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Abstract 

This paper proposes a new method of image restoration. The proposed method allows to 
combine information from several sources, taking the perceived credibility of each into 
account. It is applicable to both ordinal (e.g., gray level image) and non-ordinal (e.g., 
classified forest map) categorized images. The accuracy checks have shown the method 
to be robust with respect to the prior information and the accuracy of the sources. Two 
application examples are provided. 
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Image Restoration from Multiple Sources 
Elena V. Moltchanova 

1 Introduction 

Image recognition in general and the satellite image analysis in particular has been an 
area of intense interest for a long time. Currently, this is a wide field with many 
accepted approaches, and new methods and modifications being continuously 
suggested. Among the existing accepted approaches are neural networks (Krell et al., 
1996), fuzzy logic (Mascarilla, 1997), semantic networks (Kunz et al., 1997), Bayesian 
CAR models (Besag et al., 1991), and Adaptive Weights Smoothing (Polzehl and 
Spokoiny, 2000; Divino et al., 1999; Kitano and Takagi, 1999). Most of the existing 
methods were developed to analyze a single observed pattern at one time. However, 
there are virtually no tools available that integrate multiple sources despite the fact that 
during the last decade increasingly large amounts of geo-referenced data have become 
available. In such a situation, it is certainly more efficient and economic to take all the 
available sources of information into account and to gather new information conditional 
on what is already available. The latter is of particular importance for the design of new 
satellite sensors. Of the methods mentioned above, Bayesian analysis (Gelman et al., 
1995), which may be considered as a special case of the Dempster-Shafer theory 
(Shafer, 1976), is well suited for combining different data sources. The CAR model is 
currently widely applied in epidemiology, in particular, for the production of cancer 
atlases (Osnes and Aalen, 1999). However, this model tends to over-smooth and is thus 
not applicable, for example, to vegetation maps where the categories or gray levels may 
interchange abruptly introducing the edge estimation problem. 

In this paper a new image recognition method is proposed, which is a combination of 
the two existing methods, namely (1) Bayesian analysis (henceforth denoted BR), and 
(2) Adaptive Weights Smoothing (AWS) or naïve smoothing (NS). It thus combines the 
superior ability of Bayesian inference to combine multiple information sources with the 
good performance of AWS or NS in image restoration and edge estimation. 

This paper begins by describing BR, AWS and NS approaches and providing examples 
of their application in Section 2. Section 3 investigates the estimation accuracy of these 
methods. Since the corresponding accuracy functions are too complex to study 
analytically and in full, only some aspects are studied with the aid of simulations. These 
studies are sufficient to provide a general overview of the performance accuracy and 
sensitivity. The suggested new approach is described in Section 4 and examples of the 
applications are provided in Section 5. In conclusion, the possible significance of the 
proposed method is discussed together with the future work to be done (Section 6). 
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Since the method is computationally intensive and there is no ready-made software, a 
list of functions written in R-language along with their listings is provided in 
Appendices 1 and 2, respectively. 

1.1 Notation 

In order to make the report more readable a general notation adhered to throughout the 
paper is introduced here. 

I = total number of cells in the analysis, 
C = number of classes, c = 1,2,…,C, 
N = number of sources, 
i = cell of grid, i = 1,…,I, 
Xi = true level at cell, i, and 
Yni = observation at cell i by source n. 
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P(X) = true distribution of X, 
p(X) = perceived distribution of X (Bayesian prior). 

2 Existing Approaches: BR and AWS; Naïve Smoothing 

2.1 Bayesian Approach (BR) 

2.1.1 General notes on the Bayesian approach 

Bayesian statistics was named after Rev. Thomas Bayes who, in his famous essay, has 
proposed a solution to the problem of estimating an unknown proportion. He thus 
arrived at the result that became known as the Total Probability Formula. For two 

events A and B and a partition of A such that AA
I

i
i =

=
U

1

 and jiAA ji ≠∀Ο=I  

the following holds: 
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The formula can be extended to deal with probability distributions. Thus, if we denote 
the observations x and the parameter θ  then the following is true: 
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The above formula cannot always be solved analytically. However, with recent 
developments in computers this is no longer a problem, since Bayesian inference is 
mostly done using computer-intensive iterative MCMC techniques. 

Bayesian statistics is not just the new way to make estimates or predictions ― it is a 
way of thinking that is markedly different from that of classical statistics. Whereas in 
classical frequentist statistics parameters are viewed as fixed but unknown quantities 
and the data are considered to be the result of a repeatable experiment, in the Bayesian 
inference each experiment is thought to be unique. Conclusions about the parameters, 
on the other hand, are made in terms of probability statements. Thus, the parameters are 
assigned a priori distribution, which is supposedly based on the experience of the 
analyst or, perhaps, on the expert’s opinion. In the case that no prior information is 
available at all, a non-informal prior may be assigned. The analysis results in a 
posteriori distribution for the parameters, on which the inference is then based. 

The Bayesian inference still remains an object of controversy. One of the more 
notorious points of discussion is the supposed subjectivity of the analysis, which arises 
as a result of the prior distribution choice. However, it is often pointed out that this 
assignment is either done using the available information or the non-informative prior is 
then assigned. On the other hand, once such information is available, why should it be 
discarded? The Bayesian framework removes the need for restrictive classical 
assumptions of independent identical distribution and normality. Overall, it is an 
extremely flexible approach, which allows taking into account information from several 
different sources simultaneously and to make probabilistic statements about the 
estimates produced. It is this feature of allowing different sources to be accommodated 
that makes the Bayesian approach attractive in the solution of the particular problem of 
image restoration, when multiple sources of information on the same object are 
available. 

2.1.2 Bayesian image restoration: Total probability formula 

Let us now apply the Bayes’ rule to the problem of image restoration. Using the 
notation described in the beginning and applying the Total Probability Formula we get 
the following: 
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Using the mode estimation in each cell, we choose the value of x for which the posterior 
probability is highest. To illustrate: 

Let,  

C = 3, 
p(x) = (..5,.3,.2), 
N = 2, 
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Using this mode estimation X=3 is the most likely estimate, whereas X=2 is an 
impossible choice.  

2.1.4 Example 

To give a fuller impression of the described image restoration method, here is an 
example of the restoration of a 15x15 field with three sources and three classes each. 
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The parameters are: 
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and the analysis is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: An example of Baysian image restoration.  
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2.1.5 Notes 

The Bayesian total probability formula allows to take several different sources of 
observations as well as possible external information (prior) into account. However, as 
such, it makes no allowances for the existence of spatial correlation, which are certainly 
necessary in the image analysis. A Bayesian approach for image analysis has been 
developed by Besag et al. (1991). Since then, various developments have occurred. 
Currently, the CAR model is widely used in epidemiology, in particular in the creation 
of cancer atlases. However, the CAR model tends to over-smooth and is therefore not 
applicable to, for example, land-cover maps where a residential area can be abruptly 
changed by a river. In the next serction, I will describe a deterministic image restoration 
method, which deals with this so-called ‘edge estimation’ problem. 

2.2 Adaptive Weights Smoothing (AWS) 

2.2.1 General description 

The AWS approach is described in detail by Polzehl and Spokoiny (2000). It is a 
method of non-parametric estimation, which is based on locally constant smoothing 
with an adaptive choice of weights for every pair of data points. Here, I will briefly 
describe the algorithm. 

The model is described as: 

))var(   ,0     ,)( 22 σεε ==ℜ∈+= iiiiii )E(ε,XXfY  , 

where X are design points (e.g., cells of the grid) and the errors are assumed to be 
independent and identically distributed zero-mean random variables with unknown 
distribution.  

The regression function f is the piecewise constant. This means that the spatial region 
(grid) can be split into disjoint regions MAAA ,,, 21 K , and 

{ }∑
=

∈=
M

m
Mm Axaxf

1

1)(  , 

where Maa ,,1 K are some numbers; in our case they are the classes so that each 

{ }Cam ,,1K∈ . The technical details of the procedure can then be described in the form 

of the iterative algorithm below. 

We start by estimating the variance of residuals: 

∑
=

=
n

i
ie

n 1

22 ˆ1σ̂  . 

Another important element is the specification of an increasing sequence of 
neighborhoods around each design point.  For each design point x, it is assumed that we 
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are given a sequence of neighborhoods ∞= ,,1,0),( KkxUk  with )()( 1 xUxU kk +⊂  

containing x. An example of such neighborhoods may be circles of increasing radii 
around each point. 

We should also choose a univariate kernel K, which is a symmetric smooth function 
with the maximum at zero, non-increasing on the positive semi-axis, and integrable. 

(a) Initialization: for each point iX , the initial estimates of )( iXf and { })(ˆvar iXf  as: 
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for all iX . 

(c) Control: after the estimate )(ˆ
ik Xf  has been computed we compare it with the 

previous estimates )(ˆ
' ik Xf  at the same point kkXi <' all for . If there is at least one 

index kk <'  such that: 
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)(ˆ)(ˆ)(ˆ
'' ikikik XsXfXf η>−  , 

then we do not accept )(ˆ
ik Xf  and keep the estimates )(ˆ

1 ik Xf −  from the preceding 
iteration. 

(d) Stopping: stop if *kk =  or if iXfXf ikik  all for )(ˆ)(ˆ
1−= ; otherwise increase k by 1 

and continue with the adaptation step. 

For the purposes of our analyses the estimates of the stepwise regression function are 
rounded to the closest integers, because the permissible values are categories. As can be 
seen from the above description, the outcomes of the analysis are affected by four 
parameters:  

λ affects the smoothness of the resulting image and so does k*, which describes 
how far the design points influence each other, i.e., the degree of locality. 

η is involved in the control step, which prevents the algorithm from losing 
previously detected discontinuities. 

Finally, the choice of kernel clearly affects the results as well. 

The parameters of the procedure can be tuned using the bootstrap method. Another 
important point concerns the applicability of the method. Clearly, the region should be 
homogeneous enough. However, how can this homogeneity be measured and how much 
of it is needed? This question is addressed to some degree in Section 3 where the 
accuracy of the above method is discussed. 

2.2.2 Notes 

AWS is a good method for pattern restoration in the case of a reasonably homogeneous 
area. However, it only takes one source or one set of observations into account. It is also 
very computer intensive, since neighborhood and weight matrices as well as all the 
estimated values of the previous iterations should be kept in the memory. 

2.3 Naïve Smoothing 

AWS assumes that the data are aligned on an ordinal scale, i.e., the classes may be 
ordered so that class 1 < class 2 < class 3 and so on. Thus, roughly speaking, a point 
between classes 1 and 9 would be interpreted by AWS as class 5. However, the 
classified images do not always correspond to this assumption. For example, on a land-
cover map there is no way to order “forest”, “river”, and “residence”. In such situations, 
a naïve smoothing method would be more appropriate. Here, for each cell, we find a 
statistical mode in its neighborhood (the neighborhood may include the cell itself) and 
assign the value to the cell. From here on, this method will be denoted NSr-i, where NS 
is naïve smoothing, r is the neighborhood radius, and i is the number of iterations. In the 
work associated with this paper NS1-1 has mainly been used. 

We now move on to examine the accuracy of the described methods in more detail. 
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3 Accuracy of the Existing Solutions 

In this section some aspects of the sensitivity of the two image restoration methods 
presented above, namely the Bayesian total probability formula (BR) and adaptive 
weights smoothing (AWS) as well as that of naïve smoothing (NS) are researched. 
Since the phenomena are too complex to be examined analytically, only the simulation 
results and some general guidelines are supplied. 

3.1 Summarizing the Source Accuracy 

As described at the outset, the accuracy of each source is described by a C*C matrix, 
where C is the number of categories in the classification. For the purposes of the 
analysis, it is convenient, however, to be able to describe the source error more 
concisely, e.g., through the expected value and variation of the overall accuracy. Using 
the standard notation of Part 0 we say that the observation is accurate if the value 
observed by the source is exactly the true value: 

{ }isisi XYacc ==1  , 

i.e., accs is a binary variable with the expected value and variance respectively: 
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the weight assigned to the source s then we have: 
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3.2 BR Sensitivity 

The expected accuracy of the BR may be calculated according to the definition as: 
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i.e., the expected value depends on both the actual and the perceived source error 
matrices. Since each source error matrix for C classes is defined by C(C-1) parameters 
and the multinomial vector is defined through (C-1) parameters, the accuracy depends 
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on 2*(N*C+1)*(C-1) parameters. For example, for three sources and four multinomial 
classes this amounts to 2*(3*4+1)*(4-1)=78 parameters. Clearly, this is too complex a 
relationship to examine in detail. The investigation will thus be limited to two sources 
with binary outcomes. The expected accuracy is then a function of 10 parameters and 
can be written as: 
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3.2.1 Accuracy as a function of p(x) and P(x) 

To begin with, I will assume that the accuracy of the two sources is known perfectly 
2,1 for ==Ζ sEss  and examine the behavior of the expected accuracy for the given 

source error matrices as a function of P and p.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: BR accuracy as a function of P and p. The maximum accuracy is reached on 
the line P=p. However, within a relatively narrow interval 10.±= Pp  the 
accuracy remains close to the optimal value. For the left-hand diagram, the 
overall expected source accuracy equals .85 with std .25, and for the right-
hand diagram, the corresponding statistics are .625 and .33. 

Firstly, it is a step function with five steps at most. The four jump points are calculated 
as: 
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whereas the levels of the stepwise constant function are calculated as various linear 
combinations of the terms: 

{ }1,0,, for )1( 21
1

21 21
∈− − yyxPPEE xx

xyxy  . 

Thus, the true levels of the parameters influence the levels of the function and through 
them the maximum achievable accuracy whereas the modeling assumptions affect the 
variability of the accuracy. Two examples are shown in Figures 3a and b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The jump points are situated symmetrically around 5.=p  if the source error matrices 
are symmetric. The function itself is symmetric around 5.=p  if 5.=P . As can be seen 
from the diagrams and also deduced intuitively, the maximum accuracy is reached when 

Pp = .  

3.2.2 Accuracy as a functi on of source errors E and Z 

In order to investigate accuracy as a function of source error matrices E and Z, the 
simplest case will be considered, where: 
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It will also be assumed that Pp = , i.e., that we have perfect information regarding our 
prior. 

In the case where modeling assumptions exactly correspond to the actual situation, i.e., 
ζ=e , the maximum accuracy is reached by the method.  

 

Figure 4: Maximum BR accuracy as a function of modeling assumptions. The potential 
maximum accuracy is higher for values of prior (p and P) and modeling (e and 
ζ) parameters which are further from .50. 
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Figure 5: Maximum BR accuracy as a function of prior and modeling assumptions and 
parameters. The bold black line indicates the range of values over which the 
maximum accuracy is reached. 

3.2.3 Prior elicitation 

A question that also arises in Bayesian inference is the prior elicitation, i.e., how do we 
get information on E and P expressed in Z and p? In reality, the accuracy of the source 
will most likely be known quite precisely from technical specifications. Also, some 
information on the proportions of areas assigned to different categories will be known. 
There is, however, a theoretical formula allowing to make some inference about proper 
prior and modeling assumptions: 

EPP trueTobs )()( =  . 
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For example, if we know that the source accuracy is 
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3.3 AWS Sensitivity 

The sensitivity of an iterative algorithm like AWS is too complex to be expressed 
analytically. However, the performance of the algorithm can still be assessed through 
simulations. The authors of the method have thoroughly tested it and come to the 
conclusion that the method performs very well for a piecewise constant image and 
provides good quality both within the homogeneous regions and near the edge (Polzehl 
and Spokoiny, 2000). It is also stable with respect to increasing noise level. 

Generally, it is obvious that the accuracy of the method depends on homogeneity of the 
pattern as well as on the parameters of the algorithm, namely kernel function, 
smoothness parameters λ and k*,η, and the neighborhood structure. The optimal 
parameters can be found through the bootstrap method (Polzehl and Spokoiny, 2000).  

Another important factor is the accuracy of the source. Since AWS makes no 
adjustments for perceived source inaccuracy however, all that can be said on this matter 
is the accuracy range for which it is applicable. 

Since describing AWS sensitivity in detail is too big a task, I will only describe a few 
major features here, which should be of interest in my applications. 

3.3.1 Moran’s I 

As mentioned above, the homogeneity of the pattern plays a big role in the accuracy of 
the estimation. Intuitively, homogeneous means that grid cells with similar values tend 
to stick together. Formally, various formulae exist to measure the homogeneity or 
spatial correlation. I will use Moran’s I, which is defined by the formula: 
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where W = neiborhood matrix and x are the values in grid cells. 

The values of Moran’s I range from +1 meaning strong positive spatial autocorrelation 
(homogeneity) to 0 meaning a random pattern to –1 indicating a strong negative spatial 
autocorrelation. 

3.3.2 Accuracy vs. homogeneity and source precision 

In order to illustrate AWS accuracy, five patterns of different homogeneity, displayed in 
Figure 6, were distorted using three different source accuracies (.95, .50, .05) ten times. 
Afterwards, the patterns were estimated using AWS at optimal parameters (the 
estimation results were robust with respect to parameters of the algorithms). The results 
are shown in Table 1. 

Table 1: AWS accuracy. 

Source 
accuracy 

Pattern I Pattern II Pattern  III Pattern IV Pattern V 

.95 .4191 .5902 .8770 .9605 .9996 

.50 .5094 .5023 .4797 .5035 .6258 

.05 .5840 .4109 .1168 .0324 .0012 
Moran’s I -.0323 .0366 .4839 .8108 - 

For the high precision observations, the accuracy of the estimation grows with the 
homogeneity of the source. However, for a low precision, the accuracy of the estimation 
actually gets worse as the pattern becomes more homogeneous. By way of general 
guidelines, it can be said that the AWS algorithm gives good results for patterns with 
Moran’s I above .5 and for data observed with over 90% accuracy. In this case, the 
accuracy of the estimates will be over 80%. 

3.4 NS Accuracy 

The accuracy of NS1-1 was tested similarly. The five patterns in Figure 6 were distorted 
using the sources of different accuracy and were then restored using NS1-1. Ten 
simulations were run for each case. The results of the simulations are summarized in the 
Table 2. 

Table 2: Naïve Smoothing (NS1-1) Accuracy. 

Source 
accuracy 

Pattern I Pattern II Pattern  III Pattern IV Pattern V 

.95 .7492 .8449 .9590 .9871 .9992 

.50 .4922 .4949 .4820 .4543 .4520 

.05 .2734 .1695 .0438 .0086 .0000 
Moran’s I -.0323 .0366 .4839 .8108 - 
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Figure 6: Five binary patterns of different heterogeneity. 
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4 Proposed Approach 

So far, two of the existing approaches have been described and examined in terms of 
their accuracy and sensitivity. To recap, the BR is best to use when several sources of 
information have to be taken into account. It is especially accurate when both the 
general accuracy of the sources is far from 50% (guessing) and when proportions of the 
categories are unequal. Generally, accuracy is >80% and the results of the estimation 
are more accurate than the observed patterns as such. However, taking into account the 
information available on spatial correlation would improve this. On the other hand, 
AWS seems to be one of the best-performing tools to deal with spatial correlation. 
However, AWS cannot analyze several sources simultaneously. Its accuracy depends on 
the general homogeneity of the area, the algorithm parameters, which can be fine-tuned 
using the bootstrap method, and the accuracy of the source of observations. It is 
therefore reasonable to suggest that a combination of the two methods might yield better 
results than any of the methods taken separately. 

4.1 AWS-BR and BR-AWS 

Two logical possibilities follow. We can either apply the smoothing algorithm to all the 
S samples and then use the total probability rule (this combination will be denoted 
AWS-BR), or we can use the Bayesian method first and apply smoothing later (BR-
AWS). There is no logical reason a priori to prefer one combination over the other. The 
conducted simulations have shown that BR-AWS gives consistently better results than 
AWS-BR. It is thus BR-AWS, which is suggested as a new improved method for image 
restoration when multiple sources of information are available. 

Something needs to be said about the performance of the method as well as about its 
sensitivity to modeling and prior assumptions. Since it is a combination of the two 
methods previously considered in detail, it is reasonable to conclude that its accuracy 
follows the rules laid out earlier. Namely, its performance is better when source error is 
far from 50%. It improves with the homogeneity of the area and it can be improved by 
fine-tuning the parameters. However, its accuracy is still better than that of the above 
methods separately, because it simultaneously takes into account both spatial correlation 
and all the available information. This information includes not only the observed 
patterns, but also data on source accuracy, categories distribution, etc. 

To illustrate, in the next section I provide two applications of the suggested approach 
and compare the results with those of the two traditional approaches described above as 
well as with the BR-AWS approach. 
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5 Applications 

5.1 Application 1: Binary Data From Three Observation Sources 

To illustrate the estimation processes and compare the results of different methods, I 
will first consider a case of a black and white image on a 16x16 regular square grid. The 
true pattern is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: True pattern: black and white image on a 16x16 regular square grid. 

Three sources with the accuracy matrices: 
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10.90.
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were involved. The simulated observed patterns are shown in Figure 8. 

The results of AWS are shown in Figure 9. The optimal parameters 4and  3* == λk  were
found using the bootstrap method described earlier. The Bayesian estimation, BR-AWS
and AWS-BR are further shown in Figure 10. Thus, the most accurate results are achieved
through BR-AWS and AWS-BR estimations. 
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Figure 8: Observed patterns from sources with different sensitivities. 
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Figure 9: AWS for patterns observed by different sources. 
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Figure 10: Results of BR, BR-AWS, and AWS-BR estimation and their accuracy. 
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Table 3: Accuracy of various image restoration methods in the first application. 

Source  
accuracy 
matrix 

Overall 
source 

accuracy 

Observed 
source 

accuracy 

AWS 
accuracy 

 
BR 

 
BR-AWS 

 
AWS-BR 





=

90.10.

10.90.
1E  

 
.9000 

 
.9688 

 
.9883 





=

75.25.

25.75.
2E  

 
.7500 

 
.8164 

 
.9453 





=

85.15.

20.80.
3E  

 
.8250 

 
.8594 

 
.8828 

 
.9723 

 
.9922 

 
.9883 

5.2 Application 2: Multi-class Image with Three Sources of Observation 

An already classified 87x111 grid cells LANDsat image of the forest area in Siberia 
(Russia) has been used in this application. The true image is shown in Figure 11. The 
black color stands for the missing values and the other 32 colors denote different land-
cover classes. To illustrate the attractiveness of the suggested method, three observed 
images were simulated. All three sources were given a similar error matrix: 
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 Figure 11. 
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Thus, the probability of identifying the class correctly was equal to 50% (equivalent to 
guessing) and the probability of erroneously identifying it with any other class was 
equal to .50/31=.0161. The three generated images are presented in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The observed (simulated) patterns. 

The results of the BR application and the image resulting after naïve smoothing are 
shown further in Figures 13 and 14. Note that the BR is applied assuming perfect prior 
and modeling information. It is obvious that the naïve smoothing improves the estimate 
considerably. A second smoothing only slightly improves the estimate further. The 
accuracy of various sources and estimation methods is summarized in Table 4. 
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Figure 13. Figure 14.  

Table 4: Accuracy of the various image restoration methods in application 2. 

 Stated 
source 

accuracy 

Observed 
source 

accuracy 

 
Naïve 

smoothing BR 

BR and 
Naïve 

smoothing 
once 

BR and 
Naïve 

smoothing 
twice 

Source I .5209 .5223 .9173 
Source II .5209 .5178 .9088 
Source III .5209 .5159 .9090 

.6308 .9522 .9652 

Thus, a combination of BR and naïve smoothing gives the best accuracy of 95%. It is a 
significant improvement from the observed 50% and a useful one over the naively 
smoothed 90%. 
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6 Discussion 

The suggested combination of BR and AWS performs better in image restoration than 
the methods separately when multiple data sources are available. It allows to take into 
account both the existence of spatial correlation and the multiple sources of differing 
quality. In this, it is different from existing methods. In this paper, however, only a 
rather small part of its possibilities and properties have been researched. What follows is 
a discussion of possible future directions of work. 

Although the accuracy and the sensitivity of the method have been studied in some 
detail through simulations, more evaluation is needed. Analytical properties should be 
deduced if possible. 

Although the classification method was assumed to be the same among sources, such an 
assumption is not necessarily realistic. More work therefore is needed on the question of 
classification compatibility. Another problem may arise if the spatial grids are different 
for different sources ― the case of spatial misalignment. These questions of 
incompatibility should be addressed in order to make the method more practically 
applicable. It may also widen its applicability. So far, the possible applications 
concerned, e.g., combining satellite images made at different times to produce the most 
accurate map of vegetation, or to combine maps classified by different experts. In short, 
several observed samples on the same variable. But, another possible application would 
be to combine information on the different characteristics from different sources to 
produce a map or an image of some quantity, which is a function of those.  

AWS can be described as a method of estimating a stepwise correlation function over a 
spatial field. Originally, the levels of the function are not limited to any particular set 
but, in order to make it applicable to the categorical situation, it has been modified to 
select the levels from the set {1,2,…,C} where C is the amount of categories. The 
bootstrap method for fine-tuning the AWS parameters has not been modified in any 
way. Perhaps, however, the modifications taking into account that we deal with 
categorical data may improve the method further. 

As was shown, when the classification is not ordinal, the application of naïve smoothing 
gives good results. The questions of the applicable radius and the optimal number of 
iterations remain. It is suggested that the first may be deduced from the level of spatial 
correlation within the image. As to the number of iterations, the accuracy benefits of 
further smoothing will progressively become smaller and smaller and thus may arrive at 
some kind of convergence criteria. 

Finally, the technical aspect should be mentioned. The AWS algorithm is 
computationally intensive. In the Appendices there is a description (Appendix 1) and 
listing (Appendix 2) of the functions, in R-language, used for the analysis described in 
this paper. In order to make the method more practical, it would be worthwhile to 
produce software on a lower level programming language such as C++. 

To conclude, the suggested method AWS-BR is a promising solution to image 
restoration when data from multiple sources are available. Some research and 
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programming, however, is still required to make it applicable to field data, such as the 
data collected for the Forestry Project’s Siberia II study. 
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APPENDIX 1: R-functions Description 

R-language was used in the analyses and simulations. Information on this language as 
well as the source code may be found and downloaded from http://www.R-project.org/. 

LIST OF FUNCTIONS: 

 rmulti() 

 rmulti0() 

gen.random() 

br2bin.acc.px() 

br() 

neighbor1() 

AWS.3d 

source.error.sum() 

AWS.3d.bootstrap() 

moran.i() 

neighbor() 

naive1() 
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R-FUNCTION: rmulti() 

DESCRIPTION: Generates a matrix of multinomial observations. 

FILE: A:/rmulti_fun.txt 

FORMAT: rmulti(N,m,C,P) 

PARAMETERS: 

 N = number of variables (multinomial vectors) to be simulated. 
 m = size of each of the above vectors (can be either constant or a vector of length N). 
 C = number of classes: 1,2,…,C. 
 P = vector or matrix of multinomial probabilities (equal class probabilities by default). 

OUTPUT: Y = a matrix of multinomial observations. 

NOTES: Uses a more basic function rmulti0(). 

EFFICIENCY: 

EXAMPLE: 

 

> N 

[1] 5 

> m 

[1]  2  3  5  7 20 

> C 

[1] 4 

> P 

     [,1] [,2] [,3] [,4] 

[1,]  0.7  0.1  0.1  0.1 

[2,]  0.4  0.2  0.2  0.2 

[3,]  0.1  0.3  0.3  0.3 

[4,]  0.5  0.5  0.0  0.0 

[5,]  1.0  0.0  0.0  0.0 

> rmulti(N,m,C,P) 

     [,1] [,2] [,3] [,4] 

[1,]    2    0    0    0 

[2,]    2    0    1    0 

[3,]    2    2    1    0 

[4,]    3    4    0    0 

[5,]   20    0    0    0 

>  
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R-FUNCTION: rmulti0() 

DESCRIPTION: Generates a vector of multinomial observations. 

FILE: A:/rmulti0_fun.txt 

FORMAT: rmulti0(m,C,P) 

PARAMETERS: 

 m = size of each multinomial vector. 
 C = number of classes: 1,2,…,C. 
 P = vector of multinomial probabilities (equal class probabilities by default). 

OUTPUT: Y = a vector of multinomial observations. 

NOTES: rmulti0() is a simplified version of rmulti(). 

EFFICIENCY: 

EXAMPLE: 

 

 

 

 

 

 

> rmulti0(15,7,) 

[1] 0 3 6 0 3 1 2 
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R-FUNCTION: gen.random() 

DESCRIPTION: Generates multinomial random observations on a regular grid. Further 
generates source observations for the simulated grid according to the supplied source 
error matrices. 

FILE: A:/gen_random_fun.txt 

FORMAT: gen.random(size.x,size.y,C,N,E,P,pic) 

PARAMETERS: 

 size.x = width of the grid. 
 size.y = height of the grid. 
 C = number of multinomial classes. 
 N = number of sources. 
 E = array of source error matrices. 
 P = true proportions of multinomial classes. 
 pic =T/F indicates whether a picture is to be drawn (False by default). 

OUTPUT: 

 X = “true” situation (x,y). 
 Y = array of sources observations (x,y,source). 
 if pic=T then graphical output results. 

NOTES: 

EFFICIENCY:  

EXAMPLE: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> size.x<-10 

> size.y<-15 

> C<-4 

> N<-3 

>  

> P<-c(.5,.2,.2,.1) 

>  

> E1<-array(c(.7,.1,.1,.1,.1,.7,.1,.1,.1,.1,.7,.1,.1,.1,.1,.7),dim=c(4,4)) 

> E2<-array(c(.6,.2,.2,.2,.2,.6,.2,.2,.2,.2,.6,.2,.2,.2,.2,.6),dim=c(4,4)) 

> E3<-array(c(.5,.3,.2,.0,.3,.4,.2,.1,.2,.2,.6,.0,.0,.1,.0,.9),dim=c(4,4)) 

>  

> E<-array(cbind(E1,E2,E3),dim=c(4,4,3)) 

>  

> E 
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, , 1 

 
     [,1] [,2] [,3] [,4] 

[1,]  0.7  0.1  0.1  0.1 

[2,]  0.1  0.7  0.1  0.1 

[3,]  0.1  0.1  0.7  0.1 

[4,]  0.1  0.1  0.1  0.7 

 
, , 2 

 
     [,1] [,2] [,3] [,4] 

[1,]  0.6  0.2  0.2  0.2 

[2,]  0.2  0.6  0.2  0.2 

[3,]  0.2  0.2  0.6  0.2 

[4,]  0.2  0.2  0.2  0.6 

 
, , 3 

 
     [,1] [,2] [,3] [,4] 

[1,]  0.5  0.3  0.2  0.0 

[2,]  0.3  0.4  0.2  0.1 

[3,]  0.2  0.2  0.6  0.0 

[4,]  0.0  0.1  0.0  0.9 

>  
> gen.random(size.x,size.y,C,N,E,P,T) 

… 
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GRAPHICAL OUTPUT: 
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R-FUNCTION: br2bin.acc.px() 

DESCRIPTION: Calculates expected accuracy of the Bayesian Image Restoration 
applied to two sources in a binary case as a function of prior probability p. 

FILE: H:/R-routines/br2bin_acc_px_fun.txt 

FORMAT: br2bin.acc.px(E1,E2,e1,e2,P,pic) 

PARAMETERS: 

 E1 = 2*2 primary source error matrix. 
 E2 = 2*2 secondary source error matrix. 
 e1 = 2*2 perceived primary source error matrix (equal to E1 by default). 
 e2 = 2*2 perceived secondary source error matrix (equal to E2 by default). 
 P = true 0-1 proportion. 
 pic =T/F depending on whether or not a graph is wanted (False by default). 

OUTPUT:  

 JP.order = jump points of the step function sorted in ascending order. 
 levelf = corresponding levels of the step function. 
 max.f = maximum expected accuracy. 
 Jlength.max = the length of the interval containing the maximum expected accuracy. 

NOTES: The function is useful for preliminary investigation of BR accuracy. 

EFFICIENCY: 

EXAMPLE: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> E1 
     [,1] [,2] 
[1,]  0.4  0.6 
[2,]  0.8  0.2 
> E2 
     [,1] [,2]  
[1,]  0.9  0.1 
[2,]  0.3  0.7 
> br2bin.acc.px(E1,E2,,,P=.7,pic=T)  
$JP.order 
[1] 0.06666667 0.30000000 0.60000000 0.90000000 
 
$levelf 
[1] 0.30 0.68 0.76 0.82 0.70  
 
$max.f 
[1] 0.82 
 
$Jlength.max 
[1] 0.3 
 
>  
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R-FUNCTION: br() 

DESCRIPTION: Performs image restoration from a combination of different sources 
and prior information using Bayesian Total Probability formula and mode estimation. 

FILE: A:/br_fun.txt 

FORMAT: br(Y,C,e,p,pic) 

PARAMETERS: 

 Y = array of observations from different sources (size.x, size.y, sources). 
 C = number of multinomial classes. 
 e = perceived source error matrices (C, C, sources). 
 p = prior information on multinomial probability vector. 
 pic =T/F depending on whether a graph is wanted. 

OUTPUT: 

 Y.est = array of estimated values (size.x,size.y). 
 P.post = array of posterior multinomial probabilities for each grid cell (size.x, size.y, C). 

NOTES: The estimation is done using the Bayesian total probability formula: 
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where S = the number of sources and C = the number of classes. 

The mode estimation was used, i.e., the class with the largest posterior probability was 
chosen. In the case of multi-modality, one of the modes is chosen randomly. 

EFFICIENCY: 

EXAMPLE: 

 

 

 

 

 

 

 

 

 

 

 

 

> size.x<-15 
> size.y<-15 
> C<-4 
> N<-2 
> P<-c(.4,.3,.2,.1) 
>  
> E1<-array(c(.7,.1,.1,.1,.2,.6,.2,.2,.1,.3,.3,.3,.0,.0,.6,.4),dim=c(4,4)) 
> E2<-array(c(.3,.3,.2,.2,.4,.5,.1,.0,.0,.1,.6,.3,.3,.1,.1,.5),dim=c(4,4)) 
>  
> E1 
     [,1] [,2] [,3] [,4] 
[1,]  0.7  0.2  0.1  0.0 
[2,]  0.1  0.6  0.3  0.0 
[3,]  0.1  0.2  0.3  0.6 
[4,]  0.1  0.2  0.3  0.4 
>  
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> E2 
     [,1] [,2] [,3] [,4] 
[1,]  0.3  0.4  0.0  0.3 
[2,]  0.3  0.5  0.1  0.1 
[3,]  0.2  0.1  0.6  0.1 
[4,]  0.2  0.0  0.3  0.5 
>  
> E<-array(cbind(E1,E2),dim=c(4,4,2)) 
>  
> source("H:/R-routines/gf/gen_random_fun.txt") 
> GEN<-gen.random(size.x,size.y,C,N,E,P,F) 
>  
> source("H:/R-routines/gf/br_fun.txt") 
> br(GEN$Y,C,E,P,pic=T)$Y.est 
… 
GRAPHICAL OUTPUT: 
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R-FUNCTION: neighbor1() 

DESCRIPTION: Calculates neighborhood matrix of radius 1 for the user-defined grid 
according to the chosen method. 

FILE: A:/neighbor1_fun.txt 

FORMAT: neighbor(size.x, size.y, method=“king”) 

PARAMETERS: 

 size.x = width of the grid. 
 size.y = height of the grid. 

method = contiguity definition. There are three methods to choose from: “rook”, 
“bishop”, and “king” as follows: 

Rook Bishop King 
0 1 0 1 0 1 1 1 1 
1 x 1 0 x 0 1 x 1 
0 1 0 1 0 1 1 1 1 

 The default method is “king”. 

OUTPUT: A neighborhood binary matrix with 1 standing for neighborhood and 0 for 
lack thereof. The dimensions of the output matrix are (size.x*size.y,size.x*size.y). 

NOTES: 

EFFICIENCY: 

EXAMPLE: 

 

 

 

 

 

 

 

 

 

 

> source("H:/R-routines/gf/neighbor1_fun.txt") 

> neighbor1(2,2,"rook") 

     [,1] [,2] [,3] [,4] 

[1,]    0    1    1    0 

[2,]    1    0    0    1 

[3,]    1    0    0    1 

[4,]    0    1    1    0 

>  
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R-FUNCTION: AWS.3d() 

DESCRIPTION: Performs adaptive weights smoothing for categorical data on a 2D grid. 

FILE: A:/AWS_3d_fun.txt 

FORMAT: AWS.3d(Y,Cl,lambda,nu,k.max,kernel,method,U,res.m,sigma.m,pic) 

PARAMETERS: 

 Y = 2D matrix of observations on the grid. 
 Cl = number of multinomial classes. 
 lambda = AWS algorithm smoothness parameter (see Section 2.2 for a detailed 

description). 
 k.max = maximum number of iterations. 
 nu = AWS algorithm control parameter (see Section 2.2 for a detailed description). 
 kernel = describes the type of kernel used in AWS. Three options currently 

implemented are: 

 “exp” exponential
2xe−  

 “uni” uniform { }11 ≤x  

 “tri” triangular 


≥−
<

2if5.1

2if0

xx

x
 

 method = contiguity definition. Available options are: 

 “given”, in which case the neighborhood matrix U should be supplied, and 

 “king”  “rook”  “bishop” 
 1 1 1   0 1 0    1 0 1 
 1 x 1   1 x 1    0 x 0 
 1 1 1   0 1 0    1 0 1 

 U = neighborhood matrix if available, in which case method = “given” 

 res.m = method by which pseudoresiduals are to be calculated: 

 method.r = 1: ( ) 6/2ˆ 1,,1,, 21212121 ++ −−= iiiiiiii YYYe  

 method.r = 2: ( )( ) 20/4ˆ 1,1,,1,1,, 212121212121 −+−+ +++−= iiiiiiiiiiii YYYYYe  

 It is set to 1 by default. 

 sigma.m = method by which noise variance estimate is to be obtained: 

 sigma.m = “s”: ∑
=

=
n

i
ie

n 1

22 ˆ
1σ̂  

 sigma.m = “t”: 35.1)(ˆ %25%75
2 tt −=σ  

 It is set to “s” by default. 

 pic = T/F depending on whether the graphical output wanted or not. F by default. 

OUTPUT: 

 Y.est = the matrix of estimated values. 
 W = weights used in the final estimation. Used in bootstrap fine-tuning. 
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NOTES: The algorithm is very computationally intensive. It also uses large amounts of 
memory. For an array of size L with k* being the maximum amount of iterations, the 
amount of parameters grows to )3(2 * ++ kLL . 

EFFICIENCY: 

EXAMPLE: 
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R-FUNCTION: source.error.sum() 

DESCRIPTION: Calculates summary statistics (expected values and variances) for the 
source accuracy matrices. 

FILE: A:/source_error_sum_fun.txt 

FORMAT: source.error.sum(E,P,w) 

PARAMETERS: 

 E = C*C*S array of source error matrices with C = number of categories and S = 
number of sources. 

 P = a multinomial probability vector of length C. All equal probabilities by default. 
 w = vector of (unnormalized) weights of length C. All equal to 1 by default. 

OUTPUT: 

 E.acc.s = a vector of expected source accuracy for each source (length S). 
 V.acc.s = a vector of source accuracy variances for each source (length S). 
 E.acc.o = overall expected accuracy. 
 V.acc.o = variance of the overall accuracy. 

NOTES: 

EFFICIENCY: 

EXAMPLE: 

 

 

> E 
, , 1 
 
     [,1] [,2] 
[1,]  0.9  0.1 
[2,]  0.1  0.9 
 
, , 2 
 
     [,1] [,2] 
[1,]  0.8  0.2 
[2,]  0.2  0.8 
 
> source.error.sum(E,c(.1,.9),) 
$E.acc.s 
[1] 0.9 0.8 
 
$V.acc.s 
[1] 0.09 0.16 
 
$E.acc.o 
[1] 0.85 
 
$V.acc.o 
[1] 0.0625 
 
>  
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R-FUNCTION: AWS.3d.bootstrap() 

DESCRIPTION: A bootstrap method assisting in the choice of optimal parameters for 
the AWS procedure. 

FILE: A:/AWS_3d_bootstrap_fun.txt 

FORMAT: AWS.3d.bootstrap(Y,Cl,l.v,k.v,kernel,method,U,res.m,sigma.m,M,k.def,l.def). 

PARAMETERS: 

 Y = a 2D array of observed levels. 
 Cl = number of levels. 
 l.v = vector of lambda values out of which the optimal value is to be chosen. 
 k.v = vector of k values out of which the optimal value is to be chosen. 
 kernel = type of kernel to use. “exp”, “uni” and “tri” types are implemented. See 

description of AWS.3d() function for details. 
 method = contiguity definition. See description of AWS.3d() for definition. 
 U = neighborhood matrix supplied if method = “given”. 
 res.m = residuals definition. See description of AWS.3d() for definition. 
 sigma.m = method of residual variance calculation. See description of AWS.3d() for 

definition. 
 M = number of bootstrap iterations. 
 k.def and l.def = values of k* and lambda to be used as default. I.e. the loss function 

is calculated with respect to the estimates for those parameters.  
k* = 19 and lambda = 4 by default. 

OUTPUT: A matrix of (quadratic) loss function values for different lambda*k 
combinations. The combination with the smallest values is recommended. 

NOTES: 

EFFICIENCY: 

EXAMPLE: 
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R-FUNCTION: moran.i() 

DESCRIPTION: Calculates Moran’s I, a spatial heterogeneity measure for a user 
defined process according to the desired method. 

FILE: A:/moran_i_fun.txt 

FORMAT: moran.i(Y,method,U) 

PARAMETERS: 

 Y = the spatial process. 
 method = contiguity definition. “king” by default. If a neighborhood matrix can be 

provided, method = “given”. See description of the neighbor1() for more 
information on available contiguity definitions. 

 U = neighborhood matrix if provided; undefined otherwise. 

OUTPUT: Moran’s I calculated for the given field and neighborhood structure. The 
value ranges from –1 to 0 to 1 indicating strong negative correlation, random pattern 
and strong positive correlation respectively. 

NOTES: Supplied neighborhood matrix enables faster calculations, for example, in the 
case of loops. 

EFFICIENCY: 

EXAMPLE: 
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R-FUNCTION: neighbor() 

DESCRIPTION: Calculates neighborhood matrix for the given regular square grid with 
the specified measure of locality (radius). 

FILE: A:/neighbor_fun.txt 

FORMAT: neighbor(size.x,size.y,radius) 

PARAMETERS: 

 size.x  = width of the grid. 
 size.y = width of the grid. 
 radius = radius of neighborhood. 

OUTPUT: Neighborhood matrix for the area of the dimensions (size.x*size.y,size.x*size.y). 

NOTES:  

EFFICIENCY: 

EXAMPLE: 
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R-FUNCTION: naive1() 

DESCRIPTION: Performs naïve mode smoothing. 

FILE: A:/naive1_fun.txt 

FORMAT: neighbor(Y,mv,radius=1) 

PARAMETERS: 

 Y = array, describing an image to smooth. 
 mv = missing value marker or class. 
 radius = radius of neighborhood, equal to 1 by default. Varying radia not 

implemented yet! 

OUTPUT: Smoothed image: a matrix with the same dimensions as Y. 

NOTES:  

EFFICIENCY: 

EXAMPLE: 
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Appendix 2: R-functions Listings 

LIST OF FUNCTIONS: 

 rmulti() 

 rmulti0() 

gen.random() 

br2bin.acc.px() 

br() 

neighbor1() 

AWS.3d 

source.error.sum() 

AWS.3d.bootstrap() 

moran.i() 

neighbor() 

naive1 
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rmulti<-function(N,m, C,P=rep(1/C,C)){ 

 

# GENERATES OBSERVATIONS FROM MULTINOMIAL DISTRIBUTION 

############## 

# 02.08.2001 # 

############## 

# by Elena Moltchanova 

 

#INPUT: 

# N = size of the output array 

# C = number of multinomial categories 

# P = multinomial probability matrix (N*C) or vector (C) 

# m = size of output vector (vector or scalar) 

 

source("A:/rmulti0_fun.txt") 

 

#setting up output array 

Y<-array(dim=c(N,C)) 

 

if (length(m)==1){m<-rep(m,N)} 

if (length(dim(P))==0){P<-t(array(rep(P,N),dim=c(C,N)))} 

 

for (n in 1:N){ 

Y[n,]<-rmulti0(m[n],C,c(P[n,])) 

} 

 

return(Y) 

} 
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rmulti0<-function(m, C,P=rep(1/C,C)){ 

 

# GENERATES SINGE OBSERVATION VECTOR FROM MULTINOMIAL DISTRIBUTION 

############## 

# 03.08.2001 # 

############## 

# by Elena Moltchanova 

 

# INPUT: 

# C = number of classes 

# P = multinomial probability vector or matrix 

# m = size of output vector 

 

# calculating cumulative probabilities 

cp<-round(cumsum(P),8) 

 

#lower border 

cp.low<-array(rep(c(0,cp[-length(cp)]),m),dim=c(C,m)) 

cp.upp<-array(rep(cp,m),dim=c(C,m)) 

 

#random numbers 

rp<-array(rep(runif(m,0,1),rep(C,m)),dim=c(C,m)) 

 

# class belonging 

Y<-apply((rp>cp.low)*(rp<=cp.upp),1,sum) 

 

return(Y) 

} 



 47

gen.random<-function(size.x,size.y,C,N,E=ar ray(dim=c(C,C,N)),P=rep(1/C,C),pic=F){ 
 
# GENERATING RANDOM OBSERVATIONS ON A RECTANGULAR GRID 

# C classes 

# N sources 

############## 

# 02.08.2001 # 

############## 

# by Elena Moltchanova 
 
# reading in additional functions 
 
source("A:/rmulti_fun.txt") 
 
#true category vector 
 
X<-(rmulti(size.x*size.y,1,C,P))%*%c(1:C) 
 
#sources 
 
Y<-array(dim=c(size.x*size.y,N)) 
 
for (source in 1:N){ 

Y[,source]<-rmulti(size.x*size.y,1,C,t(E[,X,source]))%*%c(1:C) 

} 
 
X<-array(X,dim=c(size.x,size.y)) 
Y<-array(Y,dim=c(size.x,size.y,N)) 
 
if (pic==T){ 
#PLOT 
 
#dividing the plotting area into a suitable number of screens: 
 
x.fig<-ceiling(sqrt(N)) 
par(mfcol=c(x.fig,x.fig+1)) 
 
#plotting true source 
image(c(0:size.x),c(0:size.y),X,main="True",xlab="x",ylab="y",col=terrain.colors(C)) 
 
#plotting legend 
plot(0,0,xlim=c(0,5),ylim=c(0,(2*C+1)),xlab="",ylab="",main="legend",ty="n") 
for (cl in 1:C){ 
polygon(c(1,2,2,1),c(2*cl,2*cl,2*cl+1,2*cl+1),col=terrain.colors(C)[cl]) 
text(3,2*cl+.5,cl) 
} 
 
#plotting observation sources 
for (n in 1:N){ 
image(c(0:size.x),c(0:size.y),Y[,,n],main=c("source=",n),xlab="x",ylab="y",col=terrain.colors(C)) 
} 
} 
 
return(X,Y) 
} 
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br2bin.acc.px<-function(E1=array(c(.5,.5,.5,.5),dim=c(2,2)),E2=array(c(.5,.5,.5,.5), 
dim=c(2,2)),e1=E1,e2=E2,P=.5,pic=FALSE){ 
 
############## 
# 24.07.2001 # 
############## 
 
#Evaluates theoretical accuracy of the Bayesian image restoration as a function of p 
 
#calculate jump points 
 
JP<-vector(length=4) 

JP[1]<-e1[1,1]*e2[1,1]/(e1[1,1]*e2[1,1]+e1[2,1]*e2[2,1]) 

JP[2]<-e1[1,2]*e2[1,1]/(e1[1,2]*e2[1,1]+e1[2,2]*e2[2,1]) 

JP[3]<-e1[1,1]*e2[1,2]/(e1[1,1]*e2[1,2]+e1[2,1]*e2[2,2]) 

JP[4]<-e1[1,2]*e2[1,2]/(e1[1,2]*e2[1,2]+e1[2,2]*e2[2,2]) 

 

#eliminating doubles 

 

JP<-JP[!is.na(JP)] 

 

JP.order<-sort(JP) 

 

#unit levels 

 

U0<-vector(length=4) 

U1<-vector(length=4) 

 

U0[1]<-E1[1,1]*E2[1,1]*(1-P) 

U0[2]<-E1[1,2]*E2[1,1]*(1-P) 

U0[3]<-E1[1,1]*E2[1,2]*(1-P) 

U0[4]<-E1[1,2]*E2[1,2]*(1-P) 

 

U1[1]<-E1[2,1]*E2[2,1]*P 

U1[2]<-E1[2,2]*E2[2,1]*P 

U1[3]<-E1[2,1]*E2[2,2]*P 

U1[4]<-E1[2,2]*E2[2,2]*P 

 

#sorting U0 and U1 by JP 

 

o<-order(JP) 

 

U0<-U0[o] 

U1<-U1[o] 

 

levelf<-vector(length=5) 
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levelf[5]<-sum(U1[1:4]) 

levelf[4]<-sum(U1[1:3],U0[4]) 

levelf[3]<-sum(U1[1:2],U0[3:4]) 

levelf[2]<-sum(U1[1],U0[2:4]) 

levelf[1]<-sum(U0[1:4]) 

 

#maximum of the function 

 

max.f<-max(levelf) 

 

#the width of the interval for which maximum is reached 

 

Jlength<-c(JP.order,1)-c(0,JP.order) 

 

Jlength.max<-sum(Jlength[levelf==max(levelf)]) 

 

if(pic==TRUE){ 

#plot 

plot(c(0:1),c(0:1),ty="n",xlim=c(0,1),ylim=c(0,1),xlab="prior probability p(x)", 

ylab="accuracy", main="Expected Bayes Rule Accuracy") 

 

segments(0,levelf[1],JP.order[1],levelf[1],lwd=2,col="darkgreen") 

for (ss in 1:3){ 

segments(JP.order[ss],levelf[ss+1],JP.order[ss+1],levelf[ss+1],lwd=2,col="darkgreen") 

} 

 

segments(JP.order[4],levelf[5],1,levelf[5],lwd=2,col="darkgreen") 

 

for (ss in 1:4){ 

segments(JP.order[ss],levelf[ss],JP.order[ss],levelf[ss+1],lwd=1,lty=2,col="darkgreen") 

}} 

 

 

return(JP.order,levelf,max.f,Jlength.max) 

} 
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br<-function(Y1,C,e,p,pic=F){ 
 

############## 

# 01.08.2001 # 

############## 

 

# by Elena Moltchanova 

 

#################################### 

#                                  # 

# USING BAYESIAN TOTAL PROBABILITY FORMULA FOR IMAGE RESTORATION # 

#################################### 

 

size.x<-dim(Y1)[1] 

size.y<-dim(Y1)[2] 

 

Y<-array(Y1,dim=c(size.x*size.y,dim(Y1)[3])) 

 

############################################ 

# * NOTATION *                             # 

# C=number of classes (1,...,C)            # 

# N=number of sources                      # 

# Y[1:L,1:N]=array of observations         # 

# E[1:C,1:C,1:N]=array of source errors    # 

# P[1:C,1:I]=vector of prior probabilities # 

############################################ 

 

#L number of observations 

L<-dim(Y)[1] 

N<-dim(Y)[2] 

 

Ee<-array(dim=c(N,C,L)) 

 

for (n in 1:N){ 

Ee[n,,]<-E[,Y[,n],n] 

} 

 

Ee.sum<-exp(apply(log(Ee[1:N,,]),c(2,3),sum)) 

 

Ee.sumx<-apply(Ee.sum[1:C,],2,sum) 

 

#array of posterior probabilities 

P.post<-t(t(Ee.sum)/Ee.sumx) 

 

#mode estimation 

P.post.max<-t(t(P.post)==apply(P.post,2,max)) 
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#dealing with multimodality 

 

source("A:/rmulti_fun.txt") 

PP<-t(P.post.max)/apply(P.post.max,2,sum) 

Y.est<-rmulti(L,1,C,PP)%*%c(1:C) 

 

Y.est<-array(Y.est,dim=dim(Y1)[1:2]) 

 

if (pic==TRUE){ 

#PLOT 

 

#dividing the plotting area into a suitable number of screens: 

 

x.fig<-ceiling(sqrt(N)) 

par(mfcol=c(x.fig,x.fig+1)) 

 

#plotting observation sources 

for (n in 1:N){ 

image(c(0:size.x),c(0:size.y),Y1[,,n],main=c("source=",n),xlab="x",ylab="y",col=terrain.colors(C), 

zlim=c(.5,C+.5)) 

} 

 

#plotting estimated values 

image(c(0:size.x),c(0:size.y),Y.est,main=c("BR Estimated pattern"),xlab="x",ylab="y", 

col=terrain.colors(C),zlim=c(.5,C+.5)) 

 

#plotting legend 

plot(0,0,xlim=c(0,5),ylim=c(0,(2*C+1)),xlab="",ylab="",main="legend",ty="n") 

for (cl in 1:C){ 

polygon(c(1,2,2,1),c(2*cl,2*cl,2*cl+1,2*cl+1),col=terrain.colors(C)[cl]) 

text(3,2*cl+.5,cl) 

} 

 

} 

 

P.post<-array(P.post,dim=c(dim(Y1)[1:2],C)) 

 

return(Y.est,P.post) 

 

} 
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neighbor1<-function(size.x,size.y,method="king"){ 

 

############## 

# 25.07.2001 # 

################################ 

# by Elena Moltchanova         # 

# creating a neighborhood matrix # 

################################ 

 

x.coord<-rep(c(1:size.x),rep(size.y,size.x)) 

y.coord<-rep(c(1:size.y),size.x) 

 

I<-size.x*size.y 

U<-array(dim=c(I,I)) 

 

if (method=="king"){ 

U<-(abs(x.coord[col(U)]-x.coord[row(U)])<=1)*(abs(y.coord[col(U)]-y.coord[row(U)])<=1)* 

(((x.coord[col(U)]==x.coord[row(U)])*(y.coord[col(U)]==y.coord[row(U)]))==0) 

} 

 

else if (method=="rook") 

{ 

U<-(x.coord[col(U)]==x.coord[row(U)])*(abs(y.coord[col(U)]-y.coord[row(U)])==1)+ 

(abs(x.coord[col(U)]-x.coord[row(U)])==1)*(y.coord[col(U)]==y.coord[row(U)]) 

 

} 

else if (method=="bishop") 

{ 

U<-(abs(x.coord[col(U)]-x.coord[row(U)])==1)*(abs(y.coord[col(U)]-y.coord[row(U)])==1) 

} 

 

U<-array(U,dim=c(I,I)) 

 

return(U) 

} 
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AWS.3d<-function(Y,Cl,lambda,nu,k.max,kern el,method,U,res.m=1,sigma.m="s",pic=F){ 
 
############## 
# 06.08.2001 # 
######################## 
# by Elena Moltchanova # 
######################################### 
# AWS FUNCTION FOR 3D MULTINOMIAL SPACE # 
######################################### 
 
# GENERALIZED 
 
size.x<-dim(Y)[1] 
size.y<-dim(Y)[2] 
L<-length(Y) 
 
source("A:/neighbor_fun.txt") 
 
k.max<-k.max+1 
 
Y1<-c(Y) 
 
#neighborhood 
 
if (method!="given"){ 
source("A:/neighbor1_fun.txt") 
U<-neighbor1(size.x,size.y,method) 
} 
 
#residuals: 
res.w<-array(rep(0,size.x*size.y),dim=c(size.x,size.y)) 
 
if(res.m==1){ 
res<-c((2*Y-cbind(Y[,2:size.y],rep(0,size.x))-rbind(Y[2:size.x,],rep(0,size.y)))/ 
sqrt(res.w+6-(col(res.w)==size.x)-(col(res.w)==size.y))) 
} else 
{ 
res<-c((4*Y-(rbind(Y[2:size.x,],rep(0,size.y))+rbind(rep(0,size.y),Y[1:(size.x-1),])+ 
cbind(Y[,2:size.y],rep(0,size.x))+cbind(rep(0,size.x),Y[,1:(size.y-1)])))/ 
sqrt(res.w+20-(col(res.w)==1)-(col(res.w)==size.y)-(row(res.w)==1)-(row(res.w)==size.x))) 
} 
 
rm(res.w) 
 
# sigma 
 
if (sigma.m=="s"){ 
sigma<-c(res%*%res/length(res)) 
} else 
{ 
# t-range estimation 
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sigma<-c((sort(res)[ceiling(length(res)*.75)]-sort(res)[floor(length(res)*.25)])/1.35) 
} 
 
# (a) Initialization 
 
#weights matrics 
W<-array(rep(1,L*L),dim=c(L,L)) 
 
f<-array(dim=c(k.max,L)) 
s<-array(dim=c(k.max,L)) 
 
f[1,]<-(U*W)%*%Y1/((U*W)%*%(rep(1,L))) 
 
#rounding within the class boundaries 
f[1,]<-apply(rbind(apply(rbind(round(f[1,]),rep(1,L)),2,max),rep(Cl,L)),2,min) 
 
s[1,]<-sigma*(U*W)%*%t(W)%*%rep(1,L)/((U*W)%*%rep(1,L))^2 
 
#correction for zero sigma 
s[1,]<-s[1,]+.0001*(s[1,]==0) 
 
#defining kernel function 
if (kernel=="exp"){ 
kernel.fun<-function(x){ 
y<-exp(-x^2) 
return(y) 
} 
} else{ 
if (kernel=="uni"){ 
kernel.fun<-function(x){ 
y<-(abs(x)<=1) 
return(y) 
} 
} else{ 
if (kernel=="tri"){ 
kernel.fun<-function(x){ 
y<-(abs(x)<2)*(1-.5*x*sign(x)) 
return(y) 
}}}} 
 
if(k.max>1){ 
# (b) Adaptation 
 
for (k in 1:(k.max-1)){ 
 
U<-neighbor(size.x,size.y,k+1) 
 
#weights matrix 
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W<-array(kernel.fun((f[k,row(W)]-f[k,col(W)])/(lambda*sqrt(s[k,col(W)]))),dim=c(L,L)) 
 
f[k+1,]<-(U*W)%*%Y1/((U*W)%*%(rep(1,L))) 
s[k+1,]<-sigma*(U*W)%*%t(W)%*%rep(1,L)/((U*W)%*%rep(1,L))^2 
 
#note: estimates are rounded within class limits 
 
f[k+1,]<-apply(rbind(apply(rbind(round(f[k+1,]),rep(1,L)),2,max),rep(Cl,L)),2,min) 
 
#coorection for zero s 
s[k+1,]<-s[k+1,]+.0001*(s[k+1,]==0) 
 
# (c) Control 
 
c.check<-sign(apply(t((-t(f[1:k,])+f[k+1,])/s[k+1,])>nu,2,sum)) 
f[k+1,]<-f[k,]*c.check+f[k+1,]*(1-c.check) 
 
# (d) Stopping 
 
if (sum(c.check[])==L){break} 
} 
 
#RESULTS 
 
Y.est<-array(f[k+1,],dim=c(size.x,size.y)) 
} 
else 
{Y.est<-array(f[1,],dim=c(size.x,size.y))} 
if (pic==T){ 
#PLOT 
par(mfcol=c(2,2)) 
 
#plotting input data 
image(c(0:size.x),c(0:size.y),Y,xlab="x",ylab="y",main="Input",col=terrain.colors(Cl), 
zlim=c(.5,Cl+.5)) 
 
#plotting smoothed image 
image(c(0:size.x),c(0:size.y),Y.est,xlab="x",ylab="y",main="AWS result",col=terrain.colors(Cl), 
zlim=c(.5,Cl+.5)) 
 
#legend 
plot(0,0,xlim=c(0,5),ylim=c(0,(2*Cl+1)),xlab="",ylab="",main="legend",ty="n") 
for (cl in 1:Cl){ 
polygon(c(1,2,2,1),c(2*cl,2*cl,2*cl+1,2*cl+1),col=terrain.colors(Cl)[cl]) 
text(3,2*cl+.5,cl) 
}} 
 
return(Y.est,W) 
} 
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source.error.sum<-function(E,P=rep(1/dim(E)[3],dim(E)[3]),w=rep(1,dim(E)[3])) 

{ 

 

# 08.08.2001 

# by Elena Moltchanova 

# Summary statistics for source error matrices 

 

#normalizing weights 

w<-w/sum(w) 

 

#calculating number of sources 

S<-dim(E)[3] 

 

#Calculating expected accuracy by source 

 

E.acc.s<-vector(length=S) 

 

for (s in 1:S){ 

E.acc.s[s]<-diag(E[,,s])%*%P[] 

} 

 

#variance by source 

V.acc.s<-E.acc.s-E.acc.s^2 

 

#overall expected source accuracy 

E.acc.o<-sum(w*E.acc.s) 

V.acc.o<-sum(w^2*V.acc.s) 

 

return(E.acc.s,V.acc.s,E.acc.o,V.acc.o) 

} 
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AWS.3d.bootstrap<-
function(Y,Cl,l.v,k.v,kernel,method,U,res. m=2,sigma.m="t",M,k.def=19,l.def=3){ 
 
############## 
# 09.08.2001 # 
############## 
# By Elena Moltchanova 
 
Y1<-c(Y) 
 
# sources 
 
source("A:/neighbor1_fun.txt") 
source("A:/AWS_3d_fun.txt") 
 
# neighborhood matrix 
 
if(method!="given"){ 
U<-neighbor1(dim(Y)[1],dim(Y)[2],method) 
} 
 
# Fine-tunes AWS parameters through bootstrap 
 
# (a) weights with default parameters 
W<-AWS.3d(Y,Cl,l.def,4,k.def,kernel,method="given",U,res.m,sigma.m)$W 
W1<-apply(W,1,sum) 
W2<-apply(W^2,1,sum) 
 
# (b) variance estimation on the basis of f 
 
ff<-c(W%*%Y1/W1) 
sig2<-c((Y1-ff)^2)%*%c(W1^2/(W2+W1^2-2*W1))/length(Y1) 
 
# setting up arrays 
 
f.boot<-array(dim=c(M,length(Y1))) 
ksi<-array(dim=c(length(l.v),length(k.v))) 
 
for (l.i in 1:length(l.v)){ 
for (k.i in 1:length(k.v)){ 
for (m in 1:M){ 
# (c) resampling 
 
Y1<-ff+sqrt(sig2)*rnorm(ff,0,1) 
Y1<-array(Y1,dim=dim(Y)) 
 
# (d) Parameter optimization 
 
f.boot[m,]<-AWS.3d(Y,Cl,l.v[l.i],4,k.v[k.i],kernel,method="given",U,res.m,sigma.m)$Y.est 
} 
 
# loss function 
 
ksi[l.i,k.i]<-sum((t(-t(f.boot[,])+ff))^2)/M 
}} 
return(ksi) 
} 
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############## 

# 23.07.2001 # 

############## 

 

# by Elena Moltchanova 

 

# Calculating Moran's I to measure autocorrelation 

 

moran.i<-function(Y,method="king",U){ 

 

# where 

# Y = the data matrix, containing values 

# method="king", "rook" or "bishop" describes the neighborhood 

# method="given" allows to use externally calculated neighborhood matrix 

 

#calculating the weight matrix: 

 

if (method!="given"){ 

source("H:/r-routines/neighbor1_fun.txt") 

U<-neighbor1(dim(Y)[1],dim(Y)[2],method) 

} 

x<-c(Y)-mean(Y) 

W<-array(U,dim=c(length(Y),length(Y))) 

 

I<-(t(x)%*%W%*%x)/(t(x)%*%x)*length(x)/sum(W) 

 

return(I) 

} 
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neighbor<-function(size.x,size.y,radius=1){ 

 

Y<-array(dim=c(size.x,size.y)) 

 

x.coord<-array(rep(c(col(Y)),size.x*size.y),dim=c(size.x*size.y,size.x*size.y)) 

y.coord<-array(rep(c(row(Y)),size.x*size.y),dim=c(size.x*size.y,size.x*size.y)) 

 

U<-(abs(x.coord-t(x.coord))<=radius)*(abs(y.coord-t(y.coord))<=radius)*(1- 

(x.coord==t(x.coord))* 

(y.coord==t(y.coord))) 

return(U) 

} 
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naive1<-function(Y,mv=1,radius=1){ 
# 27.08.2001 
# by Elena Moltchanova 
 
# naive smoothing 
I<-dim(Y)[1] 
J<-dim(Y)[2] 
 
W<-array(rep(0,I*J),dim=dim(Y)) 
#statistical mode function: 
statmod<-function(x){ 
statmod0 <- function(x) { 
   z <- table(as.vector(x)) 
   names(z)[z == max(z)] 
} 
Z<-as.numeric(statmod0(x)) 
 
return(Z) 
} 
 
W<-array(dim=dim(W)) 
 
for (i in 2:(I-1)){ 
for (j in 2:(J-1)){ 
xx<-c(Y[(i-1):(i+1),(j-1):(j+1)]) 
if(length(xx[xx!=mv])>0){W[i,j]<-statmod(xx[xx!=mv])[1]}else{W[i,j]<-mv} 
}} 
 
#borders 
for (i in 2:(I-1)){ 
xx<-c(Y[(i-1):(i+1),1:2]) 
if(length(xx[xx!=mv])>0){W[i,1]<-statmod(xx[xx!=mv])[1]}else{W[i,1]<-mv} 
xx<-c(Y[(i-1):(i+1),(J-1):J]) 
if(length(xx[xx!=mv])>0){W[i,J]<-statmod(xx[xx!=mv])[1]}else{W[i,J]<-mv} 
} 
 
for (j in 2:(J-1)){ 
xx<-c(Y[1:2,(j-1):(j+1)]) 
if(length(xx[xx!=mv])>0){W[1,j]<-statmod(xx[xx!=mv])[1]}else{W[1,j]<-mv} 
xx<-c(Y[(I-1):I,(j-1):(j+1)]) 
if(length(xx[xx!=mv])>0){W[I,j]<-statmod(xx[xx!=mv])[1]}else{W[I,j]<-mv} 
} 
 
#corners 
xx<-c(Y[1:2,1:2]) 
if(length(xx[xx!=mv])>0){W[1,1]<-statmod(xx[xx!=mv])[1]}else{W[1,1]<-mv} 
xx<-c(Y[(I-1):I,1:2]) 
if(length(xx[xx!=mv])>0){W[I,1]<-statmod(xx[xx!=mv])[1]}else{W[I,1]<-mv} 
xx<-c(Y[1:2,(J-1):J]) 
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if(length(xx[xx!=mv])>0){W[1,J]<-statmod(xx[xx!=mv])[1]}else{W[1,J]<-mv} 
xx<-c(Y[(I-1):I,(J-1):J]) 
if(length(xx[xx!=mv])>0){W[I,J]<-statmod(xx[xx!=mv])[1]}else{W[I,J]<-mv} 
 
#missing stay missing 
W<-W*(Y!=mv)+mv*(Y==mv) 
 
return(W) 

} 


