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Abstract

A dynamical model of optimal economic growth is used for the comparison of cat-
alogues of real econometric data and synthetic growth scenarios. The model is
calibrated on a database of the Tokyo Institute of Technology. A special attention
is paid to the aggregated data of the Japanese manufacturing industry in period
1955-1992. A description of an algorithm of modeling optimal trends in the techno-
logical dynamics is given. The work has been performed within the framework of the
joint research program of IIASA and the Tokyo Institute of Technology on Compar-
ative Analysis of the Endogenous Techno-economic Process: Technology Spillovers

in Japan, the USA, Europe and APEC Countries.
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Qualitative Identity of Real and Synthetic Data

via Dynamical Model of Optimal Growth

Sergey Reshmin

Introduction

This paper applies a mathematical model of optimal economic growth proposed and
explored in [Tarasyev, Watanabe, 1999] for the numerical analysis of real economet-
ric data. The model involves production and technology (the accumulated R&D
investment) and is associated with a problem of optimal R&D investment in a
techno-metabolic system. The model reflects two basic trends in the manufactur-
ing and the R&D investment. On the one hand the accumulated R&D investment
(technology) stimulates the growth of the firm’s output, on the other hand, the R&D
investment draws resources from manufacturing. The model takes into account the
both trends. A theoretical analysis of the model resulted in a description of an
optimal R&D investment policy with respect to a standard utility function given in
[Grossman, Helpman, 1991].
In this paper the main attention is paid to a comparison of model-based scenarios

and empirical time series. The underlying theoretical problem is to find optimal
synthetic growth scenarios in which an optimal balance between production and the
R&D investment is maintained. Due to the unstability of the optimal equilibrium
it is rather difficult to find exact optimal trajectories numerically. We propose a
numerical algorithm for modeling suboptimal trends in the technological dynamics
and prove that the suggested quasioptimal control law is arbitrarily close to optimal
(an analytical estimate of the error is given).
The model is calibrated on the aggregated data on the Japanese manufacturing

industry with sensitivity analysis. The calibration procedure employing elements of
the sensitivity analysis adjusts the model to the qualitative trends in the empirical
time series for technology, production and technology productivity. It is shown that
the synthesized optimal growth scenarios can agree well with the empirical time
series. This fact agrees with a conjecture that the economic development in Japan
was theoretically close to optimal in period 1970-1992. The econometric data used
for the model calibration have been published in [Watanabe, 1995].

1 Aggregated Data on Japanese Economy

In this section the aggregated data on the Japanese manufacturing industry in pe-
riod 1955-1992 are demonstrated. Fig. 1 illustrates trends in production y. The
production magnitude is measured in billion yens. Looking at the Figure, we see
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that production is growing practically exponentially. At the first glance the curve
is sufficiently smooth.
Fig. 2 shows growth in technology (or accumulated R& D investment) T . Its

character is approximately the same.

Fig.1 Trends in production in the Japanese manufacturing industry (1955-1992)
(billion yens)

Source: Tokyo Institute of Technology

(data over the period 1955-1970 are under review)

Fig.2 Trends in technology knowledge stock in the Japanese manufacturing
industry (1955-1992) (billion yens)
Source: Tokyo Institute of Technology

(data over the period 1955-1970 are under review)
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Fig. 3 illustrates trends in technology productivity y/T . We see that the behavior
is more complex. We obviously see a threshold around 1970. Why does it happen?
The economists explain this by an energy crisis and strong constraints in labor
during the rapid economic growth period in the 1960s [Watanabe, 1995]. We see
that in this period the process is practically stochastic and poorly controllable. At
the beginning of the 1970s the Japanese government made serious efforts to correct
this crisis situation. The economic behavior became more regular.

Fig.3 Trends in productivity of technology in the Japanese manufacturing industry
(1955-1992)

Source: Tokyo Institute of Technology

(data over the period 1955-1970 are under review)

Due to the programs supported by the Japanese government the economy became
more manageable and more efficient. One might guess that in period 1970-1992
the economic policy was close to optimal. A goal of this paper is to support this
hypothesis by comparing the real econometric data and mathematically justified
optimal growth scenarios. For this identification, we use a nonlinear system of
differential equations describing the technological dynamics. A brief description of
the model is given in section 2. A numerical algorithm for designing optimal growth
trajectories is described in section 3. Examples of optimal growth scenarios and a
comparison with empirical time series are presented in section 4.
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2 Description of the Model and Theoretical Frame-

work

The model suggested and analyzed in [Tarasyev, Watanabe, 1999] is described by
the system of two equations

ẏ

y
= f1 + f2

(

T

y

)γ

− g
r

y
, (2.1)

Ṫ = r.

These equations show the balance between the productivity rate ẏ/y and R&D

intensity r/y . The term f2
(

T
y

)γ
characterizes the impact of the accumulated R&D

investment T on production y. The term f1 represents a non-R&D contribution.
The negative sign in front of the net contribution of R&D g r

y
means that in the

short-run spending into R&D prevails upon the rate of return to R&D, which is a
risky factor in R&D investment.
The production y and accumulated R&D investment T are the phase parameters

of the system. The current change r in technology T is the control parameter. The
control parameter r is not fixed and can be updated in time for obtaining ’good’
properties of the trajectories. The problem is to find an optimal technology rate r as
a function of time. The optimality is understood with respect to the utility function
Ut represented by an integral with a discount coefficient ρ (see, for example, [Arrow,
1985], [Arrow, Kurz, 1970], [Grossman, Helpman, 1991]):

Ut =
∫

∞

t
e−ρ(s−t) lnD(s)ds, (2.2)

D = D(s) = (
∫ n

0
xα(j)dj)1/α, (2.3)

x(j) =
y

n
, n = n(s) = beκsT β1rβ2, (2.4)

y = y(s), T = T (s), r = r(s). (2.5)

Here D(s) is the consumption index, s is the running time, t is the initial time,
j is the current index of invented products, x(j) is the quantity of production of
the brand with index j, n is the quantity of available (invented) products, α, β1, β2
are the elasticity coefficients . Note that D depends on production, technology and
current investment.
Combining (2.2)-(2.5) and omitting constant term independent on y, T and r

one can obtain the following expression for the utility function:

U =
∫

∞

t
e−ρ(s−t)(ln y + a1 lnT + a2 ln r)ds. (2.6)

Here

a1 = Aβ1, a2 = Aβ2, A =
(1− α)

α
.
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The considered problem is a classical problem of the optimal control theory. The
Pontryagin’s maximum principle is a key instrument in the theory (see [Pontryagin,
et. al., 1962]). Applications of this optimality principle to problems of economic
growth were developed in [Arrow, 1985], [Arrow, Kurz, 1970]. The main element in
the analysis are the Hamiltonian H and the adjoint variables ψ1, ψ2. The Hamilto-
nian has the form

H(y, T, r, ψ1, ψ2) = ln y + a1 lnT + a2 ln r + ψ1(f1y + f2T
(1−γ) − gr) + ψ2r (2.7)

and represents the utility flow. The adjoint variables act as marginal prices. The
maximum value of the Hamiltonian is attained at the current optimal technology
rate

r0 = a2
1

gψ1 − ψ2
. (2.8)

The optimal dynamics is given by the following differential equations:

ẋ1 = f1x1 + f2x
(1−γ)
1 −

a2(x1 + g)x1
(gx2 − x1x4)

,

ẋ2 = ρx2 + γf2x2
1

xγ1
− 1−

a2gx2
(gx2 − x1x4)

,

ẋ3 = −
a2x1x3

(gx2 − x1x4)
,

ẋ4 = ρx4 − γf2x2
1

xγ1
− a1 +

a2x1x4
(gx2 − x1x4)

. (2.9)

Here x1, x2, x3, x4 are new variables connected with the original and adjoint vari-
ables:

x1 =
y

T
, x2 = ψ1y, x3 =

1

T
, x4 = ψ2T. (2.10)

A typical optimal trajectory plotted in Fig.4. exhibits growth in production and
technology, and decline in productivity of technology.
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Fig.4 A typical optimal trajectory

The following results for system (2.9) were proved in [Tarasyev, Watanabe, 1999].
1) System (2.9) has the first integral

z = ψ1y + ψ2T = p
0 =

a1 + a2 + 1

ρ
. (2.11)

2) Thanks to this first integral the four-dimensional system (2.9) is reduced to
the next three-dimensional system whose two variables, x1, x2, do not depend on
the third one, x3:

ẋ1 = f1x1 + f2x
(1−γ)
1 −

a2(x1 + g)x1
((x1 + g)x2 − p0x1)

= F1(x1, x2),

ẋ2 = ρx2 + γf2x2
1

xγ1
− 1−

a2gx2
((x1 + g)x2 − p0x1)

= F2(x1, x2),

ẋ3 = −
a2x1x3

((x1 + g)x2 − p0x1)
= F3(x1, x2, x3). (2.12)

3) Under several natural assumption system (2.9) has the unique equilibrium
point x0 = (x01, x

0
2, x

0
3), x

0
1 > 0, x

0
2 > 0, x3 = 0, which is a saddle. All optimal

trajectories converge to x0.

3 Algorithm of Calculation of Trajectories

It should be noted that in a numerical aspect, the problem of finding an optimal
trajectory x0(·) which leads system (2.12) to the saddle point x0 is very complicated
due to the instability of this equilibrium. In this section a constructive numerical
procedure for finding a quasioptimal control which leads coordinates x1(·), x3(·)
of the system to the equilibrium coordinates x01, x

0
3 is presented. Later it will be

shown that the proposed quasioptimal control is arbitrarily close to optimal (see
Appendix).
Suppose all parameters of the model, initial time t0, initial production y(t0) and

initial technology T (t0) are fixed and besides, an accuracy parameter ǫ is given (see
Table 1). Then the components x01, x

0
2 of the equilibrium point of the reduced system

(2.12) are found from F1(x1, x2) = 0, F2(x1, x2) = 0.
Consider the ǫ-neighborhood of the point (x01, x

0
2) in the (x1, x2)-plain (see Fig.5).

We shall study the behavior of the coordinates x1, x2 separately from x3 due to the
block structure of system (2.12).
Let us fix some point (x∗1, x

∗

2) lying in the above ǫ-neighborhood on the beam,
which originates at (x01, x

0
2) and goes parallel to the eigenvector corresponding to the

negative eigenvalue of the Jacobi matrix

D =

(

∂F1(x0)/∂x1 ∂F1(x0)/∂x2
∂F2(x0)/∂x1 ∂F2(x0)/∂x2

)

. (3.1)
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Table 1: Inputs of the Calculation Procedure

Parameters of the model

α - parameter of elasticity,
ρ - discount rate,
β1 - elasticity coefficient,
β2 - elasticity coefficient,
f1 - parameter describing the non-R&D contribution,
f2, γ - parameters describing the impact of technology on production,
g - discounted marginal productivity of technology

Initial conditions

t0 - initial instant,
y(t0) - initial manufacturing production,
T (t0) - initial accumulated R&D investment (technology),

Accuracy input

ǫ - a small positive parameter
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The process of finding a suboptimal trajectory has two stages.
At the first stage we find a trajectory of system (2.12) which passes through a

point x∗ = (x∗1, x
∗

2, x
∗

3) where x
∗

3 is not fixed and will be specified later. We do this
in three steps presented in Table 2. We consider values x1 = x∗1, x2 = x∗2 as final
and integrate the system of the first two equations in (2.12) in reverse time until
x1(t0) = y(t0)/T (t0); this condition determines the duration t∗ of the integration
process. As a result, functions x1(t) and x2(t) (t0 ≤ t ≤ t0 + t∗) are obtained.
We substitute x1(t) and x2(t) into the third equation in (2.12) and integrate it in
direct time with the initial condition x3(t0) = 1/T (t0). As a result, we obtain the
inverse of technology x3(t) = 1/T (t), production y(t) = x1(t)/x3(t) and the final
value x∗3 = x3(t

0 + t∗).

Fig.5 The ǫ-neighborhood of the stationary point and an integration pattern. The
arrow pointing to the right symbolizes the integration in reverse time, and the

arrow pointing to the left the integration in direct time.

At the second stage we apply a suboptimal feedback which leads trajectories of
system (2.12) from x∗1, x

∗

2, x
∗

3 to x
0
1, x

0
2, x

0
3 (see [Tarasyev, Watanabe, 1999]):

r∗ = Ṫ =
a2x1

x3(d + k(ω)(x1 − x01) + ω(x1 − x
0
1)
2)
=

a2y

(d + k(ω)((y/T )− x01) + ω((y/T )− x
0
1)2)

. (3.2)

Here

d = gx02−(p
0−x02)x

0
1, k = k(ω) = k1ω+k2, k1 = x

0
1+g, k2 = −(p

0−x02). (3.3)
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The coefficient ω in (3.2) is the slope of the eigenvector corresponding to the negative
eigenvalue of the Jacobi matrix (3.1). The quasioptimal feedback corresponds to the
linear regime for the second coordinate x2(·),

x2 = x
0
2 + ω(x1 − x

0
1), ω ≥ 0, (3.4)

and can be considered as an approximation to the optimal regime. A key property
of the quasioptimal feedback is that it ensures the convergence of the trajectory to
the equilibrium point.

Table 2: Algorithm

1) Choosing initial deviations
in the ǫ-neighborhood of the stationary point (x01, x

0
2) :

x1 := x∗1, x2 := x∗2

2) The integration of the first two equations of the reduced system;

ẋ1 = f1 + f2x
(1−γ)
1 − a2(x1+g)x1

((x1+g)x2−p0x1)
,

ẋ2 = ρx2 + γf2x2
1
xγ
1

− 1− a2gx2
((x1+g)x2−p0x1)

in reverse time until x1(t
0) = y(t0)/T (t0).

Intermediate results:
the optimal trajectories x1(t) and x2(t)
which enter the ǫ-neighborhood
of the stationary point (x01, x

0
2).

3) The integration of the third equation of the reduced system

ẋ3 = −
a2x1x3

((x1+g)x2−p0x1)

in direct time.

Output:

T (t) = 1/x3(t) - optimal technology,

y(t) = x1(t)/x3(t) - optimal production.
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4 Clusters of Theoretically Optimal Scenarios and

Empirical Data Series

The variations in model’s parameters give rise to clusters of theoretically optimal
trajectories. The association of such synthetic optimal clusters with the empirical
time series may give a useful information on the aggregated quality of economic man-
agement and possible alternative scenarios of growth. The synthetic clusters may
also serve for the estimation of the sensitivity of optimal trajectories with respect to
the variations in different parameters or their combinations. This sensitivity analysis
could be of special interest in situations when a growth process under consideration
is qualified by experts as optimal or close to optimal. In these situations parame-
ters, with respect to which the optimal evolution is strongly sensitive (the associated
clusters are “broad”), can be identified. Controlling such critical parameters could,
consequently, be viewed as an essential element in global economic management.
Fig.6, 7 show, respectively, the clusters of theoretically optimal trajectories which

arise as the elasticity coefficients α and β1 run through the admissible interval (0, 1)
(α = 0.85, ..., 0.95, β1 = 0.1, ..., 0.9). Here the following reference values for the
parameters, initial time t0, initial production y(t0) and initial technology T (t0) are
assumed:

Parameters:
γ = 0.1
α = 0.91
ρ = 0.033
β1 = 0.5
β2 = 0.4
f1 = 0.035
f2 = 0.015
g = 0.6

Initial conditions:
y(t0) = 157360.0
T (t0) = 5620.0
t0 = 1970.0

The choice of β1 and β2 is based on C.Watanabe’s empirical analysis presented
in the abstract [Watanabe, 1997 b]. In Fig.6, 7 the clusters of theoretically optimal
trajectories are associated with the empirical time series in production, technology
and technology productivity in Japan in 1970-1992 (the data series are shown in
squares). We see that the optimal trajectories agree well with the empirical time
series and are quite robust with respect the elasticity parameters. This gives an
example of a partial sensitivity analysis via the designed software. As the software is
complemented by a user-friendly interface, it will be used for carrying out a complete
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numerical sensitivity analysis, in which the variations of all system’s parameters
around estimated reference values will be taken into account.
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Fig.6 Optimal trajectories: α = 0.85, ..., 0.95
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Fig.7 Optimal trajectories: β1 = 0.1, ..., 0.9
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Conclusion

In this paper a nonlinear model of optimal allocation of R&D in a techno-metabolic
system ([Tarasyev, Watanabe, 1999]) is matched with the aggregated data on the
Japanese manufacturing industry. The model describes the dynamics of production
and technology as a response to the R&D investment policy. The optimal dynamics
reflects basic qualitative trends in econometric time series for technology, production
and technology productivity. The simulations agree well with a conjecture that the
actual economic management in Japan was close to theoretically optimal in period
1970-1992. The main technical difficulty in the work was to ensure the convergence
of extremal trajectories to the unstable equilibrium. This paper describes a method
for finding suboptimal trajectories (analytical estimate of the accuracy is given in
Appendix). The method is realized in a software. We plan to develop a user-friendly
interface for this software and make it available via Internet. The software will be
applied for the numerical analysis of specific economy branches and simulation of
various decision-making rules.
The work has been performed within the framework of the joint research program

of IIASA and the Tokyo Institute of Technology on Comparative Analysis of the
Endogenous Techno-economic Process: Technology Spillovers in Japan, the USA,

Europe and APEC Countries.
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5 Appendix: Accuracy Estimation

Here we give an analytic estimate of accuracy of the suboptimal feedback (3.2) in
the ǫ-neighborhood of the stationary point.
Let us substitute the optimal control law (2.8) in the functional (2.6). According

to (2.10),(2.11) we have

U =
∫

∞

0
e−ρt((1 + a2) lnx1 − p0ρ lnx3 − a2 ln((x1 + g)x2 − p

0x1))dt. (5.1)

Without loss of generality we assume that initial instant is 0.
Consider the following problem.
Problem 1. Let for all t > t∗ > 0 functions x1(t), x2(t) have the form

x1(t) = x
0
1 + δx1(t), x2(t) = x

0
2 + δx2(t). (5.2)

Here x01, x
0
2 are the components of the equilibrium point of the reduced system

(2.12), and δx1(t), δx2(t) are sufficiently small such that

lim
t→∞

x1(t) = x
0
1, lim

t→∞
x2(t) = x

0
2.

(these conditions hold if (x1(t), x2(t)) is driven either by an optimal control, or by
the suboptimal feedback (3.2)).
Furthermore, let x3(t∗) be given and x3(t) is governed by the third equation in

system (2.12).
It is required to estimate the value of the functional

Ut∗ =
∫

∞

t∗
e−ρt

[

(1 + a2) lnx1 − a2 ln((x1 + g)x2 − p
0x1)

]

dt− p0ρ
∫

∞

t∗
e−ρt lnx3dt

(5.3)

Solution of the Problem 1. Suppose that for all t > t∗

|δx1| < ∆1, |δx2| < ∆2 (5.4)

where ∆1, ∆2 are sufficiently small constants. Taking into account the relation

lim
t→∞

lnx3
eρt
= lim
t→∞

(lnx3)′

(eρt)′
= lim
t→∞

−a2x1e−ρt

ρ((x1 + g)x2 − p0x1)
= 0,

we rewrite the last term in (5.3) as

−p0ρ
∫

∞

t0
e−ρt lnx3dt = p

0e−ρt lnx3|
∞

t0 − p
0
∫

∞

t0
e−ρt

ẋ3
x3
dt =

= −p0e−ρt
0

lnx3(t
0) + p0

∫

∞

t0

a2x1e−ρt

(x1 + g)x2 − p0x1
dt.

Substitute this in (5.3):

Ut∗ =
e−ρt

∗

ρ

(

(1 + a2) ln x
0
1 − a2 ln((x

0
1 + g)x

0
2 − p

0x01) +
p0a2x

0
1

(x01 + g)x
0
2 − p0x

0
1

)

−
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−e−ρt
0

p0 lnx3(t
0) + ∆. (5.5)

Here

∆ =
∫

∞

t∗

[

p0a2x02(gδx1 − δx2(x
0
1 + g))

((x01 + g)x
0
2 − p0x

0
1)2

+ (1 + a2)
δx1
x01
− a2

δx1(x02 − p
0) + δx2(x01 + g)

(x01 + g)x
0
2 − p0x

0
1

]

×

(5.6)
×e−ρtdt+ o(ǫ).

Using inequalities (5.4), we obtain

|∆| <
e−ρt

∗

ρ

[

p0a2x02(g∆1 +∆2(x
0
1 + g))

((x01 + g)x
0
2 − p0x

0
1)2

+ (1 + a2)
∆1
x01
+ a2

∆1(p0 − x02) + ∆2(x
0
1 + g)

(x01 + g)x
0
2 − p0x

0
1

]

+

(5.7)
+o(ǫ).

According to (5.7) the absolute value of ∆ is infinitely small as ǫ → 0. Thus, we
come to the following result. Under the suboptimal control (3.2) the functional Ut∗
converges to a constant determined by the first two terms in (5.5) as ǫ→ 0.
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