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Abstract

Owners of stochastic assets can pool their endowments to smoothen and insure
individual payoffs across outcomes and time. We explore, in such a setting, how
contingent shadow prices on aggregate resources can be used for three purposes:
First, to design mutual contracts for risk averse agents; second, to quantify the
malfunctioning of such contracts when there are risk lovers (or scale economies);
and third, to estimate reasonable premiums for insurance offered by outside agents.

Key words: risk, insurance, mutuals, cooperative games, core, contingent prices,
stochastic Lagrange multipliers, duality gap, modulus of nonconvexity, randomiza-
tion.
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On Mutual Insurance

Yuri M. Ermoliev (ermoliev@iiasa.ac.at)
Sjur Didrik Fl̊am (sjur.flaam@econ.uib.no)

1 Introduction

This paper considers several extensions of Borch’s classical study of a reinsur-
ance market [5]. Novelties include state-dependent payoffs, multi-dimensional risks,
stochastic dependence, dynamic allocations, and above all: computable core so-
lutions. The setting is broadly as follows. Suppose individual i, when operating
alone, could obtain expected payoff πi(ei) from a stochastic commodity bundle ei
fully owned, delivered, produced, or handled by him. Examples are manifold. For
instance,
∗ ei might be the randomly varying water endowments of agricultural region (or

hydro-electric power station) i;
∗ ei could stand for nation i’s state-dependent quotas in producing diverse pol-

lutants (or in catching various fish species);
∗ ei could account for uncertain quantities of different goods that transportation

firm i must bring from various origins to specified destinations;
∗ ei can be the financial risk, in the form of unknown monetary claims, against

insurance company i.

Present several such individuals i ∈ I, we consider pooling and exchange of their
private holdings ei as a mean of protection against inconvenient outcomes. More
precisely, we shall deal with exchange aimed at providing the concerned parties with
mutual insurance. Focus will be on three problems:
• If all agents are risk averse, can they write an efficient, socially stable, and

computable contract?
• Otherwise, when some agents love risk, or if there are economies of scale, what

properties will such contracts have?
• In any case, if the mutual company at hand exploits internal insurance opti-

mally, how should it evaluate supplementary insurance offered by outside agents?
What would be reasonable premia?

To come to grips with these problems we use as benchmark the instance where
all parties have concave objectives. Then, as explained in Section 2, an efficient and
socially stable contract can be fully written in terms of a contingent shadow price
vector on the aggregate endowment eI :=

∑

i∈I ei. That contract is, in principle,
readily computable and easy to implement. It resembles a competitive equilibrium.
As argued in Sections 2 and 3, it decomposes across events and time into a family
of equilibria akin to spot markets.
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However, and not surprisingly, when preferences are nonconcave, that sort of
insurance contract, designed in terms of the said shadow prices, cannot be viable.
In fact, any such contract will cause overspending and insolvency. Section 4 ex-
plains why. To mitigate these severe deficiencies, Section 5 briefly explores how
randomization may help to restore concavity - whence enhance the prospects for
good insurance.

This is a companion paper to [8]. As such it elaborates on four novelties. First,
we make publicity for contracts which, under concavity assumptions, are not only
efficient in the aggregate, but also robust against defection. More precisely, em-
phasis is here on modes of risk sharing that belong to core of a transferable-utility
cooperative game. This perspective is surprisingly uncommon and far from fully
explored. Second, present nonconcave preferences, we explain and quantify some
basic deficiencies of insurance contracts based on Lagrangian duality and shadow
prices. Third, we indicate how randomization may facilitate the writing of good
contracts. Fourth and last, we estimate the willingness of a mutual company to pay
for supplementary insurance offered by outside agents.

The paper should interest a mixed audience, comprising actuaries, economists,
game theorists, operations researchers, and statisticians. All assumptions and results
are stated formally and precisely. Detailed proofs are given elsewhere [8]. Here we
only outline demonstrations of two key results - and rather discuss some ramifications
and seek to explain the economic significance of the main propositions.

2 Mutual insurance under concave preferences

We accommodate henceforth a finite fixed set I of risk exposed agents (or industries,
regions, sectors etc.) Each individual i ∈ I owns a private, random endowment ei in
some Euclidean space E . More precisely, if the state (or scenario) s ∈ S comes up,
then i is fully entitled to the commodity vector ei(s) ∈ E (say, Rm if m commodities
are at stake).1 One may construe these vectors as accounting for state-dependent
outputs of various enterprises or natural resources.

Since part of our motivation is computational, we do not hesitate in assuming S

finite. Moreover, all agents use the same S as an exhaustive set of mutually exclusive
states. In addition, the agents agree on the probability distribution p(s) > 0 of the
still unknown future state s. This means that uncertainty is objective and external.
It also means that the environment is unaffected by actions considered below, -
and there are no informational asymmetries. Note that we can allow all sorts of
dependencies and associations between the stochastic vectors s �→ ei(s), i ∈ I . For
simplicity we shall start by considering instances where uncertainty about s is fully
resolved in one step. The case when information comes gradually, over several steps,
will be discussed in Section 3.

If individual i were to contend with his random endowment ei in splendid isola-

1Generation of relevant scenarios is demanding since their number easily gets out of hand. This
problem, prominent in stochastic programming, will not be explored here.
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tion, he would a priori look forward to expected payoff

πi(ei) := EΠi(ei) :=
∑

s∈S

p(s)Πi(s, ei(s)) (1)

where Πi(s, ·) is his payoff function in state s. Often i can do better by collaborating
with others, such collaboration implying that the holdings of the participants be
pooled. Specifically, the members of some coalition C ⊆ I could, in principle, join
forces and compute their presumably finite, ex ante, aggregate, stand-alone payoff

πC(eC) := sup

{

∑

i∈C

πi(xi)

∣

∣

∣

∣

∣

∑

i∈C

xi(s) =
∑

i∈C

ei(s) =: eC(s)for all s ∈ S

}

, (2)

the aim being to distribute prospective gains among themselves.2 Since πC(eC) is
finite by assumption, so is the corresponding state-dependent, ex post value

ΠC(s, eC(s)) := sup

{

∑

i∈C

Πi(s, xi(s))

∣

∣

∣

∣

∣

∑

i∈C

xi(s) = eC(s)

}

(3)

for each s ∈ S. We ask: Can the grand coalition I form (be it ex ante, ex post, or
both)? And if so, how might payoffs then be shared?

These questions point to a family of cooperative games, all with player set I ,
but with various characteristic functions I ⊇ C �→ vC ∈ R, and each game allowing
side payments. In other words, main objects here are so-called production games,
featuring transferable (maybe stochastic) payoffs. Given such a game, codified by
the characteristic function v = [vC] , a payoff allocation u = (ui) ∈ R

I is said to
belong to its core iff u entails

efficiency:
∑

i∈I ui = vI ,

and social stability:
∑

i∈C ui ≥ vC for all coalitions C ⊂ I

}

(4)

Social stability means that no coalition C ⊂ I could improve its members’ outcome
by splitting away from the others. Note that mere stability is easy to achieve: Simply
let the numbers (the utilities) ui be so large that

∑

i∈C ui ≥ vC, ∀C ⊆ I. Thus, not
very surprising, the essential difficulty resides in the requirement that total payoff
be efficient and not distributed excessively.

Remarks:

* Cooperative games do not figure prominently in the insurance literature, a
notable exception being [2]. Borch [4], [5] also deals with cooperative games, but he
never uses the core solution concept.

* Creation of a mutual is, of course, only one of many ways to reduce risk
exposure. Self-insurance, treaties with outside providers of insurance, and specific

2Sup is short notation for supremum value. We could posit that all these extremal values are
attained, i.e., that they be maxima. This issue will not be elaborated though because it detracts
attention from the main issues.
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investments to enhance safety (or reliability) are other measures. We regard these
alternatives as exogenous supplements to the actions taken here. In many settings,
particularly those involving fairly homogeneous communities with well spread risks,
a mutual contract will be part of the overall arrangement, and worth exploring.

* The insurance literature mostly considers state-independent payoffs. That
optic appears reasonable for low-consequence, conventional risks such as damage on
cars. It does, however, not fit major events like severe illness or catastrophes.

* Insurance theory often assumes independent or weakly associated risks. No
such assumption is made here. Consequently, we cannot - and shall not - rely on
any law of large numbers or central limit theorem. In fact, the subsequent analysis is
applicable for major events, say catastrophes, inflicting severe and highly correlated
losses.

* We stress that endowments ei can be multi-dimensional. While the insurance
literature, and insurance circles, often consider merely only one good, namely money,
we can accommodate several ”securities”, be it financial papers or real assets, these
giving various sorts of dividends. Multi-dimensionality might also stem from some
components of ei referring to goods available only in specified combinations of state,
location, and time.

* Note that Πi(s, ·) is net payoff or net utility, obtainable after adverse affects
of the ”hazard” s have been mitigated.

* Admittedly, the use of expected payoffs EΠi(s, ·)is best justified under repeated
interaction, allowing probabilities to be estimated from observed data. Nothing
precludes, however, that a mutual will be set up to protect against specific rare
events the ”statistics” of which represents expert judgements.

* Payoff Πi(s, xi(s)) = −∞ is far from excluded. In fact, the value −∞ rep-
resents infinite loss (or total dissatisfaction) and accounts for violation of implicit
constraints, not spelled out at this aggregate level. This abstract way of incorporat-
ing constraints is analytically very convenient (albeit not useful in computation). It
helps to keep focus on some key issues. For example, we could have

Πi(s, xi(s)) := sup
{

Π̂i(s, yi) : Liy = xi(s)
}

with the understanding that Πi(s, xi(s)) = −∞ whenever the equation Liy = xi(s)
has no solution. Explicit representation of constraints is illustrated in Section 3.

* It is tacitly assumed, when it comes to any program (2) or (3), that no con-
cerned agent misrepresents his preferences. We posit that all functions Πi are com-
mon knowledge, or these objects can be readily synthesized, or they are reported
honestly. Admittedly, this assumption is quite stringent. In the same vein, it may
take some faith - or good will - to presume that all agents have the same perception
of uncertainty. Coincidence of probability assessments is rare and difficult when it
comes to exceptionally important states that occur with very low frequencies. We
believe, however, that iterative experiments or computations may be set up which
require neither common knowledge nor equal risk perceptions, but which nonetheless
converge to core solutions.

* Constructions (2) and (3) are like the ones given by Shapley and Shubik [14]
in their classical analysis of so-called market games.
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* Note the complete absence of direct externalities in the individual objectives
(1). This feature is crucial - in fact, indispensable for the subsequent analysis.
It invites decomposition and decentralized decision making. To wit, if all payoff
functions Πi(s, ·) are concave, then - as stated in Theorem 1 - decomposition can be
supported by prices associated with contingent relaxation of the balance requirement
∑

i∈I xi(·) = eI(·). Facing appropriate prices each (presumable risk averse) agent is
- as we shall see - free to make a best choice.

* Equation (2) models pooling and exchange of perfectly divisible goods, freely
transferable among members of C. The advantage of doing so is evident and twofold:
First, aggregation offers increased leeway and better substitution possibilities; sec-
ond, it makes possible transfers of goods across time and contingencies. Less evident
is the fact that, granted concave payoffs, that is, given risk averse agents, then co-
operative incentives become so strong and well distributed that the grand coalition
can safely form. Its formation means that payoff can be shared in ways not blocked
by any subgroup. This is stated in the following

Proposition 1 (Nonempty cores ex ante and ex post)
* Suppose all payoff functions ei �→ πi(ei), defined in (1), are concave. Then

the ex ante payoff-sharing game [πC(eC)] becomes totally balanced. This means
that the game itself and all its subgames (comprising fewer players) have nonempty
cores.

* Suppose state s has already happened, and that all payoff functions Πi(s, ·) are
concave. Then, the ex post payoff-sharing game [ΠC(s, eC(s)] also becomes totally
balanced.

* If the allocations u(s) = [ui(s)] belongs to the core of the ex post game (3) for
every s, then [Eui(s)] belongs to the core of the ex ante game (2). �

To make these insights useful we must give some computational advice concerning
how to find core elements in the various settings. Denote by

LC(s, x(s), λ(s)) :=
∑

i∈C

[Πi(s, xi(s)) + λ(s)(ei(s)− xi(s))]

the ex post, state s, Lagrangian of coalition C, naturally associated to problem (3).
Here and elsewhere we write simply ab for the usual inner product a · b in E. It
is notationally convenient though to use the alternative inner product E(λxi) :=
∑

s∈S p(s)λ(s)xi(s) on E
S . Thus, via (1), we get that

LC(x, λ) := ELC(s, x(s), λ(s)) =
∑

i∈C

[πi(xi) + Eλ(ei − xi)]

is the standard Lagrangian associated to problem (2). Any λI ∈ E
S such that

supx LI(x, λI) ≤ πI(eI) will be named a Lagrange multiplier. Similarly, for given
state s, any λI(s) ∈ E such that supx(s) LI(s, x(s), λI(s)) ≤ ΠI(s, eI(s)) will be
called a contingent Lagrange multiplier. A little more notation is needed now. For
any pairing 〈·, ·〉 (or inner product) between a Euclidean space and its dual let

f∗(λ) := sup
x

{f(x)− 〈λ, x〉} (5)
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denote the conjugate of the extended real-valued function f. Note that f∗ is de-
fined on the dual space. In terms of the customary Fenchel conjugate f∗(λ) :=
supx {〈λ, x〉 − f(x)} we have f∗(λ) = (−f)∗(−λ). Definition (5) fits well to a per-
fectly competitive setting. Namely, if some agent buys production factors (input
bundles) x at fixed linear cost 〈λ, x〉 to achieve revenue f(x), then, at most, he gets
profit f∗(λ).

Theorem 1. (Lagrange multipliers yield core solutions)
* For any Lagrange multiplier λI the ex ante, deterministic payoff allocation

ui := E(λIei) + πi∗(λI), i ∈ I, belongs to the core of game (2).
* Similarly, for any state s and associated Lagrange multiplier λI(s) the contin-

gent, ex post, payoff allocation ui(s) := λI(s)ei(s) + Πi∗(s, λI(s)), i ∈ I, belongs to
the state-dependent core of game (3).

* λI is an overall Lagrange multiplier iff λI(s) is a contingent multiplier for
each s. �

Proof. Social stability obtains in the ex ante game because any coalition C

receives
∑

i∈C

ui = sup
x

LC(x, λI) ≥ inf
λ

sup
x

LC(x, λ) ≥ sup
x

inf
λ
LC(x, λ) = πC(eC).

The very last inequality is often referred to as weak duality. The hypothesis con-
cerning λI ensures strong duality:

πI(eI) ≥ sup
x

LI(x, λI) ≥ inf
λ

sup
x

LI(x, λ) ≥ sup
λ

inf
x
LI(x, λ) = πI(eI)

so that Pareto efficiency prevails: πI(eF ) = supx LI(x, λI) =
∑

i∈I ui. The ex post
games are in the same manner. �

Remarks:

* A special version of Theorem 1 was first proven by Owen [11] who dealt with
linear programs, plagued by no uncertainty. For extensions see [8], [13], and refer-
ences therein.

* Theorem 1 has a nice interpretation. Suppose contingent commodity bun-
dles e ∈ E

S were traded at a constant price vector λ ∈ E
S . Then, if individ-

ual i were a price-taker, he could - at best - envisage expected profit πi∗(λ) :=
supxi {πi(xi)−E(λxi)} . For arbitrary contingent price regime λ, given already his
endowment ei, potential profit always dominates the fait accompli, i.e., πi∗(λ) ≥
πi(ei) − E(λei). Now, the particular nature of any Lagrange multiplier λI is that
allocation - and profit considerations - can be decentralized as follows: In state s

each individual i chooses a vector xi(s) such that Πi(s, xi(s)) − λ(s)xi(s) becomes
maximal.

* The risk averse parties i ∈ I are under no compulsion to reach the agreement
designed in terms of the multiplier. The corresponding treaty will be incentive-
compatible in that no individual or group can do better alone.
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* We tacitly assume that for C = I the suprema in both problems (2) and (3)
are attained. Sufficient conditions for attainment are that
{

x :
∑

i∈I

πi(xi) ≤ r,
∑

i∈I

xi = eI

}

and

{

x(s) :
∑

i∈I

Πi(s, xi(s)) ≤ r,
∑

i∈I

xi(s) = eI(s)

}

be compact for every real r. Then the side-payments, embodied in the core alloca-
tion, can be supported by a treaty saying how the aggregate endowment eI should
be split in various circumstances. Often there is no need to write that treaty though.
To wit, if all objectives Πi(s, ·) are strictly concave, then two desirable things occur:
First, the optimal distribution of the aggregate endowment (both ex ante and ex
post) will be unique; second, the said unique choices will be made by the agents
themselves. Nobody would need persuasion or coercion. In fact, the modified ob-
jective Πi(s, xi(s)) − λ(s)xi(s) of i calls forth, by itself, his seemingly agreed upon,
best choice.

* Theorem 1 should be seen as a generalization of Borch’s seminal study [5].
It hinges upon Lagrangian duality, exploiting weak and strong versions to generate
core solutions by means of prices. Those prices are stochastic and constitute a
contingent price system, as brought out in [6]. Any agent will be paid E(λIei) for
his endowment plus the amount πi∗(λI) for his profit contribution (if any), both
entities being computed in terms of the said price λI . The result thus resembles
competitive equilibrium, giving emphasis to non-strategic, price-taking behavior and
decentralized actions.

* Theorem 1 begs questions whether multipliers do exist. At this juncture enters
the concavity of preferences:

Proposition 2 (Existence of multipliers) Suppose here that all functions Πi(s, ·)
are concave and that

eI(s) belongs to the interior of
∑

i∈I

{xi(s) : Πi(s, xi(s)) > −∞} for all s. (6)

Then there exist multipliers λI and λI(s) for each s. �

It is informative, and helpful for economic interpretation, to relate Lagrange
multipliers to marginal payoffs or shadow prices. The following result essentially
derives from Danskin’s envelope theorem.3 Denote by ∂ the subdifferential of convex
analysis [12].

Proposition 3 (Shadow prices yield core solutions) Suppose here that all functions
Πi(s, ·) are concave. Then:

* λI is a Lagrange multiplier iff λI ∈ ∂πI(eI). Similarly, λI(s) is a contingent
Lagrange multiplier iff λI(s) ∈ ∂ΠI(s, eI(s)).

* Given λI ∈ ∂πI(eI), then for any optimal x we have λI ∈ ∂πi(xi) for all i.

Similarly, given λI(s) ∈ ∂ΠI(s, eI(s)), then for any optimal x(s) we have λI(s) ∈
∂Πi(s, xi(s)) for all i. �

3It also follows from the analysis of so-called inf-convolutions in [10].
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3 Cooperation over time

It is fitting to elaborate briefly on dynamic problems. For simplicity let there be only
two time periods t = 0, 1, representing now and ”tomorrow”. (Extensions to more
periods is, in principle, easy. It requires explicit modeling of the information flow
though, and it comes with more cumbersome notations.) Decompose the ambient
space E = E0×E 1 as well as endowments ei(s) = (ei0, ei1)(s) into corresponding
stage-relevant parts. Most important, since s is unknown at time 0, we require
that the time 0 component eio(s) be constant as a function of s. This restriction is
commonly referred to as non-anticipativity : Future knowledge cannot be exploited
before it comes about.

We now define i′s problem as follows. If he uses an information-adapted strategy
s �−→ yi(s) = (yio, yi1(s)), he enjoys state-dependent, time-separable payoff

fi(s, yi) := fi0(yio) + fi1(s, yi1(s))

provided the constraints

gi(s, yi) := [gio(yio), gi1(yio, yi1(s))] ≤ ei(s) := [eio, ei1(s)] for all s ∈ S.

are satisfied. Otherwise his payoff is −∞. (As usual, inequality between vectors is
meant to hold coordinatewise.) Define πi(ei) to be the maximum expected value
of this program. One may easily argue that πC(eC), as defined in (2), assumes the
alternative form

πC(eC) = sup
y

{

∑

i∈C

Efi(s, yi) :
∑

i∈C

gi(s, yi) ≤ eC(s) for all s

}

.

Let here LC(y, λ) := E
∑

i∈C [fi(s, yi) + λ(s) {ei(s)− gi(s, yi)}] .

Proposition 4 Suppose πI(eI) ≥ supy LI(y, λI) for some Lagrange multiplier rule
s �→ λI(s) = (λI0, λI1(s)) ≥ 0. Then, paying each i the amount

ui := sup
yi

E [fi(s, yi) + λI(s) {ei(s)− gi(s, yi)}] ,

yields a core allocation ex ante. Ex post, at time t = 1, in state s, with already sunk
optimal decisions yo, the remaining game with conditional payoffs

ΠC(s, eC1(s)) := sup
y1

{

∑

i∈C

fi1(s, yi1) :
∑

i∈C

gi1(s, yi) ≤ eC1(s)

}

admits an ex post core allocation

ui(s, yi0) = sup
yi1

[fi1(s, yi1) + λI1(s) {ei1(s)− gi1(s, yi)}] . �

As above, concavity - and some constraint qualification - suffices to guarantee ex-
istence of multipliers. In particular, it would be enough for (6) to have all functions
fi(s, ·) and (components of) −gi(s, ·) concave finite-valued, and that each strict in-
equality gi(s, ·) < ei(s) be solvable. This is the so-called Slater condition. Numerical
techniques for solving such stochastic programs are presented in [7].
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4 Insuring risk lovers

Insurance has positive value to risk averters. They are willing to pay for greater
security. Mathematically, this phenomenon manifests itself here as an equality be-
tween two extremal quantities. These are, on one side the presumably finite, efficient
payoff P := πI(eI), and on the other side, the optimal value D := infλ supx LI(x, λ)
of the associated dual program. Theory tells that under (6) the equality P = D,
so conducive for computation and decomposition, does indeed obtain provided the
(presumably continuous) aggregate objective

∑

i∈I πi(xi) is concave. In other words,
aggregate risk aversion suffices for the design of the contracts described above. Ab-
sent aggregate risk aversion (i.e., absent aggregate concavity) that design no longer
works well. The Lagrangian LI(x, λ) could then have no saddle value:

P := πI(eI) = sup
x

inf
λ
LI(x, λ) < inf

λ
sup
x

LI(x, λ) = sup
λ

∑

i∈I

[Eλei + πi∗(λ)] =: D

and there would be a positive so-called duality gap d := D−P. That gap determines
how well solutions to (4) can be approximated:

Theorem 2. (Approximate core allocations) Suppose (6) holds. Then there
exists some λI ∈ ES which maximizes

∑

i∈I [Eλei + πi∗(λ)] . Any such λI defines
an allocation ui := EλIei + πi∗(λI), i ∈ I, which is socially stable in so far as

∑

i∈C

ui ≥ πC(eC) for all coalitions C ⊆ I.

Moreover, the grand coalition will overspend with excess d:

∑

i∈I

ui = πI(eI) + d.

Proof. The ”primal value” P = πI(eI) is finite by assumption. Let λI be any
optimal solution to the dual problem infλ

∑

i∈I [λei + πi∗(λ)] . Such a solution is
known to exist under (6). Then evidently,

∑

i∈I ui = supλ
∑

i∈I [λei + πi∗(λ)] =
πI(eI) + d, and

∑

i∈C

ui =
∑

i∈C

[λIei + πi∗(λI)] = sup
x

LC(x, λI) ≥

inf
λ

sup
x

LC(x, λ) ≥ sup
x

inf
λ
LC(x, λ) = πC(eC)

for all coalitions C ⊆ I. �

Theorem 2 says that if some outside benefactor would contribute d on the con-
dition that coalition I forms, then cooperation could indeed come about. If that
transfer does not come, the mutual company faces bankruptcy. It cannot, in the
average, honor the contracts. Some bills will be left unpaid, and contingent plans
may be hard to implement.
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This result may - at first glance - inspire some sadness or frustration. In math-
ematical terms is shows the limitation of convex analysis. In economic terms it
stresses that insurance becomes quite difficult under economies of scale. That feature
is certainly not surprising. It merely expresses that risk lovers require compensation
for getting rid of uncertainty.

On second thoughts Theorem 2 provides some useful insights. We speculate
briefly about these next. First, one may argue that when d > 0, the core is likely
to be empty. Risk loving members of I will shy away from insurance. They fit
the company badly and should, if possible, be excluded. Alternatively, Theorem 1
can be seen as making a case for self-insurance of some parties: sectors or individ-
uals enjoying increasing returns should live without some sorts of insurance. They
probably will not join the mutual; they are foreign parties to the community I. In
particular, this could apply to public utilities and to holders of options which are
subject to price uncertainty. Theorem 2 could also be stretched as an argument for
collective rescue operations: some rare ”disasters” call upon society at large to mit-
igate the post-event consequences. It might also happen that insurance, as designed
here, improves so much on efficiency, that a tax d can justifiably be levied on the
members of I (and on others maybe).

Anyway, to quantify the disheartening deficiency d, that number must be related
to data. To simplify this task we suppose that all domains of functions are convex.4

Then, following Aubin and Ekeland [1], given any function f from a real vector
space into R∪{±∞} with convex effective domain domf := f−1(R), we measure
that function’s lack of convexity by the number

ρ(f) := sup

{

f(
∑

k∈K

αkxk) −
∑

k∈K

αkf(xk)

}

,

the supremum being taken over all finite families αk ∈ [0, 1] , xk ∈ domf ,
∑

k∈K αk =
1. Clearly, ρ(f) ≥ 0, ρ(f+g) ≤ ρ(f)+ρ(g), ρ(f) = 0⇐⇒ f is convex, and the largest
convex function convf ≤ f must satisfy f − ρ(f) ≤ convf. Suppose henceforth that
all payoff functions πi(·) are upper semicontinuous (usc for short). The following
result derives from [1]:

Proposition 5 (Estimating the duality gap) With πI(eI) finite suppose (6) holds
and that domπi := {xi : πi(xi) > −∞} is nonempty convex for every i ∈ I. Then
d ≤
∑

i∈I ρ(−πi).

Let henceforth E = R
m. Using the Shapley-Folkman Lemma Aubin and Ekeland

[1] proved

Proposition 6 (A tighter estimate on the duality gap) With πI(eI) finite and (6)
in vigor, suppose E = R

m and that domπi is convex for all i ∈ I. Then d ≤ (m +
1) maxi ρ(−πi). �

4For discrete domains see [3].
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Remark: The core incorporates much stability and facilitates the study of many
games with side-payments. It can be either empty though or so large as to loose
predictive power. But insurance (production) games are somewhat different and at
advantage: Granted concave preferences the core contains price-supported elements.
And absent concavity, but present many players, the core comprises computable
and good approximations. For large games it is widely known that cooperation and
competition approximate each other well; they can nearly be reconciled [9], [15],
[16], [17]. This can also be brought out here by letting I be a nonatomic measure
space and invoking the Lyapunov convexity theorem.

5 Randomization

To mitigate the deficiency d under nonconcave preferences one might proceed as
follows. Suppose agent i is restricted to apply a finite set Fi ⊂ E

S of strategies.
Presumably ei ∈ Fi. Let Xi be the set of probability distributions (the simplex) over
Fi and define (with slight abuse of notation)

Πi(s, xi(s)) :=
∑

fi∈Fi

xi(fi)Πi(s, fi(s))

and, as before,

πi(xi) :=
∑

s∈S

p(s)Πi(s, xi(s))

when xi ∈ Xi, −∞ elsewhere. Evidently, concavity (in fact, linearity) of objectives
now obtains. A constraint of the sort

∑

i∈C xi(s) = eC(s) now means that

∑

i∈C

∑

fi∈Fi

xi(fi)fi(s) = eC(s).

So, one would use the convention xi(s) :=
∑

fi∈Fi
xi(fi)fi(s) and, modulo this rule,

the analysis of Section 2 applies.
Admittedly, implementation of randomized devices is not straightforward, and

to find a practical form appears much of a challenge. In some cases implementation
may amount to maintenance of activities that yield inferior return, but offer good
recourse options when such are needed. In other cases, randomization can take the
form of part-time utilization of alternative production lines, technologies, strategies,
or modes of behavior.

6 Paying for supplementary insurance

Suppose some outside agent offers to add the some random vector ê to the existing
aggregate eI. This means that in state s he would transfer the resource bundle ê(s)
to the mutual company. How would that company price such an offer? Clearly, a
reasonable price would equal the total value added, namely πI(eI + ê)− πI(eI). Let



– 12 –

λ̂I denote a Lagrange multiplier, if any, under the new aggregate endowment eI + ê.

An ex ante core allocation would then be to pay i the amount

ui = E(λ̂Iei) + πi∗(λ̂I)

and let the outside insurer have Eλ̂I ê. If ê is only a minor addition to the aggregate
endowment, then, under qualification (6), πI(·) is likely to be Lipschitz continuous
near eI. Any dual optimal solution λI will then be a generalized gradient of πI(·),
and E(λIeI) becomes a reasonable estimate of πI(eI + ê)− πI(eI).
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