (no co-player shows up) we assume
that the player has no other option than to play as a loner, and obtains payoff σ.
This happens with probability zN−1. For a given player willing to join the public
goods game, the probability of finding, among the N−1 other players in the sample,
S − 1 co-players joining the group (S > 1), is

(

N − 1
S − 1

)

(1− z)S−1zN−S .

The probability that m of these players are cooperators, and S− 1−m defectors, is

(

x

x+ y

)m(
y

x+ y

)S−1−m (
S − 1
m

)

.
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In that case, the payoff for defectors is r · m/S. Hence the expected payoff for a
defector in a group of S players (S = 2, ..., N) is

r

S

S−1
∑

m=0

m

(

x

x+ y

)m( y

x+ y

)S−1−m(
S − 1
m

)

=
r

S
(S − 1)

x

x+ y
.

Thus,

Pd = σzN−1 + r
x

1− z

N
∑

S=1

(

N − 1
S − 1

)

(1− z)S−1zN−S
(

1−
1

S

)

= σzN−1 + r
x

1− z

[

1−
N
∑

S=1

(

N − 1
S − 1

)

(1− z)S−1zN−S
1

S

]

and using

(

N − 1
S − 1

)

=

(

N
S

)

S
N

leads to

Pd = σzN−1 + r
x

1− z

(

1−
1− zN

N(1− z)

)

. (5)

In a group with S − 1 co-players playing the public goods game, switching from
cooperation to defection yields 1− r/S. Hence,

Pd − Pc =
N
∑

S=2

(

1−
r

S

)

(

N − 1
S − 1

)

(1− z)S−1zN−S.

Using the same arguments as before, we obtain

Pd − Pc = 1 + (r − 1)zN−1 −
r

N

1− zN

1− z
=: F (z). (6)

The advantage of defectors over cooperators depends only on the fraction of indi-
viduals actually willing to play i.e. on the fraction of loners z. At the same time, it
is independent of the loner’s payoff σ.

The sign of Pd−Pc in fact determines whether it pays to switch from cooperation
to defection or vice versa, F (z) = 0 being the equilibrium condition. We claim that
for r ≤ 2, F has no root, and for r > 2 exactly one root ẑ in the interval (0, 1).
In order to show this, we consider the function G(z) = F (z)(1− z) which has the
same roots as F (z) in (0, 1) and note that (a) G(0) = 1− r/N > 0, (b) G(1) = 0,
(c) G(z) ≍ (2− r)(N − 1)(1− z)2 for z → 1, such that in a neighborhood of z = 1
G(z) is negative for r > 2, and (d) G

′′

(z) = zN−3(N − 1)((N − 2)(r − 1) − z(Nr −
N − r)) changes sign at most once in (0, 1). Thus, for r > 2 (which by equation (1)
implies N > 2) there exists a threshold value of the loners frequency ẑ above which
cooperators fare better than defectors (see figure 1).

The average population payoff P̄ can now be rewritten using the condition y =
1− x− z:

P̄ = xPc + yPd + zPl = x(Pc − Pd) + z(σ − Pd) + Pd

= −x(Pd − Pc) + (1− z)(Pd − σ) + σ.

Substituting equations (5) and (6) then yields

P̄ = σ − [(1− z)σ − (r − 1)x] (1− zN−1). (7)

4



0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

z

F
(z

) r = 2

r > 2

r < 2

Figure 1: The difference between the payoff of cooperators Pc and defectors Pd is a

function of the fraction of loners z: F (z) = Pd − Pc. If almost everybody is participating

in the public goods game (z → 0) then F (z) > 0 holds and it pays to defect. However, for

interest rates r > 2, if the proportion z of loners increases, it eventually pays to cooperate

(F (z) < 0) and the social dilemma disappears – at least for a while. F (z) has either no

or a unique root in the interval (0, 1).

4 The Dynamics

Let us now analyse the replicator dynamics. The corners of the simplex S3 =
{(x, y, z) : x, y, z ≥ 0, x + y + z = 1}, i.e. the vectors ei of the standard basis
(i = c, d, l in a straightforward notation), are obviously fixed points. There are
no other fixed points on the boundary of S3. In fact, the edge eced consists of an
orbit leading from ec (cooperators only) to ed (defectors only), the edge edel is an
orbit leading to the state consisting of loners only, and the orbit elec closes this
heteroclinic cycle of rock-scissors-paper type on the boundary.

In order to analyse the dynamics in the interior, it is useful to show that the
replicator equation, defined on the simplex S3, can be rewritten in the form of a
Hamiltonian system, and thus admits an invariant of motion. Indeed, defining as a
new variable f = x/(x + y), i.e. the fraction of cooperators among the individuals
actually participating in the public goods game, we obtain

ḟ =
yẋ− xẏ

(x+ y)2
=

xy

(x+ y)2
(Pc − Pd).

This, as well as substituting equation (7) into the replicator equation ż = z(σ− P̄ ),
yields

ḟ = −f(1− f)F (z) (8)

ż = [σ − f(r − 1)] z(1− z)(1− zN−1) (9)

with (f, z) on the unit square (0, 1)2. Dividing the right hand side by the function
f(1 − f)z(1− z)(1− zN−1), which is positive on the unit square, corresponds to a
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change in velocity which does not affect the orbits. This yields

ḟ =
−F (z)

z(1− z)(1− zN−1)
=: −g(z)

ż =
σ − f(r − 1)

f(1− f)
=: l(f).

Introducing H := G+ L, where G(z) and L(f) are primitives of g(z) and l(f):

G(z) = (1−
r

N
) log z + (

r

2
− 1) log(1− z) +R(z) (10)

L(f) = σ log f + (r − 1− σ) log(1− f) (11)

with R(z) bounded on [0, 1], we obtain the Hamiltonian system

ḟ = −
∂H

∂z

ż =
∂H

∂f
.

The actual dynamics of the system depends on whether the condition Pd = Pc can
be satisfied in the interior S3, and hence on the interest rate r. For r ≤ 2 there
are no fixed points except the corners and all trajectories in intS3 are homoclinic
orbits of el. Thus, the system will display intermittently brief bursts of cooperation,
but always ends up with no one willing to participate in the public goods game, as
shown in figure 2.

For r > 2, equation (2) implies that there exists a unique fixed pointQ = (x̂, ŷ, ẑ)
in intS3 such that F (ẑ) = 0 and:

x̂ =
σ

r − 1
(1− ẑ) (12)

as well as

ŷ = (1−
σ

r − 1
)(1− ẑ) (13)

which follows from Pd = Pl. Due to the fact that the system is conservative, and the
HamiltonianH attains a strict (global) maximum at ( σ

r−1
, ẑ), the interior equilibrium

Q is a center, i.e., it is neutrally stable and surrounded by closed orbits (see figure 3).
Actually all interior orbits are closed: equation (10) shows that G(z)→ −∞ for

z → 0, 1 if 2 < r < N , and equation (11) implies that L(f) → −∞ as f → 0, 1 if
σ < r − 1. Therefore H → −∞ uniformly near the boundary of [0, 1]2 and hence
all level sets of H are closed curves. In particular, no interior orbit converges to the
nonhyperbolic equilibrium el.

Variations of the three parameters N, r, σ allow to position Q anywhere in the
interior of the simplex (see figure 4). Note that in general all three parameters must
be adjusted to place Q in a particular location. According to equations (12) and
(13), the fixed point Q lies on the line

x =
σ

r − 1− σ
y (14)
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e l e d

e c

Figure 2: The three corners ec, ed, el of S3 are saddle points (but el is not hyperbolic)

and the boundary bdS3 represents a rock-scissors-paper type heteroclinic cycle. For small

interest rates, r < 2, no fixed point exists in intS3 and all orbits converge to el. But el is

not Lyapunov stable. Parameters: N = 5, r = 1.8, σ = 0.5.

independent of the group size N . For increasing N , Q moves towards the corner
el and in the limit N → ∞ homoclinic orbits issuing from and leading to el are
obtained.

For the limiting cases r = N , σ = r−1 and σ = 0, Q approaches the edges eced,
elec or eled, respectively. In particular, for r = N , cooperation becomes stable in
the sense that, while the state can fluctuate along the edge z = 0 by random drift,
any small fluctuation introducing the missing loners will be offset in such a way that
the loners vanish again and the number of cooperators is larger than previously (see
figure 5).

Although the time averages of the state variables over an orbit of period T , de-
fined as v̄ = 1

T

∫ T

0
v dt, depend on the initial conditions, the following relations hold

for every orbit. First, the average fraction of cooperators among playing individuals
corresponds to its value at the equilibrium point Q:

x̄

x̄+ ȳ
=

σ

r − 1
. (15)

This means that the time average lies on the solid line in figure 4 which connects
Q and el. Second, the average of the fraction of cooperators among participants in
public goods games f̄ corresponds to the fraction of the averages:

f̄ =
σ

r − 1
. (16)
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e l e d

e c

Q

Figure 3: For r > 2, the three corners ec, ed, el are again saddle points and bdS3 represents

a heteroclinic cycle. In intS3 a single fixed point Q appears. It is a center surrounded by

closed orbits (see text). Parameters: N = 5, r = 3, σ = 1.

Surprisingly, perhaps, increasing r always favours defection, i.e. it decreases the
fraction f of cooperators among those actually engaging in the public goods game.

According to numerical calculations, the time average lies on the line segment
Qel and converges to el as the closed orbit approaches the boundary of S3. We can
offer only a heuristic explanation of this observation: The closer the periodic orbit
is to the boundary the more time it will spend near the degenerate equilibrium el
(both eigenvalues zero) where motion is much slower than close to the hyperbolic
equilibria ec and ed.

Let us show how equation (15) is deduced by integrating equation (9). Remem-
bering that, by definition, x = f(1− z), and dividing both sides of equation (9) by
z (1− zN−1), we get:

∫ T

0

[σ(1− z)− (r − 1)x] dt =

∫ T

0

żdt

z (1− zN−1)
= p(z)

∣

∣

∣

∣

z(T )

z(0)

p(z) being a primitive of [z(1− zN−1)]−1. Since the orbits are closed, the last term
vanishes and the proportionality between x̄ and 1− z̄, i.e. x̄+ ȳ follows. The time
average (16) follows in the same way after dividing equation (9) by z(1−z)(1−zN−1).

Due to the properties of the replicator equation, the time averages of the payoffs
for the three different strategies are equal and reduce to the payoff of loners σ:

P̄c = P̄d = P̄l = σ.

Thus, in the long run, no one does better or worse than the loners.
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e l e d

e c

Nσ

rQ

Figure 4: The position of the center Q in S3 depends on the values of the parameters N, r

and σ. The intersection of the three lines corresponds to N = 5, r = 3, σ = 1. Each line

indicates the displacement of the center when varying a single parameter. Increasing the

number of potential participants N shifts the center along the solid line in the direction

indicated by the arrow, i.e. towards the corner el. Similarly, increasing σ shifts the center

upwards on the dashed line z = ẑ and increasing r moves the center to the right, along

the dash-dotted line. For r→ 2, the center approaches the corner el.

5 Discussion

The oscillations, and thus the recurrent increase in cooperation, are due to the fact
that a public goods game needs not always be a social dilemma. In a public goods
game, those players who are defecting are always better off than those players who
are cooperating. Nevertheless, if the group size S of participating players is less
than the interest rate r, it pays the individual player to switch from defection to
cooperation. If players have the option of an asocial ‘fallback solution,’ they can
refuse to join the public goods game. If enough players refuse to join, the group
becomes so small that the game is no longer a social dilemma. But then, the
higher payoff obtained by the cooperators in the public goods game causes more
players to join, and larger groups of public goods players create the temptation to
defect, i.e. the social dilemma. This requires r > 2, a condition which is similar
to the condition that in the Prisoner’s dilemma game, the benefit exceeds twice
the cost: this condition is essential for the stability of the Pavlov strategy (Nowak
& Sigmund, 1995). It may be argued that this condition can also be found in
Hamilton’s rule for kinship selection. Here, the cost-to-benefit ratio should exceed
the degree of relatedness between donor and recipient, but under ‘normal’ conditions
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e l e d

e c

Q

Figure 5: In the limiting case r = N , the edge eced is a line of fixed points, stable on

ecQ (closed circles) and unstable on Qed (open circles). Random drift and occasional

appearances of the missing loner strategy will eventually drive the system close to the

corner ec with almost everybody cooperating. Parameters: N = 3, r = 3, σ = 1.

(no inbreeding, etc) this relatedness is at most 1/2.
The proposed model for an optional public goods game represents one of the rare

cases where a highly non-linear system of replicator equations can be fully analyzed
by purely analytical means. For small interest rates, r ≤ 2, homoclinic orbits are
observed starting in and returning to el, i.e. the state where no one participates in
the public goods game. For r > 2 a fixed point occurs in the interior of the simplex
S3. By reducing the replicator equations to a hamiltonian system, we could see that
Q is actually a center and that in intS3 only closed orbits appear. From this follow
various conditions on the time averages of the frequencies and payoffs of the three
strategies. For example, the average ratio of cooperators and defectors corresponds
to the ratio of the averages and is independent of the initial configuration and the
group size N . It turns out to be impossible to increase cooperation by increasing
the interest rate r – on the contrary, it favours defection and lowers x̄/ȳ. In order to
promote cooperation, one should rather increase the loner’s payoff σ or reduce the
group size N . Note that in the latter case x̄/ȳ still increases even when keeping the
profits for each invested dollar constant (r/N = const). The fact that cooperation
is favoured in smaller groups agrees with other theoretical as well as experimental
results (Bonacich et al., 1976; Boyd & Richerson, 1988; Milinski et al., 1990; Hauert
& Schuster, 1998).

We stress that the dynamics obtained in this simple and, we believe, natural
model is highly degenerate: it has a center, an invariant of motion, a heteroclinic
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cycle, a nonhyperbolic fixed point, and an even number of Nash equilibria. All these
properties are nongeneric under the usual assumptions.

The option to drop out from a public goods game, i.e. a social and economic
enterprise, avoids deadlocks in states of mutual defection and economic stalemate.
As a prerequisite, the possible gain – i.e. the ‘interest’ r – has to be quite large. The
enterprise must offer a considerable advantage. In simple societies, such situations
may occur in big game hunting or in war. Small groups of volunteers are known to
be efficient for these tasks. Success attracts larger groups of participants, but growth
may inherently spell decline. This mechanism leads to oscillations in the composition
of the population. However, the average effect on the individual’s payoff is just the
same as if this possibility did not exist and all members of the population were
loners.

References

Batali, J. & Kitcher, P. (1995). Evolution of altruism in optional and compulsory
games. J. theor. Biol. 175, 161–171.

Binmore, K. G. (1994). Playing fair: game theory and the social contract. MIT
Press, Cambridge.

Bonacich, P., Sure, G. H., Kahan, J. P. & Meeker, R. J. (1976). Cooperation and
group size in the n-person prisoner’s dilemma. J. Conflict Resolut. 20, 687–705.

Boyd, R. & Richerson, P. J. (1988). The evolution of reciprocity in sizeable groups.
J. theor. Biol. 132, 337–356.

Dawes, R. M. (1980). Social dilemmas. Ann. Rev. Psychol. 31, 169–193.

Dugatkin, L. A. (1997). Cooperation among animals: an evolutionary perspective.
Oxford University Press, Oxford.
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