
Estimation of Agricultural 
Production Relations in the LUC 
Model for China

Albersen, P., Fischer, G., Keyzer, M.A. and Sun, L.

IIASA Interim Report
November 2000

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33897688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Albersen, P., Fischer, G., Keyzer, M.A. and Sun, L. (2000) Estimation of Agricultural Production Relations in the LUC 

Model for China. IIASA Interim Report. IR-00-027 Copyright © 2000 by the author(s). http://pure.iiasa.ac.at/6218/ 

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


International Institute for
Applied System s Analysis
Schlossplatz 1
A-2361 Laxenburg, Austria

Tel: +43 2236 807 342
Fax: +43 2236 71313

E-m ail: publications@ iiasa.ac.at
W eb: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Interim Report IR-00-027

Estimation of agricultural production
relations in the LUC Model for China

Peter Albersen (P.J.Albersen@sow.econ.vu.nl)
Günther Fischer (fisher@iiasa.ac.at)
Michiel Keyzer (M.A.Keyzer@sow.econ.vu.nl)
Laixiang Sun (sun@iiasa.ac.at)

Approved by

Arne Jernelöv (jernelov@iiasa.ac.at)
Acting Director, IIASA

 December, 2000

Stichting Onderzoek Wereldvoedselvoorziening van de Vrije Universiteit
(Centre for World Food Studies of the Free University, Amsterdam)

International Institute for Applied Systems Analysis, Laxenburg, Austria



ii

Contents

Abstract iii
Acknowledgements iv
About the authors v

1. Introduction 1
2. Transformation of the agricultural sector during the period 1979-1999 5
2.1 Institutional arrangement of China’s family farms in the post-reform era 5
2.2 Pricing and marketing of agricultural products 6
2.3 Dependence on irrigation 7
2.4 Labor-intensive production 7
3. Crop-mix index and input response function 10
3.1 Introduction 10
3.2 Crop-mix output index 11
3.3 Input response function 12
3.4 Computing implicit prices for aggregation 14
4. Data sources, adjustments, and qualifications 17
4.1 Crop outputs and procurement prices 17
4.2 Land and Non-land inputs 18
4.3 Potential yields 21
4.4 Crop-mix 24
4.5 Data checking 25
5. Results from estimation 27
5.1 Analysis of error term 27
5.2 Input response 28
5.3 Output index 34
5.4 Implicit prices 36
5.5 Marginal productivity 39
6. Conclusions 42

References 43
Appendix I: Description of the estimation procedure and calculation of

partial derivatives for the Taylor expansion approach 48
Appendix II: Output elasticities of input k, land input s and of crop c 52



iii

Abstract

China’s demand for feed-grains has been growing fast during the last two decades,
largely due to the increasing meat demand. This raises the important question whether
China will in the coming years be able to satisfy these increasing needs which has
implications that reach far beyond the country itself, especially in the light of China’s
upcoming accession to WTO. The answer depends on many factors, including the
policy orientation of the Chinese government, the loss of cropland caused by the
ongoing industrialization and urbanization processes, and the effect of climate change
on the agricultural potentials of the country.

To analyze these issues, the Land Use Change (LUC) Project is engaged in the
development of an intertemporal welfare maximizing policy analysis model. The
present report presents the input-output relationships for agricultural crops in this
model. The specified relationships are geographically explicit and determine the crop
output combinations that can be achieved, under the prevailing biophysical conditions
across China, from given input combinations in each of some 2040 counties, on the
basis of data for 1990. The inputs are chemical and organic fertilizer, labor and
machinery. Irrigated and rain-fed land is distinguished as separate land-use types.
Distinct relationships are estimated by cross-section for eight economic regions
distinguished in the LUC model. The biophysical potential enters as an asymptote in a
generalized Mitscherlich-Baule (MB) yield function and is computed on the basis of an
agro-ecological assessment of climatic and land resources, including irrigation. The
chosen form globally satisfies the required slope and curvature conditions.

Estimation results show that all key parameters are significant and are of the expected
sign. The calculated elasticities of aggregate output with respect to inputs reflect rather
closely the relative scarcity of irrigated land, labor and other inputs across the different
regions. It also appears that if account is taken of the distance to main urban centers, the
observed cropping patterns are generally consistent with profit maximization.
Confirmation is found for the often noted labor surplus in the Southern and South-
Eastern regions.
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Estimation of agricultural production relations in
the LUC Model for China
Peter Albersen, Günther Fischer, Michiel Keyzer and Laixiang Sun 1

1. Introduction

Fast economic growth has stimulated China’s demand for food and feed-grains. While the

country has an impressive record in raising its agricultural production, it is not fully clear

to which degree China can or should maintain food self-sufficiency, and whether eventual

imports should consist of meat or feed-grains. The answer to these questions is not only

important for China itself. It has strong implications for world markets at large. In its

World Food Prospects, the International Food Policy Research Institute (IFPRI) (Pinstrup-

Andersen et al., 1999) anticipates that the net meat export to East-Asia will be 28-fold in

2020, primarily because the demand for meat in China is expected to double. The demand

for maize as main feed grain will grow by 2.7 percent per year.

However, the successful economic development has itself created new room for choice

and may render any prediction irrelevant that merely extrapolates past trends. Based on

this recognition, the IIASA Land Use Change (LUC) Project2 has opted for an approach

that seeks to identify alternative options for agricultural policy through a spatially explicit,

intertemporal model. This model accounts for the main biophysical restrictions in the

various parts of the country, in conjunction with the main socio-economic factors that

drive land-use and land-cover change (Fischer et al., 1996).

The present paper documents the specification of the input-output relationships for crop

production and reports the estimation results. These relationships describe, for each of

some 2040 counties in China, in the year 1990, the crop output combinations that can,

                                                

1 All authors provided some specific contributions to the writing of this report. Günther Fischer and
Laixiang Sun compiled the database. Günther Fischer developed the agro-ecological assessment model for
China and estimated the biophysical potentials. Laixiang Sun and Peter Albersen estimated the input
response function. Peter Albersen also estimated the output function, performed the final, joint estimation
of the output and input components, and computed the implicit prices. Michiel Keyzer provided general
guidance and gave technical advice.
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under the prevailing environmental conditions (i.e., climate, terrain, soils), be produced

from given combinations of chemical and organic fertilizers, labor and traction power, and

irrigated and rain-fed land. The relationships are estimated separately for the eight

economic regions distinguished in the LUC model3. In addition to these input-output

relations for crop production, the LUC model contains also components for livestock

production, consumer demand, land conversion, and water development. These will be

presented in separate reports.

Several examples exist in the literature of agricultural production functions, which were

estimated for China. The major interest was generally to assess the level of the total factor

productivity and its change, to estimate the marginal productivity and output elasticities of

the main production factors, and to evaluate the specific contribution of the rural reform to

agricultural growth. On the basis of pooled data at the provincial level Lin (1992) assesses

the contributions of decollectivization, price adjustments, and other reforms to China’s

agricultural growth in the reform period. The study estimates that decollectivization

accounted for about half of the output growth during 1978-1984. Wiemer (1994) uses

micro-panel data from households and production teams in a rural township to analyze the

pattern and change of rural resource allocation before and after the reform. Both studies

applied a Cobb-Douglas form to specify an agricultural production function with four

conventional inputs: land, labor, capital, and chemical fertilizer (or intermediate inputs).

Additional variables needed for the specific assessment purposes were incorporated into

the exponential term of the Cobb-Douglas form.

Two recent studies by Carter and Zhang (1998) and Lindert (1999) incorporate besides the

conventional inputs also climate and biophysical information. Carter and Zhang estimate a

Cobb-Douglas model for grain productivity for the five major grain-producing regions in

China with aridity indices using data over 1980-1990. Lindert estimates the agricultural

and grain productivity for both North and South China with a mixed translog and Cobb-

Douglas specification using soil chemistry indices from soil profiles and input-output data

                                                                                                                                                  

2 IIASA and SOW-VU co-operate in the construction of the LUC model.
3 The eight LUC economic regions are, respectively: North including Beijing, Tianjin, Hebei, Henan,

Shandong, and Shanxi; North-East including Liaoning, Jilin, and Heilongjiang; East including Shanghai,
Jiangsu, Zhejiang, and Anhui; Central including Jiangxi, Hubei, and Hunan; South including Fujian,
Guangdong, Guangxi, and Hainan; South-West including Sichuan, Guizhou, and Yunnan; North-West
including Nei Mongol, Shaanxi, Gansu, Ningxia, and Xinjiang; and Plateau representing Tibet and
Qinghai.
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at county level. In both studies fertilizer input was limited to chemical fertilizer, although

the manure aspect is implicitly incorporated in Lindert by an organic matter index.

The aim to include the crop input-output relationships within the wider LUC welfare

optimum model imposes various requirements. We mention the following:

First, an adequate representation of environmental conditions relevant to agricultural land-

use patterns should be reflected in the LUC model. To ensure this, the biophysical

potentials as computed from an agro-ecological assessment were included in the crop

production function in a form that fits meaningfully within the economy-wide model. The

potentials enter through the vector of land resources and a maximal yield that serves as

asymptote to actual yields. The building bricks for the potential output calculation are

potential yields at county level for different land types (irrigated and rain-fed) and for

major seasonal crops (e.g., winter and summer crops corresponding to relevant Asian

monsoon seasons in China). These county-level potential yields were compiled in the LUC

Project’s land productivity assessment component based on the experiences gained in site

experiments employing detailed crop process models (Rosenzweig et al., 1998) and

applying a China-specific implementation of the enhanced Agro-Ecological Zones (AEZ)

methodology (Fischer et al., 2000). The AEZ assessment is a well-developed

environmental approach. It provides an explicit geographic dimension for establishing

spatial inventories and databases of land resources and crop production potential. The

method is comprehensive in terms of coverage of factors affecting agricultural production,

such as components of climate, soil and terrain. It takes into account basic conditions in

supply of water, energy, nutrients and physical support to plants. The AEZ method uses

available information to the maximum. Moreover, it is also directly applicable to assessing

changes in production potential in response to scenarios of climate change.

Second, the functions must satisfy global slope and curvature conditions (i.e., convexity

for the output index and concavity for the input response function). This was imposed

through respective restrictions on the relevant function parameters.

Third, the estimations must accommodate the limitations of the available information. For

instance, no data was available on crop-specific inputs, say, fertilizer applied to wheat.

This lack of information is not specific to China but is a fairly common situation in

agricultural sector modeling, which makes it impossible to identify the parameters of

separate crop-specific production functions. The usual approach is to represent the
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technology via a transformation function with multiple outputs jointly originating from a

single production process with multiple inputs. Under the assumption of revenue

maximization this approach enables to identify derived net output functions separately by

commodity (see e.g., Hasenkamp, 1976; Hayami and Ruttan, 1985, among others). These

functions use output and input prices and resource levels (land, labor, capital) as

dependent variables. However, in the case of China two special difficulties impede the

applicability of this approach. First, despite the decollectivization in the 1980s, farm

decision-making has not yet fully become a family affair, and various rules and

regulations are still in effect which do not find an expression in farm-gate prices and are

not formally recorded. The data used in our study refer to the year 1990 when even more

decisions where made at village government level than is the case now. Second, the only

available output price data are (weighted average) state procurement prices for major

crops at provincial and national levels, and there are no published input price data

available. To overcome these obstacles, the transformation function had to be estimated

directly in its primal form. Yet, to investigate the degree to which the prevailing

allocations could be interpreted as resulting from a profit maximization model, we

compute and compare the implicit prices that would support observed allocations under

profit maximization.

The paper proceeds as follows. Section 2 describes basic institutional features of the

agricultural sector in China during the early 1990s, including the land tenure system, crop

pricing and marketing, basic production technology, and the level of autonomy of farm

households in making decisions regarding production, marketing and resource allocation.

Section 3 introduces the specification of the transformation function. Section 4 describes

the data used for estimation including preparatory compilations and adjustments. The

estimation results and their implications in terms of elasticities, spatial distributions and

implicit prices are presented in Section 5. Some conclusions are provided in Section 6.

Two annexes report on the numerical implementation of the estimation procedure and the

formulae for elasticity calculations.
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2. Transformation of the agricultural sector during 1979-1999

In 1979 China initiated a dramatic reform of the institutional structure in its agricultural

sector. From a collective based agriculture, changes were made towards a system in which

the individual farm household becomes the basic unit of decision with respect to inputs

and most outputs. As a rule, the new family farms are small and fragmented, depend

heavily on irrigation, inducing Chinese farmers to save land and capital and to opt for

highly labor-intensive practices. The present section reviews the main elements of this

transformation process.

2.1 Institutional arrangement of China’s family farms in the post-reform era

During the period 1979 to 1983 collective farming was replaced by the household

responsibility system (HRS). Under the HRS, individual households in a village are

granted the right to use the farmland for 15-30 years, whereas the village community, via

its government, retains other rights associated with the ownership of the land. This land

tenure system constitutes a two-tier system with use-rights vested in individual households

and the ownership rights in the village community (Dong, 1996; Kung, 1995).

Under the new land tenure system, unlike in the previous collective system, farm

households became independent production and accounting units. Each household could

independently organize its production and exercise control over outputs and production.

Most importantly, the control rights over residual benefits are assigned to individual

households.  A fraction of the crop is still sold to the state via state procurement

requirements at prices below the free market level, and another fraction is to be delivered

to the village government as payment for rent or taxes and as contribution to the village

welfare fund and accumulation fund. The remainder is left with the households for

consumption, saving and possibly for selling in the free market. The right to use land also

entails an obligation to contribute labor for maintenance and construction of public

infrastructure. The function of the village governments in the HRS includes the

management of land contracts, maintenance of irrigation systems, and provision of

agricultural services such as large farm machinery, product processing, marketing and

technological advice and assistance (Lin, 1997; Wen, 1993, World Bank, 1985).

When the HRS was introduced, collectively owned land was initially contracted to each

household in short leases of one to three years. In the distribution of land, egalitarianism
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was generally the guiding principle. Most villages have leased land to their member

households strictly on the basis of family size rather than intra-household labor

availability. Moreover, at the initial distribution, land was first classified into different

grades. Thus, a typical farm household would contract 0.56 hectare of land fragmented

into 9.7 tracts (Dong, 1996; Lin, 1997). As the one- to three-year contract was eventually

found to discourage investment in land improvement and soil fertility conservation, further

reforms were initiated and the duration of the contract was extended to 15-30 years. As a

result, various models of the land tenure system have evolved in different regions as an

adaptation to local needs and conditions.4

2.2 Pricing and marketing of agricultural products

During the establishment of the HRS, increasingly more emphasis was given to market

mechanisms for guiding production decisions in the agricultural sector, although the

central planning was still deemed essential. The number of planned product categories and

mandatory targets was reduced from 21 and 31 in 1978 to respectively 16 and 20 in 1981,

and further to 13 in 1982. Moreover, restrictions on interregional trade of agricultural

products by private traders were gradually loosened. Cropping patterns that fit local

conditions and exploit comparative advantages were encouraged. As a consequence, both

cropping patterns and intensity changed substantially between 1978 and 1984. The sown

acreage of cash crops increased from 9.6 percent of the total in 1978 to 13.4 percent in

1984, and the multiple-cropping index declined from 151 to 147 (Lin, 1997, Table 3).

The second round of market reforms was initiated in 1985. The central government

announced that the state would no longer set any mandatory production plans in

agriculture and that the obligatory procurement quotas were to be replaced by purchasing

contracts between the state and farmers (Central Committee of CCP, 1985). Although the

progress of this market reform has been slower and less smooth than expected, the market

freedom enjoyed by Chinese farmers has increased significantly since then. In the early

1990s about two-thirds of China’s marketable cereal production was purchased or sold in

the form of free retails or wholesales at prices determined by market forces. The gap

between market prices and quota prices has been gradually narrowed though the pace has

                                                

4 For more information on various innovative models of land tenure, e.g., see Dong (1996), Fahlbeck and
Huang (1997), Wang (1993), Rural Sample Survey Office (1994), Chen and Han (1994), Lin Nan (1995).
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been slow and uneven. The production and marketing of vegetables, fruits, and most cash

crops have been fully liberalized since 1985.

2.3 Dependence on irrigation

About half of China’s farmland has been under some form of irrigation since the 1980s5.

The irrigated land produces about 70 percent of grain output, most of cotton, cash crops,

and vegetables. Thus, heavy dependence on irrigation is another unique feature of China’s

agriculture. This contrasts sharply with the situation in other major agricultural world

regions. For instance, in the United States, only one-tenth of the grain output comes from

irrigated land (Brown and Halweil, 1998). While the major share of irrigation water has

been delivered to the fields by gravity irrigation with the help of dams, reservoirs, canals,

and irrigation systems, an increasing portion of irrigation water is being supplied by diesel

and electric pumps. Machine-powered irrigation accounted for one quarter of the total

irrigated area in 1965, increasing to two-thirds in 1993 (SSB, 1993, p. 349; Ministry of

Water Conservation, 1994). As a consequence, irrigation equipment has been accounting

for a large fraction of the total power consumed by agricultural machinery since the 1980s.

2.4 Labor-intensive production

It is generally accepted (Lindert, 1999; Wang, 1998; Dazhong, 1993) that land is an

extremely scarce factor in China’s agriculture, while capital is limited, and labor is

relatively abundant. Although the percentage of labor force engaged in agriculture has

been gradually falling from 93.5 percent in 1952 to 56.4 percent in 1993, the total number

of agricultural workers doubled during the same period due to rapid population growth, up

from 173 million in 1952 to 374 million in 1993, even though the rapid expansion of the

rural industrial sector has created employment for more than 120 million rural workers

since 1992. However, the growth in the absolute number of farm workers in the cropping

sector persisted until 1984, and this trend was persisting by 1993 for the agricultural sector

                                                

5 There are two sets of farmland data in China. Most widely used is the data set published by State Statistical
Bureau (SSB) in the Statistical Yearbook of China. Another data set was compiled by the State Land
Administration (SLA), based on a land survey in the 1980s. SSB has noticed that its figures for cultivated
areas may underestimate the actual extent. According to SSB, the area of cultivated and irrigated land in
1990 was only 95.7 and 47.4 million hectares, respectively, whereas the corresponding figures from SLA
were 132.7 and 63.5 million hectares. Thus the irrigation share is similar on average but the differences
between the estimates at province and national level are quite large (SSB, 1994, pp. 329 and 335; Fischer
et al., 1998).
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as a whole (Lin, 1992, Table 4; SSB, 1997, pp. 94 and 400). In 1990, the average family

farm managed only 0.42 hectare farmland but it had 1.73 laborers engaging in agriculture

(Ministry of Agriculture, 1991).

Constrained by the unfavorable land/labor ratio, Chinese peasants historically could not

but adopt a number of labor-intensive, land-saving and yield-increasing technologies, such

as intensive use of organic and chemical fertilizers, irrigation development, use of plastic

film to cover fields, rapid adoption of new crop varieties like hybrid rice, sophisticated

cropping systems, and high levels of multiple cropping. Most of the land-saving

technologies increase the need for application of nutrients and other farm inputs.

Organic fertilizer has always been central to traditional, small-scale Chinese farming.

Farmers commonly use a wide variety of organic fertilizers, including night soil (i.e.,

human excrements), animal manure, oil cakes, decomposed grasses and household wastes,

river and lake sludge, and various green manures. Night soil and animal manure have been

the most important sources due to their high nutrient content and low cost6.

Chemical fertilizers have been increasingly used to improve crop yields owing to the rapid

growth of domestic fertilizer production capacity and of fertilizer imports. Chemical

fertilizer use in China has quadrupled since 1978. Since the early 1990s, China has

emerged as the largest consumer, the second largest producer and as a major importer of

chemical fertilizers in the world (FAO; SSB, 1989-1997). However, the average

application of chemical fertilizer has remained modest, at 155 kilograms of nutrients per

hectare in 1995, which is below the average level of East Asian developing countries and

far below that in Japan and South Korea7 . According to estimates of the World Bank

(1997, p. 16), fertilizer applied in 1995, with an estimated value of 125 billion Yuan, was

the major cash input in crop production. The rapidly increasing application of chemical

fertilizer has been identified by many as a key factor contributing to the significant

productivity growth in China’s agricultural sector over the past three decades. Many

studies suggest that the overall yield response to chemical fertilizer has been significant

                                                

6 We note that econometric studies may underrate the role played by organic fertilizer because relevant
statistical data are often lacking and where available they exhibit high correlation with total labor input.

7 This rate is calculated on the basis of the State Land Administration’s (SLA) figure of the total farmland
area, which is about 132 million hectares in 1995. SLA’s farmland figure is based on a detailed land survey
conducted from 1985 to 1995, and is consistent with estimates derived from satellite imagery (see also
Fischer et al., 1998).
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(e.g., among others, Kueh, 1984; McMillan et al., 1989; Halbrendt and Gempesaw, 1990;

Lin, 1992), partly through a mutual reinforcement between increasing application of

chemical fertilizer and adoption of new crop varieties responsive to chemical fertilizers.

Two recent quantitative estimations suggest that chemical fertilizer application has

increased much faster than the use of organic fertilizer since the early 1970s and has

become the dominant nutrient source by 1988 (Agricultural Academy of China, 1995,

Chapter 8) or 1982 (Wang et al., 1996). However, because of the low quality and

inefficient methods of application of chemical fertilizer, about half the nitrogen applied to

irrigated land is lost to evaporation (World Bank, 1997, p. 18), leaching and emissions,

and this leaves much room for efficiency gains.

It may also need to be noticed in this connection that organic fertilizer is more than a mere

substitute for chemical macro-nutrients. With its high content of organic matter and a wide

range of crop macro- and micro-nutrients, organic fertilizer improves soil structure and

fertility in the long run. Thus, it is believed that organic fertilizer should complement

chemical fertilizer and improve its effectiveness. Also, organic fertilizer is applicable to

rain-fed land without preconditions, whereas the application of chemical fertilizer is

constrained by timely water supply. Finally, the tradition of careful use of organic

fertilizers has made the transition to chemical fertilizers relatively smooth and easy in

China in the 1960s and 1970s (Stone and Desai, 1989).
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3. Crop-mix index and input response function

3.1 Introduction

Our specification of the agricultural production relationships follows Keyzer (1998). We

postulate a transformation function that is separable in outputs and inputs, with a crop-mix

index for outputs and a response function for inputs. The crop-mix index is in CES form

and the input response is specified as a generalized version of the common Mitscherlich-

Baule (MB) yield function, whose maximal attainable output is obtained from an agro-

ecological zone assessment. The input response distinguishes two types of land, irrigated

and rainfed. Their yield potentials and cropping practices differ significantly. However,

since as usual in agricultural sector modeling, the data on inputs is not differentiated by

type of land use or by crop, and since data on crop output is not land-use type specific, we

cannot estimate a transformation function for each land-type or crop separately, but rather

must be satisfied with the estimation of a single transformation function applied for all

crops and land-use types.

Let the subscript � denote observations (i.e., more than 2000 counties in our case), Y a � ×

C vector of outputs, V a � × K vector of non-land inputs, and A a � × S vector of land uses

with S different land quality types. The vector of natural conditions, including climate, soil

and terrain characteristics, is denoted by x. We postulate a transformation function T(Y,

−V, −A, x) that is taken to be quasi-convex, continuously differentiable, non-decreasing in

(Y, −V, −A), and linear homogeneous in (V, A). The function T describes all possible

input-output combinations. To ease estimation, separability is assumed between inputs and

outputs:

T(Y, −V, −A, x) =  Q(Y) − G(V, A; x), (3.1)

where Q(Y) is the crop-mix index, and G(V, A; x) the input response function. Function

Q(Y) is taken to be linear homogeneous, convex, non-decreasing, and continuously

differentiable, and G(V, A; x) is linear homogeneous, concave, and non-decreasing in (V,

A), and continuously differentiable. This implies that the transformation function T is

convex and non-increasing in net outputs. The interpretation of this transformation

function is as follows: under natural conditions x, the given input and land availabilities
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(V, A) make it possible to produce a quantity G of the aggregate production index Q, with

any crop mix such that Q(Y) = G.

The input and output variables are measured in quantity terms and were compiled per

county. As discussed earlier, the transformation function is estimated in primal form rather

than in the dual form with separate crop-specific supply functions, for two reasons. First,

profit maximization may not be the relevant behavioral criterion for Chinese agriculture,

and price data cannot capture the variability at county level since they are only available at

provincial level and measured as a mix of procurement prices and free-market prices. The

estimation is cross-section over counties, in volumes per unit area (represented by the

corresponding lower case characters), i.e.:

q(y) = g(v, a; x) + ε, (3.2)

where ε denotes the error term, assumed to be independently and normally distributed. The

estimation procedure and results are discussed in Section 4.

3.2 Crop-mix output index

The crop-mix output index Q(Y) is specified as a convex function with constant-elasticity-

of-substitution (CES):

00 1/

c
cc ))Y((=)(YQ αα∑ α

ll
(3.3)

where αc ≥ 0 and α0 > 1. The curvature of the output function, or the (direct) elasticity of

transformation between any two outputs, equals 1/(1 - α0). The restriction α0  > 1

guarantees the CES-function to be convex.

The specification also needs to be flexible in order to account for differences in cropping

patterns across counties, say, in a county only 10 out of the 16 crops are being grown. This

could be incorporated in various ways. One way would be to drop the crops from the crop-

mix index, while scaling up the coefficients for the remaining crops in (3.3) through an

additional parameter. However, doing this we must face the problem that in China the

number of crop-mixes often outnumbers the observations and two to four crops often

cover about two-thirds of the total production value. To deal with this problem we

introduce a distinction between major and minor absent crops, and associate a limited
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number of scaling factors to the production function of a particular county, depending on

the number and importance of the absent crops. Consequently, equation (3.3) becomes:

01/

Cc

0
cc

m
mm

))Y()(M(1=)(YQ
α

∈

α∑ α∑ µ+
l

lll
, (3.4)

where µm  is an estimated scaling factor, M
lm is a zero-one dummy that associates the

county to a particular scaling factor and C
l
 is the set for which Y

lc > 0. Each county has at

most one non-zero crop-mix dummy. Further details on the association rule are given in

Section 4.

3.3 Input response function

The input response function combines the information obtained from biophysical

assessments with the statistical data available at county level. It is specified as:

( ) ( ))x(yAN)A(HVfQ
llllll

,,= . (3.5)

where f(.)N(.) is a generalized Mitscherlich-Baule specification following Keyzer (1998),

and H(.) and N(.) are the aggregate area and potential output index, respectively, which are

specified as:

∑δ=δ
s

sH sA);(A
lll

(3.6)

)(x);(A));(xy,(A
llllllll

yHN δ=δ (3.7)

with )x(y
ll

 denoting the maximal attainable yield for given agro-ecological conditions xl.

This potential yield )x(y
ll

 is calculated as the maximal attainable production )x(Y
ll

divided by land index 
l

H . Parameter δs is preset and was not estimated. The input

response function f(.) in (3.5) is specified in product form, to allow for different input

groups. The functional form is:

( ) ∏ ργβ= θ

j
jjj

j) ,;H,V(f)(AH,Vf ,
llll (3.8)

with

)],);;H(A,(Vw[1=f jjjj ργδ−β−−
ll

exp (3.9)
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where fj is the j-th component of a Mitscherlich-Baule (MB) yield function and its

exponent θj > 0 is such that 1j j =∑ θ . This parameter θj avoids the increasing returns that

would result from the standard MB-form with θj = 1. In addition, a nested structure is

assumed for inputs so as to ease the nonlinear estimation. In equations (3.8) and (3.9),

index j stands for two categories of inputs, power and nutrients. Power consists of labor

and agricultural machinery. Nutrients includes chemical and organic fertilizers. For both

categories we assume a CES form, denoted by wj.

j
j

1/

jk

k
kjj H

V
),);;H(A,(Vw

ρ

∈

ρ


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



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








γ=ργδ ∑

l

l

ll
(3.10)

with γk ≥ 0 and ρj ≤ 1 ensuring concavity of w(.). Input response function (3.5) is linear

homogeneous, globally concave and non-decreasing in (V,A), and continuously

differentiable.

The biophysical diversity across China is reflected in the potential yield )x(y
ll

 as will be

explained in Section 4. However, cropping possibilities vary widely across China and also

within the estimated regions, ranging from single cropping to triple rice cropping. The

maximal attainable yield )x(y
ll

alone is not sufficient to capture this variability. To

account for these differences, cropping system zone variables 
z

Z
l

 are introduced, where

the subscript z indicates the cropping system zone. If for irrigated conditions a county is

located in cropping system zone z, the value of the related variable is 1, and 0 otherwise.

Then (3.5) becomes:

( ) ( ))x(yAN)A(HVfZQ z llllll
,,= (3.11)

with

∑ζ=
z

zzz ZZ
l

. (3.12)

The outputs in (3.4) and the potential production in (3.5) are measured in different units of

measurement. 
c

Y
l

is given in metric tonnes of produce, while the potential is given as

cereal equivalent in metric tonnes of economic dry matter. Harmonization of the
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dimensions is restored via the crop and county specific parameter ratio

zzmmc Z)M(1
ll

ζµ+α .

3.4 Computing implicit prices for aggregation

The transformation function enters the LUC-model for China after an aggregation

procedure from county to region. Our approach is to assume “ implicit”  profit

maximization, at implicit prices. These are the prices that would support the observed crop

and input allocations under profit maximization. We interpret the gap between these prices

and average market prices in the cities as processing margins, which we use in the

aggregation procedure from county to region. Clearly, this procedure needs further

empirical justification and we show in Section 5.5 that the resulting margins have a

meaningful interpretation, i.e., that despite the institutional peculiarities in China we can

indeed view the allocation decisions as being based on profit maximization, at prices

governed by institutionally determined wedges.

Assuming profit maximization subject to the separable transformation function (3.1)

ensures separability between output and input decisions. The farmer determines the crop-

mix so as to maximize the revenue corresponding to a given value of the index Q, while

choosing the level of inputs V and corresponding aggregate output Q so as to maximize

his revenue, at given prices of V and Q.

Thus, the crop-mix problem of the revenue maximizing farmer with given output index

l
Q is stated as

ll

ll

l

l

Q)Q(Yts

Yp
Cc

cc0Y c

=

∑
∈

≥

.

max
, (3.13)

with p
lc as the price of crop c in county �. The Lagrangean of this problem is:

)Q)(Q(YPYp
Cc

cc lllll

l

−∑ −=
∈

L (3.14)

where the Lagrangean multiplier is the county level price index 
l

P  since the function

Q(Y
lc) has constant returns to scale. The first-order conditions of this problem determine

the implicit (shadow) prices of crop c∈ Cl:
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For the base year the county level price index
l

P  has been calculated from provincial and

national prices and county level production data (see annex I). In simulation runs with

endogenous crop prices cp
l

the index is calculated as:
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with 
10

0

−α
α

=σ . The county specific relation between the base year price index and the

obtained under the maximizing producer assumption becomes:

)
P
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1(P)1(PP p

l

ll

llll

−
+=ε+= , (3.17)

and in simulation runs the estimated price index can replace the ’observed’ index.

Finally, for the input side the restricted profit maximization problem becomes:

∑−∑−≥≥
s
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The first-order condition with respect to input k of group j gives the marginal productivity:
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For land-use type s the marginal productivity is:
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where
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and jf
l

and jw
l

 are the same as defined by (3.9) and (3.10).
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4. Data: sources, adjustments, and qualifications

Despite major improvements in the quality and availability of relevant statistics for China,

various procedures had to be applied to scrutinize data, fill data gaps, and define proxy

variables, which are discussed in the present section.

4.1. Crop outputs and procurement prices

The total annual output of grain, cotton, and oilseeds is available at county level (SSB and

CDR, 1996). The published data were matched with county administrative codes as used

in the LUC Project’s database of China. Also available are output data and sown areas of

wheat, rice, maize, sorghum, millet, other starchy crops, potato and other root crops,

soybean, oilseeds, cotton, sugar beet, sugarcane, fiber crops, tobacco, tea, and fruit for

1989 but not for 1990. These data were compiled by the State Land Administration and

provided to FAO. While the year 1990 represents rather well the average conditions of

Chinese cropping agriculture during the period from 1985 to 1995, whereas the 1989-crop

was fairly poor due to weather conditions, we use data for 1990 whenever possible. As a

consequence, we had to disaggregate the data for grains in 1990 on the basis of crop-

pattern distribution available for 1989. According to Chinese statistics, the aggregate

termed grains includes wheat, rice, maize, sorghum, millet, other starchy crops, potato and

other root crops, and soybean (five kilograms of potato and other root crops are counted as

one kilogram of grain; all other commodities have a conversion factor of unity). For

sugarcane, fiber crops, tobacco, tea and fruits, the 1989 outputs had to be used.

Thus, crop outputs in 1990 were estimated as:

89

89
c9090

c G

q
Gq ⋅= , (4.1)

where Gt
 is total grain output in year t and t

c
q  is crop-specific output measured in grain

equivalent. For vegetables, only estimates of sown areas at county level for 1989 were

available, and no output data for any year. The national average yield of 20.9 tons per

hectare in 1989 was used (Xie and Jia, 1994, p. 103) to calculate vegetable output at

county level.

Procurement prices at both provincial and national levels for wheat, rice, maize, sorghum,

millet, soybean, oilseeds, cotton, sugarcane, fiber crops, tobacco, tea, and fruit were
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extracted from Yearbook of Price Statistics of China 1992 (SSB, 1992b, pp. 302-365). The

procurement price for a crop is a quantity-share-weighted mean of quota prices, negotiated

prices, and free-market prices. The procurement of commodities is done not only by

government agencies, but also enterprises, social organizations, and trade companies.

There is no price data for Hainan Province in this Yearbook. Prices in Guangdong were

used as proxies for Hainan in view of the fact that Hainan Province had been a prefecture

of Guangdong until 1988. No price data are available for the aggregate of other starchy

crops. The price of maize is used as a proxy in each province following the information in

the national price data for China listed in the FAO-AGROSTAT database. Again with

reference to FAO-AGROSTAT, one third of wheat price is used as a proxy for the price of

potato and other root crops in each province.

Prices of vegetables were compiled from Nationwide Data on Costs and Revenues of

Agricultural Products 1991 (Eight Ministries and Bureaus, 1991). The prices listed in this

publication are free-market selling prices of major vegetables shown for selected major

cities (typically, provincial capital city) in most of the provinces. Representative

vegetables for each province were selected and the representative price for the vegetable

category is the arithmetic mean of the various prices.

With the steps described in the previous paragraphs, price data could be obtained for all

major crops of each province. However, the price information for some minor crops was

still missing, and these are actually the main crops in some counties. To fill these gaps, a

corresponding price was used from one of the neighboring provinces with similar

production conditions. When no such province was available, the national average price

was used as a proxy.

In the compilation of the initial output index Q, the provincial prices were applied directly

to the county level, ignoring all price differences across counties within each province.

4.2 Non-land and land inputs

Data on non-land inputs used in the broad agricultural sector at county level are available

in the LUC project for various years between 1985 to 1994. They include agricultural

labor force, total power of agricultural machinery, total number of large animals, and

chemical fertilizer applied. In the following we will only discuss the 1990 data since these

were used in estimation. A data problem arises from the fact that in Chinese statistics,
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broad agriculture consists of farming, forestry, animal husbandry, fishery, and sideline

production. We attribute non-land inputs to the crop sector based on the share of crop

agriculture in broad agriculture. The total output value of broad agriculture is available at

county level. Availability of crop output enables us to calculate the total output value of

cropping agriculture for each county by straight aggregation over crops valued at

provincial prices. The resulting shares are applied to agricultural labor force and power of

agricultural machinery8.

Two remarks are in order. First, the approach is questionable for counties where the share

of cropping agriculture is minor or where agricultural workers or machinery are in fact

used for non-agricultural activities. In some (sub-)urban counties the number of

agricultural workers per hectare of agricultural land is extremely high (more than 10).

Machine power per hectare is likewise biased due to the fact that transport vehicles and

other processing machineries are included in the statistics. Nonetheless these counties

were initially included in the estimations. After the first round some of the counties biased

the estimation substantially and these observations were dropped. Secondly, prices are at

provincial level and, consequently, the variability at county level depends on quantities

alone.

Whereas "chemical fertilizer applied" can safely be attributed to crop farming rather than

to forests or pastures, organic fertilizer data can only be derived by imputation. We follow

the approach in Wen (1993, Tables 4 and 5) and assume that (i) one person produces 0.5

tons of night soil per year on average; the utilization rates of night soil in the rural and

urban areas are 0.8 and 0.4, respectively, in 1990; the nutrient content rate of night soil is

0.011, i.e., 1.1 percent; (ii) a large animal produces 7.7 tons of manure per year on

average; the utilization rate is 0.8; the nutrient content rate is 0.0102; and (iii) hog manure

is assumed to be 2 tons per animal per year, with a utilization rate 0.8, and a nutrient

content rate of 0.014. No systematic data is available on other sources of organic fertilizer

such as green fertilizer, oil cake, compost, and mud and pond manure. The resulting

estimate of the national total at 17.5 million tons of organic fertilizer supply is 6 million

tons lower than Wen’s 1989 figure, but 7 million tons higher than the corresponding 1991

figure given by the Agricultural Academy of China (1995, p. 95). In some counties, where

                                                

8 We used the total number of large animals as a proxy for draught animals. However, due to the poor
performance of this proxy in all estimations, we finally had to drop it from the estimation.
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animal husbandry plays a key role, the manure of large animals may dominate in total

organic fertilizer, and animal manure often is used as fuel rather than as plant nutrient.

Hence, to avoid unrealistically high estimates of organic fertilizer application in these

counties, we impose a ceiling of 120 tons raw organic fertilizer manageable per worker per

year (Wiemer, 1994), which is equivalent to about 1.2 tons of nutrient content.

For farmland, we use the county level data on total cultivated land areas and irrigated land

compiled by China’s State Land Administration (SLA). The national total of cultivated

land areas obtained by summation over counties is some 135 million hectares, which is

about 40 million hectares higher than the corresponding national figure published in the

Statistical Yearbook of China (SSB, 1991, p. 314), but is quite consistent with the figure

recently compiled by the SLA, based on a detailed land survey9 (see Fischer et al., 1998).

In addition to statistical data, the LUC project database includes several digital coverages

for China, including climate, land use, vegetation, altitude and soils. These were compiled,

re-organized and edited jointly with the Chinese collaborators in the LUC project to

provide a basis for biophysical assessments of surface hydrology, vegetation distribution,

and for estimating potential yields of major crops10. Although these maps provide useful

spatial information for land-use research, their scale is insufficient to derive accurate

overlays of the actual farmland in 1990 with soil and terrain resources for differentiating

land quality types among actual farmland. Hence, the land quality types (index s) applied

at county level currently only distinguish irrigated and rain-fed land.

In actual farming practice, the distinction between irrigated and rain-fed land is not as

strict as suggested by the statistical figures. In some areas, when rainfall comes in time for

cropping and in adequate amounts, irrigation is not necessary and the differentiation

between irrigated and rain-fed land becomes unimportant. And conversely, when the water

shortage is severe, irrigation may be impossible despite existing irrigation facilities.

                                                

9 Personal communications with Chinese officials suggest that the farmland data compiled by SLA based on
detailed surveys will eventually replace the unrealistic estimates published in the Statistical Yearbook of
China. Except where specifically mentioned, the data in this sub-section are derived from various
publications of China’s State Statistical Bureau.

10 For detailed documentation and references regarding the compilation and editing of these land use and
soil maps, see http://www.iiasa.ac.at/Research/LUC/



21

4.3. Potential yields

Biophysical reality enters the input-output relationships through a potential output index

N(A, (x)y ) (equation 3.7) and the cropping system zone index Z
l
 (see equation 3.12), and

involves the estimation of potential production (x)Y s,l  by county, and land-use type.

After conducting a detailed agro-ecological zones (AEZ) assessment across counties in

China, the land suitability and potential yields were estimated for 27 major crops,

differentiated into some 150 crop types. This evaluation was carried out both for irrigated

and rain-fed conditions using the methodology described in Fischer et al. (2000). Next, to

arrive at the potential yields to be used in the production function (equation 3.5), a suitable

aggregation had to be performed, in three steps:

• classification of each 5x5 km grid-cell of the LUC land resources inventory for China

into one of seven major multiple cropping zones,

• classification of cereal crop types into eight crop groups according to crop cycle length

and thermal crop requirements, and

• aggregation of results at 5x5 km grid-cells to county administrative units.

The calculations and aggregations were performed separately for both rain-fed and

irrigated conditions. As an example, the multiple cropping zones applicable under

irrigation conditions are shown in Figure 1.

In Zone 1, thermal conditions allow for only one crop to be grown per year. The potential

yields are determined by the highest simulated yield among all suitable cereal crop types

under irrigated and rain-fed conditions, respectively. In Zone 2, temperature profiles

permit cultivation of two short-cycle crops or relay cropping systems. Examples are wheat

and millet grown in sequence, or wheat/maize relay crops. Yields are calculated separately

for crops adapted to cool and to moderately warm or warm conditions. Potential yields at

county level are constructed from these pools according to the observed multi-cropping

index (MCI). Zone 3 is a typical double-cropping zone with wheat or barley grown as

winter crop (including a dormancy period) and crops such as maize, soybean or sweet

potato grown in the warm season. Potential annual yields are constructed from these two

pools.
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Figure 1. Multiple cropping zones under irrigated conditions.

Zone 4 has double cropping similar to the previous zone, except that the main summer

crop such as rice or cotton demands more heat. Zone 5 is generally found south of the

Yangtse, and permits limited triple cropping consisting of two rice crops and, for instance,

green manure. The annual temperature profile is usually insufficient for growing three full

crops. When the observed MCI does not exceed 2.0, the combination of the best suitable

crops during the cooler and warmer seasons of the year defines the potential annual yield.

The more the observed MCI exceeds 2.0, the less applicable are crop types with long

growth cycles because of the time limitations. When the MCI approaches 3.0 only crop

types requiring 120 days or less are considered when calculating annual output. Zone 6

occurs in southern China and allows three sequential crops to be grown. A typical example

is the cropping system with one crop of winter wheat and two rice crops grown in spring

to autumn. In this case, only short cycle crops can be considered.
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Table 1. Number of counties per cropping system zone by region

Region

North North-East East Central South South-West
North-West/

Plateau

Single cropping 94 138 62 200

Limited double 111 21 10 64 48

Double cropping 287 73 14 102 22

Double with rice 115 171 18 90

Double rice 41 62 39 66

Triple cropping 116

Triple rice 78

Total 492 159 229 257 251 384 270

Figure 2. Annual potential production (tons/ha), weighted average of irrigation and
rain-fed potentials.

Finally, Zone 7 delineates the most southern part of China where tropical conditions

prevail, and allows three crops to grow that are well adapted to warm conditions, e.g., rice.

In our calculation, this condition is satisfied when the growing season is year-round and
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annual accumulated temperature (above 10ºC) exceeds 7000 degree-days. Only crop types

requiring less than 120 days until harvest are considered when the MCI exceeds 3.0.

Table 1 shows the number of counties in each cropping system zone under irrigated

conditions to be used in the estimation. If there were only very few counties in a cropping

system zone of a particular region the observations were added to the adjacent zone.

Figure 2 summarizes the results of the biophysical assessment weighted by actual shares

of irrigated and rain-fed cultivated land in each county.

4.4. Crop-mix

Not all of the 16 crops considered are grown in each county or even in each region. To

capture this aspect, scaling parameters were introduced into the crop-mix index function

(equation 3.4). Table 2 gives the shares of each crop in total revenue and the number of

counties where the crop is grown. The patterns clearly differ across regions. Rice, maize

and wheat contribute most to revenue. However, fruit and vegetables are also important

products in most regions.

Table 2. Share of crop in total revenue and number of counties growing the crop

Region

North North-East East Central South South-West
North-West /
Plateau

Crop % Obs % Obs % Obs % Obs % Obs % Obs % Obs

Rice 32 467 6.7 116 14.4 227 4.5 219 0.9 155 9.5 380 36.2 268

Wheat 3.2 244 18.5 154 45.3 226 62.4 257 48.3 250 36.3 360 4.7 101

Maize 18.4 485 35.5 159 3.9 194 1.5 235 1.6 238 13.1 376 16.8 231

Sorghum 0.9 471 4.4 145 0.1 76 182 109 0.6 277 1.3 156

Millet 1.8 468 1 154 18 57 79 65 1.8 186

Oth. strchy 1.3 492 0.7 158 3.3 228 0.7 256 0.3 231 2.6 381 5.6 266

Root crops 2.2 492 1.4 145 1.4 216 1 256 1.9 250 3.1 379 2.4 250

Soybean 2.9 492 11.7 158 3 223 1.8 256 1.5 246 1.4 371 4.1 197

Oilseed 13.8 385 0.2 21 7.2 184 7.1 198 0.1 34 1.6 97 2.1 45

Cotton 6.2 490 2.5 156 6.4 228 5.4 257 4.2 251 6.4 373 8.6 270

Sugarcane 136 1.6 106 0.2 188 0.6 234 7.4 249 1.7 296 1.9 132

Fibre 0.3 265 2.3 120 0.8 190 0.8 234 0.1 157 0.4 295 91

Tobacco 1.6 272 1.7 136 0.3 96 1.4 209 1.6 192 4.5 362 1.4 150

Tea 33 1.4 148 1.2 233 1.3 207 1.3 303 20

Fruit 8.2 490 3.3 141 3.1 229 2.8 245 12.7 248 4 383 5.7 253

Vegetab. 7 491 8.4 158 9 229 8.9 257 18 250 13.5 374 7.2 262

Number of
counties

492 159 229 257 252 384 270
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Table 2 does not capture the broad variation of over 400 crop combinations, which enter

the model through the crop (-mix) variables Mm. Their definition is listed in Table 3.

Guiding principles in the definition of crop-mix variables were: (i) not to exceed a total of

4 crop-mix parameters, and (ii) to give missing major crops priority over the less

important ones. Each county has at most one nonzero crop-mix dummy. Table 4 presents

the results of these crop-mix definitions.

Table 3. Definition of crop-mix variables Mm (entries are crops missing)

Mix 1 Mix 2 Mix 3 Mix 4 No mix

North Wheat Maize/ Cotton/ Fruit ≥ 3 smaller crops - All other cases

North-East Maize/ Rice/
Soybean/ Vegetables

Wheat ≥3 smaller crops - All other cases

East Rice or Wheat ≥ 5 smaller crops - - All other cases

Central Rice/ Vegetables/
Cotton

≥ 3 smaller crops - - All other cases

South Rice/ Vegetables/
Fruit/ Sugarcane

≥ 3 smaller crops - - All other cases

South-West 1 of Rice/
Vegetables/ Maize/

Wheat

2 or 3 of Wheat/
Rice/ Vegetables/

Maize

- - All other cases

North-West /
Plateau

1 of Wheat/ Maize/
Fruit/ Vegetables

2 or 3 of Wheat/
Maize/ Fruit/
Vegetables

4 or 5  smaller crops ≥ 6 smaller
crops

All other cases

Table 4. County number corresponding to the crop-mix variables by region

Region

North North-East East Central South South-West
North-West /

Plateau

None 130 88 200 159 123 163 87

Mix 1 25 7 5 59 7 14 36

Mix 2 87 42 25 39 121 13 8

Mix 3 250 22 194 101

Mix 4 38

Total 492 159 229 257 251 384 270

4.5. Data checking

Multiple checks were conducted in order to improve data reliability and consistency. This

was done on the basis of checking various relative indicators such as the irrigation ratio,

land per laborer, land per capita, output per sown hectare, and each non-land input per

hectare and per laborer. Occasionally, errors in the original publications could be corrected

by comparison of different data sources. In some cases missing or dubious data could be
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corrected by reference to data for other years. When data was missing or appeared to be

highly implausible but could not be corrected by using other sources, the respective county

was dropped from the estimation.

Table 5. Observations per region

Regions

North North-East East Central South South-West
North-West /

Plateau
Total

All counties 510 184 244 275 272 402 491 2378

Missing data 13 25 15 18 21 18 212 322

Outliers
(Labor/Machinery) 5 0 0 0 0 0 9 14

For estimation 492 159 229 257 251 384 270 2042

Eventually, of the 2378 administrative units contained in the LUC database in total, 2042

counties could be retained in the study, i.e., data were complete and were judged

sufficiently reliable to be used for the output side as well as the input side of the

estimation. Table 5 gives an account by region. Incomplete county level records

eliminated 322 counties, and outliers mainly for labor and machinery figures eliminated

another 14 (see also Section 4.2 above). These outliers were concentrated in the North,

Plateau and North-East regions. Only 20 counties on the Plateau located in the Qinghai

province qualified for inclusion in the estimation. Xizang (Tibet) had no acceptable data

records at all. Consequently, it was decided to pool Qinghai with the North-West region

based on the similarity of cropping zone pattern.



27

5. Results from estimation

Parameters of the model, which was described in Section 3, were estimated by Nonlinear

Least Squares (NLS) for each region separately, except that the North-West region and

Plateau (i.e., a few counties in Qinghai Province) were treated jointly because the number

of valid observations (some 20) was too low for the Plateau region to be estimated

separately. The presentation of results proceeds as follows. In Section 5.1, we check

whether the error term meets the statistical requirements, which permit to consider NLS as

a maximum likelihood estimator. Next, we discuss the estimation results of the input

response function G (Section 5.2). Coefficient values of the output index Q are reported in

Section 5.3. Finally, in Section 5.4 we present and discuss the spatial distribution of

calculated implicit (shadow) prices and in Section 5.5 of the marginal productivity of input

factors.

5.1 Analysis of error term

To test whether Nonlinear Least Squares amounts to maximum likelihood estimation, we

check normality, homoscedasticity and independence of the error term. We apply two

tests, one parametric and one non-parametric. First, we use the common Shapiro-Wilk test

(Shapiro and Wilk, 1965) to check whether for the sample as a whole the errors are a

random sample from the normal distribution. Secondly, we check whether errors might be

spatially correlated, albeit locally. This is done by applying a spatial non-parametric

(kernel density) regression (Bierens, 1987; Keyzer and Sonneveld, 1997) regressing the

error term on longitude and latitude of the counties. For each county, the estimated value

is calculated, the derivative with respect to longitude and latitude and the estimated

probability of wrong sign for that derivative is calculated. Lack of spatial correlation finds

expression in frequently changing signs of the derivatives and a high average probability

of wrong sign of the derivatives.

Table 6 presents the Shapiro-Wilk statistic. The normality test is passed at 5 percent level

for all regions. The table also shows results from kernel density regression and indicates

that no spatial dependency could be detected anywhere. On average, the probability of a

wrong sign of the derivative in either direction is close enough to 0.5, implying that the

error term could vary in any direction. Therefore, there is no need to correct for spatial
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correlation of errors in the regression and that homoscedasticity and independence can be

assumed.

Table 6. Tests on the error term
Region

Coefficient North North-East East Central South South-WestNorth-West /
Plateau

Shapiro-Wilk’s W .989 .977 .986 .982 .980 .988 .983

Probability < W .876 .231 .726 .416 .234 .820 .453

Spatial dependency using the mollifier method

Probability of wrong sign of derivative:

Longitude .454 .443 .454 .461 .458 .465 .446

Latitude .441 .418 .455 .457 .452 .448 .423

We conclude that the model can be estimated by least squares. Appendix I describes an

iterative numerical procedure to perform this estimation.

5.2 Input response

Next, we report on the coefficient values and their likelihood ratios and on the elasticities

of the input response equations, recalling that these were actually estimated

simultaneously with the output mix equations. The likelihood ratio is used to check the

robustness of the coefficients.

 Let us briefly recapitulate its main principles first (see Gallant, 1987; Davidson and

MacKinnon, 1993). We denote model parameters by 21 ζζ , . Under our null hypothesis H0:

11 ζ=ζ  and 2ζ  unrestricted while under the alternative H1: both 1ζ  and 2ζ  are

unrestricted. With maximum likelihood estimation, the significance level of an estimated

parameter 1ζ̂  can be determined by an F-test: 
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, where

n, m and j are the number of observations, parameters and restrictions, respectively;

)(S 21 ζζ ˆ,ˆ  is the minimum residual sum of squares corresponding to maximization of the

unrestricted likelihood function, and )
~

,( 21 ζζS is the residual sum of squares for given

reference value 1ζ  and free 2

~ζ , corresponding to maximization of the restricted likelihood

function. Critical value for the region with smallest sample size (i.e., the North-East

region) F(1,159) at 0.95 is 3.83.
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As a reference value we use 50 percent11 of the original estimate1ζ̂ , as opposed to the

usual reference value zero because the function form is given and all variables have to

enter the welfare model eventually. Hence, we need to assess the robustness of the

estimated parameter value, rather than deciding whether the variable should be included at

all.

Coefficients

Table 7 presents the estimated coefficients of the input response function index G, their

corresponding likelihood ratios (LR, in italics), and the number of observations in each

region. Clearly, for parameters with zero value no likelihood ratio can be calculated. Since

Σjθj = 1 no LR for θNutrient is estimated. As the parameter δRainfed is by definition equal to

unity it has no LR value.

Table 7. Estimated coefficients for the input response function

Region

Coefficient North North-East East Central South South-West
North-West /
Plateau

ζsingle cropping 0.939 182.131 - - - 3.050 40.205

33.8 136.6 258.0 129.3

ζLimited double 0.892 169.202 - 5.150 - 2.217 32.751

41.8 75.0 92.5 208.2 151.3

ζDouble cropping 0.841 - 5.983 4.353 - 2.111 33.862

43.6 711.4 159.9 275.5 154.9

ζDouble with rice - - 5.768 3.502 2.806 1.891 -

793.6 595.0 111.8 32.8

ζDouble rice - - 5.169 2.887 2.553 1.742 -

636.0 2077.7 178.8 62.9

ζTriple cropping - - - - 2.365 - -

30.5

ζTriple rice - - - - 2.595 - -

78.7

                                                

11 The alternative values against which the estimated values are tested read: θPower  = .5, ζz = 1, µm = 0,
ρPower = −1.5, ρNutrient = .7 or 1. and α0 = 2. For δIrrigated=1, the ratio between the potential yield on
irrigated land to the potential yield on rain-fed land is used as the alternative, in the other cases if
δIrrigated=1 is the hypothesis. Leading to the values δIrrigated = 1.00, 1.00, 1.05, 1.04, 1.03, 1.16 and 1.00,
respectively, for the various regions.
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Table 7. Estimated coefficients for the input response function (cont.)

Region

Coefficient North North-East East Central South South-West
North-West /
Plateau

θPower 0.320 0.700* 0.430 0.365 0.341 0.300* 0.555

376.6 772.9 4.8 115.4 160.2 210.7 22.7

θNutrient 0.680 0.300 0.570 0.635 0.659 0.700 0.445

βPower 0.000 0.000 0.013 0.001 0.005 0.006 0.001

20.8 68.7 122.7 33.9 16.8

βNutrient 0.000 0.031 0.005 0.000 0.000 0.013 0.003

2.8 96.6 15.4 10.6

ρPower -0.250* -0.250* -0.250* -0.250* -0.250* -1.630 -1.265

43.4 126.1 15.5 20.4 24.1 74.6 48.9

ρNutrient 0.700* 0.700* 1.000* 1.000* 1.000* 1.000* 0.700*

30.8 17773.5 16.8 3552.1 243.1 255.3 3.2

γLabor 0.161 2.062 0.464 0.389 0.291 3.010 7.856

30.0 14.5 15.7 50.2 40.9 22.5 16.6

γMachine 0.807 2.141 1.024 1.779 1.457 3.179 23.589

446.5 12.1 153.5 2264.7 817.3 34.9 22.6

γChemicals 3.235 0.337 0.160 1.578 0.728 0.934 0.120

38.0 10.8 549.5 826.3 174.4 12.8 12.5

γOrganic 1.481 0.025 0.135 0.770 0.623 0.387 0.029

37.8 11.2 97.3 75.5 28.3 37.8 13.8

δIrrigated¹ 2.110 1.590 1.000 1.000 1.000 1.000 2.210

35.5 4.9 117.2 54.4 28.7 30.6 22.2

δRainfed¹ 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Observations 492 159 229 257 173 384 270

* parameter at bound, ¹ preset value

As described in Section 3.3, the area index H(A) is preset before estimation. The

parameter δIrrigated converts irrigated land into rain-fed equivalent. It is chosen on the

interval between unity and the ratio of potential yield on irrigated land to potential yield on

rain-fed land and its significance was assessed (see previous footnote). The estimation

results for the North-East region are generally slightly deviant on the input side. The

quality of the input data and potential production in North-East is probably causing this

result. Except for βNutrient in North-East all parameters are significant at 95 per cent level.

Not surprisingly, the input specific parameters γ show a large range of variability across

regions, justifying estimation by region as opposed to a pooled estimation for China as a
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whole. For the Northern regions, i.e. North-West/Plateau, North and North-East, fertilizer

substitution is at the lower bound and relatively inelastic (elasticity of substitution εNutrient

= 3.33). Generally, the constants β of the input groups are small or zero. The upper bound

for ρPower of -.25 is in effect for five regions.  The substitution elasticities for the power-

related inputs range from 0.38 in South-West to 0.80 in most other regions. .

Elasticities and marginal values

As a further description of the results from estimation, we present in Table 8 the output

elasticities by input category, evaluated at the regional mean (see Appendix II for a

specification of the analytical form of elasticities). Since the input response function G is

linear homogeneous of degree one in (V, A), the elasticities of the inputs add up to unity.

Table 8. Output elasticities of land and non-land inputs at the regional mean

Region

Input North North-East East Central South South-West
North-West /

Plateau

Labor 0.052 0.172 0.095 0.054 0.036 0.028 0.100
Machinery 0.248 0.160 0.216 0.279 0.202 0.211 0.331

Power 0.300 0.332 0.311 0.333 0.238 0.239 0.431
Chemical fertilizer 0.309 0.122 0.392 0.344 0.376 0.398 0.209
Organic fertilizer 0.084 0.005 0.121 0.102 0.184 0.192 0.042

Nutrient 0.393 0.127 0.513 0.446 0.560 0.590 0.251
Irrigated area 0.215 0.140 0.131 0.165 0.127 0.063 0.138
Rain-fed area 0.092 0.401 0.045 0.056 0.075 0.108 0.180

Land 0.307 0.541 0.176 0.221 0.202 0.171 0.318
Elasticity of land-index H if change is attributed to:

Irrigated area 0.414 0.779 0.185 0.221 0.203 0.171 0.544
Rain-fed area 0.196 0.490 0.185 0.221 0.203 0.171 0.246

The results suggest a differentiation into three zones. First, the Southeast part of China,

i.e., regions East, Central, South and to some extend South-West. They show a great

similarity in elasticities for most inputs and input groups (Power, Nutrient and Land). The

elasticity is highest for chemical fertilizer, followed by machinery and irrigated land,

while labor has a small contribution to the output index. Second, we identify the regions

North and North-West/Plateau where the similarity between the elasticities manifests

mainly in their pattern with respect to the non-land inputs and not so much in their levels.
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The levels of elasticities in North are comparable to the first zone. Finally, in the

remaining region, North-East, the picture is different with the highest elasticity for labor.

The elasticities of land-use types might convey the wrong impression that investment in

irrigation in North-East, South-West and North-West/Plateau is not profitable. In fact the

lower elasticities for irrigated land in some region merely reflects the lower area under

irrigation (see Appendix II.2). For example, in North-East rain-fed agriculture is the

dominant land-use type (78 percent) and δIrrigated is 1.59 resulting in a ratio of the rain-fed

over irrigated land of about 2.9. To assess the relative productivity of investment into

irrigated and non-irrigated, a common area basis is needed. The two lines at the bottom of

Table 8 measure the percentage increase in output if the land basis expands by one per

cent of irrigated and non-irrigated land, respectively. Since δIrrigated exceeds δRainfed,

irrigation appears to be more productive.

Figure 3 and 4 map the county level elasticities for labor and machinery and seems to

confirm the spatial pattern of the regional averages. The maps are computed on the basis

of kernel density regression as in Keyzer and Sonneveld (1997). The histogram on the left

Figure 3. Elasticity for labor



33

of each panel shows the percentage shares of the colored areas. A combined mask of

estimated counties and agricultural areas as given by Figure 1 is applied.

As a further characterization of the differences across regions, we calculate the marginal

values (see Table 9). These reflect the variability of implicit wages, rental cost of

machinery, and price of chemical and organic fertilizers.

The marginal value of labor is high in the Northern regions and, as could be expected, low

in densely populated areas of the Central and South regions where marginal returns to land

are relatively high for both irrigated and rain-fed land. Despite its dense population, the

East region reflects, with the relatively high marginal value of labor, the attractiveness of

the more industrialized area.

Figure 4. Elasticity for machinery



34

Table 9. Marginal values in Yuan at the mean

Region

Derivative North North-East East Central South South-West North-West /
Plateau

∂G/∂V
Labor (person) 113.90 580.05 242.11 125.62 88.83 41.63 160.20
Machinery (kW) 429.76 348.17 614.77 1086.19 784.91 1056.26 573.56
Chemical fertilizer (kg) 4.72 1.61 5.76 6.20 5.62 8.23 2.96
Organic fertilizer (kg) 2.70 0.16 4.83 3.03 4.81 3.41 0.77

∂G/∂A
Irrigated area
farmland (ha)

1329.98 1190.84 862.63 1296.18 871.70 490.13 539.93

Rain-fed area
farmland (ha)

630.32 748.95 862.63 1296.18 871.70 490.13 244.31

5.3 Output index

The coefficients of the output index function Q appear in Table 10. For the major staple

crops (rice, wheat and maize) they generally come out very similar across regions.

Deviations are mainly due to fact that certain crops are sometimes a major crop in one

region and a minor in another. Wheat and maize are outliers in opposite directions in

South where they contribute less than 1 and 1.6 percent to total crop revenue, respectively.

Wheat can only be grown on a few scattered areas in Fujian and Guangdong. The variation

in estimates is most pronounced for the minor crops but estimates are stable for vegetables

and to a lesser extent fruits, which are present in almost all counties and basket of various

kinds. The crop-mix correction factors µm vary across regions and crop-mixes. Most are

negative as expected, especially those associated with a major crop. Other crop-mix

parameter can be positive since some of the regional minor crops are a major crop at

county level. The significance level for most parameters is well above 95 per cent.
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Table 10. Estimated coefficients for the output function
Region

Coefficient
North North-East East Central South South-WestNorth-West /

Plateau

α0
1

1.500 1.500 1.500 1.500 1.500 1.500 1.500

46.6 25.4 29.9 35.6 35.1 74.4 42.7

αRice 0.780 0.727 0.892 0.752 0.712 0.839 0.890

36.4 1.3 199.8 281.8 111.4 93.2 18.3

αWheat 1.171 0.881 1.099 1.374 5.425 1.035 1.024

163.7 5.0 21.0 32.3 33.1 28.5 17.0

αMaize 1.433 0.668 3.863 10.922 13.532 0.030* 0.030*

38.4 11.1 14.5 23.5 23.0 31.9 16.5

αSorghum 2.095 0.168 0.030* 0.030* 49.332 0.030* 0.793

43.7 5.0 14.5 17.3 20.5 30.3 16.9

αMillet 0.720 0.586 0.934 0.806 2.346 1.205 0.672

48.7 9.4 16.0 17.7 39.6 68.5 19.7

αOther starchy 0.944 3.588 0.714 2.592 0.030* 0.592 0.159

30.9 6.9 14.2 16.5 18.8 33.3 17.6

αRoot crops 0.383 0.030* 0.534 0.724 0.030* 0.841 0.959
30.2 5.9 14.7 16.5 19.9 33.1 16.2

αSoybean 2.624 1.231 3.467 6.385 0.030* 0.030* 0.030*

33.7 3.9 15.3 17.8 20.1 30.0 16.9

αOilseed 1.324 0.503 3.300 4.417 7.972 2.361 0.526

28.2 5.4 17.7 23.9 31.3 29.1 17.0

αCotton 6.796 35.730 10.066 9.360 6.079 18.836 11.477

46.8 5.5 17.6 22.0 22.7 33.3 22.0

αSugarcane 1.043 0.030* 0.536 0.342 0.201 0.212 0.563

35.9 5.0 14.7 15.8 24.1 49.6 20.7

αFiber 4.802 0.030* 2.889 2.577 13.924 11.246 39.267

34.6 5.0 13.7 15.3 21.8 24.2 16.3

αTobacco 3.203 8.088 0.030* 7.062 6.844 4.713 1.391

31.5 7.3 14.3 32.8 23.4 45.5 18.3

αTea 31.912 - 10.469 12.199 17.698 11.082 0.030*

32.8 17.7 17.0 24.6 31.7 17.2

αFruit 1.674 1.241 1.427 2.504 1.901 2.206 1.885

30.1 7.3 15.3 24.1 21.5 28.9 15.3

αVegetables 0.346 0.267 0.364 0.484 0.347 0.461 0.335

42.1 7.9 26.9 29.9 18.9 64.2 19.4

µMix 1 -0.182 -0.182 -0.076 -0.014 0.121 -0.215 -0.376

41.6 7.7 12.5 14.1 20.8 35.1 34.4

µMix 2 -0.083 0.203 -0.119 -0.043 0.054 -0.031 -0.022

41.8 10.9 29.8 20.8 24.0 30.7 16.6

µMix 3 -0.014 0.021 - - - -0.034 -0.043

32.3 5.0 35.7 21.3

µMix 4 - - - - - - 0.019

17.6

* parameter at bound, ¹ preset value
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5.4 Implicit prices

We are now ready to calculate implicit prices along the lines set out in Section 3.6, and

compare these with the consumer prices in nearby urban centers. The difference between

both measures an implicit trade and transportation margin. Clearly, this margin should

increase with the distance to the main consuming areas. We show results for rice and

wheat, the major staples, by means of a price map computed through kernel density

regression.

Figure 5 displays the implicit price of rice for the main rice producing provinces. Figure 6

shows the population density in 100 persons per km². It appears that the farm gate price of

rice is in general higher in areas with a high population density. This holds especially for

the relatively urbanized areas in the Southern provinces Guandong, Guanxi and Hainan.

Also the Red Basin area in Sichuan and the Dongbei Pingyuan Plains stretching from

South to North in the three North-Eastern provinces exhibit rising prices closer to

consuming areas. Thus, the figures indicate that our (purely quantity based) estimation

results in a positive trade and transportation margin.

Figure 5. Shadow price of rice (Yuan/kg)
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The implicit prices of the two other major crops, wheat and maize, for the relevant

producing areas are shown in Figures 7 and 8, respectively. The picture also shows prices

rising as one comes nearer to densely populated areas. Wheat has an outlier in the South

region, resulting in high farm gate price. Note that there is no wheat in the plains of the

North-East where the conditions are more favorable for maize, which is grown on more

than 50 percent of the area.

Figure 6. Population density (persons/km2)
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Figure 7. Shadow price of wheat (Yuan/kg)

Figure 8. Shadow price of maize (Yuan/kg)
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Table 11. Price comparison of original and shadow prices for the major crops
Rice Wheat Maize

Region Original Shadow Original Shadow Original Shadow

North 0.66 1.00 0.53 0.42

North-East 0.64 0.52 0.39 0.43

East 0.65 0.75 0.57 0.68 0.56 0.41

Central 0.60 0.59 0.58 0.73

South 0.62 0.64

South-West 0.55 0.59 0.57 0.42 0.55 0.67

North-West/Plateau 0.71 0.61 0.64 0.84 0.46 0.39

Source: Original prices (SBB, 1992b)

Shadow prices using (3.13) (regional average is weighted with production)

Table 11 compares observed farm gate prices and implicit prices at regional level for rice,

wheat and maize. The implicit prices are weighted with the county production. In the main

producing regions, they are seen to fluctuate around the farm gate levels in the original

statistics. As mentioned earlier, these recorded farm gate prices are a quantity-weighted

mean of quota prices, negotiated prices, and free-market prices. They will tend to lie

below marginal productivity and hence below implicit free market prices.

We conclude that the differences between the observed market prices and the imputed

farm gate prices leave positive margins that follow a plausible geographical pattern. This

suggests that by keeping these margins exogenous to the farm model in a county, it

becomes possible to reproduce the main properties of crop farming in China by means of a

static profit maximizing model.

5.5 Marginal productivity

Figures 9 and 10 present maps for the marginal productivity of labor and machinery. It

appears that the marginal productivity of agricultural labor is usually higher in the

neighborhood of large urban areas: Hong Kong, Shanghai, Beijing, Tiajin and the delta of

Liaoning. The figures also show that in the Southern regions (South-West, Central and

South) the marginal productivity for machinery is higher and that it is lower for labor.
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Figure 9. Marginal productive of labor (Yuan/person)

Figure 10. Marginal productivity of machinery (1000 Yuan/10kW)
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Figure 11 maps the marginal value of irrigated land − which by construction stands in

fixed, region-specific proportion to the marginal productivity of rain-fed land. Along the

coastal zone and in the North-East, it follows the pattern of population density quite

closely but land inwards the relationship is loose. Although marginal productivity is

somewhat higher in the Red Basin area in Sichuan than in the surrounding mountainous

area, its level lies substantially below comparable urban areas along the coast.

Table 12. Input cost in Yuan per laborer
Region

North North-East East Central South South-West
North-West /

Plateau

Chemical fertilizer 631 425 947 683 897 498 350

Organic fertilizer 176 16 301 213 456 249 66

Machinery 531 547 517 562 487 257 496

Wage and land 813 2321 673 580 631 287 666

Total costs 2151 3309 2438 2038 2471 1291 1578

Figure 11. Marginal productivity of irrigated land (Yuan/ha)
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At regional level, the average implicit costs (and returns) per laborer for land and wage are

lowest in Central and South-West (see Table 12). In the South-West region, an average

laborer earned in 1990 an income of 287 Yuan. For the coastal regions South, East and

North the earnings for a crop laborer range from 631 Yuan to 813 Yuan on average. This

pattern is in line with the observed out-migration to the coastal provinces during the last

decade. The marginal productivities of labor and land are highest in the northern

provinces.

6. Conclusions

The paper has reported on the specification and estimation of a spatially explicit

transformation function for crop production in China, and indicated that the implicit prices

associated to this function seem compatible with static profit maximization at county level,

at prices that correct for the distance from the main consuming areas. The next step is to

conduct scenario simulations with such a profit-maximizing model, after inclusion of

livestock production and feed demand equation. Then, we will confront these with

consumer demand and balance of payment restrictions, and the final step will be to

incorporate investment into irrigation and solve an inter-temporal welfare model.
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Appendix I:

Description of the estimation procedure and calculation of partial

derivatives for the Taylor expansion approach

The transformation function described in Sections 3.2 and 3.3 can be written in more

compact form as:

Q
l
(Y, M; α0, α, µ) = C

l
G

l
(V, A, (x)y ; θ, ρ, β, γ, δ),

where Greek symbols refer to parameters that should be estimated or fixed. On the output

side Q
l
 is a combination of a sum of crop-mix constants and a CES:
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and on the input side C
l
 is the sum of cropping zone constants
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 is the generalised Mitscherlich-Baule function:
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Index � stands for counties, m for crop-mix, c for crops, z for multiple cropping zones, s

for land use types, j for input groups, and k for inputs. Estimation is performed by each of

seven regions.
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Numerical implementation of the estimation procedure

As the estimation problem to be solved is highly nonlinear and nonconvex in parameters,

and relatively large and complex in parameters, it cannot be solved by invoking a standard

numerical optimization procedure. Therefore, it was necessary to develop an iterative

procedure, which operates in five steps:

1. Generation of the initial quantities
lll

/HQq
~~ = as data for the separate estimation of the

input and the output function. Calculation of 
lll

HYy /= .

2. Iterative estimation of parameters of the input function 1HGCq ε+⋅=
llll

/~ by linear

regression using a first-order Taylor expansion of the function, which is adjusted until

convergence. This provides good initial estimates for 3.

3. Further estimation of the parameters of the input function in the original nonlinear

form.

4. Estimation of parameters of the output function 2HQq ε+=
lll

/~ in the nonlinear

form, for fixed substitution parameter α0.

5. Update the quantity index 
l

q~  and go to Step 3 until convergence.

Thus, Steps 1-2 constitute the initialization and Steps 3-5 the actual estimation. We note

that a free nonlinear regression would do without separate data for the quantity index, but

attempts to relax this restriction causes convergence problems in the estimation. It should

be added that since the estimation problem is non-convex, only a stationary point could be

obtained which appears to be a local optimum. The robustness of this estimate was tested

by checking convergence to the optimal value after shocks and also by assessing the

resulting change in the other parameters in the calculation of the likelihood ratios (which

performs new rounds of least squares while iteratively setting parameters at half their

originally estimated value). We conclude with some additional remarks on the various

steps:

Step 1. The initial county-level output index 
l

Q
~

is calculated based on the available

provincial prices rcP , the national prices cP  and the county-level crop outputs cY� . The
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provincial crop output rcY  is the sum of the county level outputs. A provincial output price

index i
rP  is calculated as

∑
∑

=
c rcc

c rcrci

r YP

YP
P

to measure the departure of the provincial price level from the national one. This provincial

level price index, together with provincial level output prices, is applied to all counties � in

province r, yielding a country-level output index �Q
~

.
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c
cc

PPYQ
llll
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Step 2. The Taylor expansion uses two matrices e and pe  of dimension z×ψ. Let subscript p

denote the results of the previous iteration. Using the definitions of (I.1) and (I.2), the sum of

squared disturbances e
l
(z;ψ) can be written as:

lllllll
)/H;y,A,V)G(;(ZCQ)(z;e kjjjlssjzz γρβθζ−=ψ ,,, (I.3)

and the derivatives are:

a) partial derivative with respect to ζz:
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b) partial derivative with respect to jθ :
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c) partial derivative with respect tojβ :
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d) partial derivative with respect tojρ :
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Step 3. To avoid parameters drifting away in course of the estimation, the parameters ζ, θ, ρ

and η are estimated keeping the others fixed, and next the parameters β and γ are estimated

keeping ζ, θ, ρ and η fixed. The parameters are updated until convergence is reached. The

update procedure of the parameters and convergence level are the same as in Step 2.

Step 4. The parameter α0 is estimated by scanning over the interval [1.5, 2].

Step 5. Convergence is reached when two full rounds lead to less than 0.1 percent change

of the sum of squares of 


 −
lllll

�

HGCHQ /ˆˆ/ˆ .

The entire estimation procedure was implemented in GAMS* (Brooke et al., 1992). The

databases for estimation of the output and input response functions were stored and

managed as MS-Excel worksheets. The statistical software package SAS was used to

transfer the basic data into GAMS format, with a proper declaration and initialization of

sets in GAMS syntax. The resulting database in GAMS format was stored with the save

option "s = ..\data", so that it can be used by the different parts of the GAMS programs

independently using the restart option "r = ..\data".

                                                

*  The acronym GAMS stands for General Algerbraic Modeling System. GAMS provides a high-level
language for compact representation (and documentation) of large and complex optimization models.
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Appendix II

Output elasticities of input k and land input s, and of crop c

Output elasticity with respect to inputkV
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Output elasticity with respect to land input of type
s
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Output elasticity with respect to cropcY
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