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Abstract

Fitness landscapes underlie the dynamics of evolutionary processes and are a key
concept of evolutionary theory. Recent research on molecular folding and on evo-
lutionary algorithms has demonstrated that such landscapes are also important for
understanding problems of chemistry and of combinatorial optimization. In these
cases free energy or cost functions are used instead of biological fitness functions
defined on genotypes.
However, the image of a three dimensional landscape with many peaks and valleys
turns out to be misleading. Genotypes tend to differ in numerous characteristics,
resulting in multidimensional fitness landscapes. Properties of these landscapes are
very different from those of low dimensional ones. The main intention of this study
is to investigate how these features affect the duration of adaptive walks on such
landscapes. For this purpose we focus on the Travelling Salesman Problem (TSP),
which amounts to finding the shortest tour visiting a given set of locations. By
comparing theoretical predictions for the duration of adaptive walks to the actual
waiting times observed for an evolutionary algorithm we demonstrate that a suf-
ficiently fine-grained correlation matrix succeeds in capturing essential structural
features of the TSP fitness landscape. To test the performance of correlation-based
predictions for a class of fitness landscapes with varying degree of neutrality, we
have analyzed evolutionary waiting times on NKp fitness landscapes. We show that
for low degrees of neutrality, correlation statistics again prove to be an excellent
basis for predicting waiting times, while for very high degrees of neutrality, a popu-
lation’s drift along neutral networks turns out to require incorporation of additional
information on network topologies.
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Correlation Analysis of Fitness Landscapes

Hannelore Brandt
Ulf Dieckmann

1 Introduction

The notion of a fitness landscape has permeated the analysis of evolutionary pro-
cesses for more than 60 years (Gavrilets 1997). It has proved to be a powerful
metaphor for investigating specific problems in biology, chemistry, computational
optimization and even economy. Originally used to facilitate understanding of selec-
tion and mutation of biological genotypes, the concept has recently been transferred
to the study of abstract genotypes such as sequences of RNA molecules (Fontana
et al. 1993, Schuster et al. 1994, Schuster 1997), solutions of optimization tasks
(Stadler and Schnabl 1992), or organizational structures of business firms. All these
different entities can be envisaged as genotypes of an evolutionary algorithm and
thus share some basic properties: they can be represented by a vector and, in order
to measure their performance, they can be assigned a certain fitness value. Whereas
biological fitness is defined as the expected number of offspring produced by an in-
dividual, in the case of RNA sequences fitness can be taken as the free energy of the
folded molecular sequence. For many optimization problems cost functions can be
thought of as determining fitness values. Mutation of a genotype then amounts to
changing entries of an individual’s genotype vector, and selective pressures assign
fitter genotypes a higher probability of being taken over to the next generation.
Arranging genotypes in an abstract topological space with each genotype situated

next to those which can be reached by a single mutation, and adding one dimension
to include the fitness values of genotypes leads to the picture of a fitness landscape.
A population of individuals can then be seen as a cloud of points on the surface, with
the combined effect of mutation and selection forcing the population to perform a
hill-climbing process towards fitness peaks.
For a long time, the notion of rugged fitness landscapes, involving many local

peaks separated by fitness valleys, has dominated the discussion of adaptive pro-
cesses (Kauffman and Levin 1987). However, for many evolutionary processes the
intuitive image of a three-dimensional landscape with its emphasis on peaks and
valleys (see Figure 1) may be inappropriate. Hill-climbing on such a rugged fitness
landscape a population will soon end up at a local peak: selective pressures will
prevent it from crossing the surrounding adaptive valleys to reach a higher fitness
peak. Yet, biological evolution and evolutionary algorithms do not appear to become
entrapped in local fitness peaks as often as this intuitive picture suggests (Schuster
1996).
The reason is that most genotypes differ in much more than two properties, result-
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Figure 1: If genotypes differ in only two properties (p1, p2) they can be arranged
in a two-dimensional space, with each individual next to those which can be reached
by a single mutation. Assigning a certain fitness value f to all genotypes leads to a
fitness landscape. Evolution in areas where the surface is smooth typically results in
steady evolutionary change, whereas in rugged regions a population can easily end
up at a local peak.

ing in fitness landscapes with dimensions much higher than three. It turns out that
the structural features of these high-dimensional landscapes are very different from
those of low-dimensional ones. For many high-dimensional landscapes the problem
of being stuck in a local adaptive peak far away from the global optimum might
even be non-existent.
From investigating special cases we know that the features of fitness landscapes

can vary to a high degree. On landscapes which are rather smooth, the global fitness
optimum is reached within a relatively short time, whereas on more rugged land-
scapes (not necessarily implicating the existence of many local peaks) a population
needs to evolve over more generations to attain the highest peak.
It is therefore natural to ask which structural statistics of fitness landscapes de-

termine the durations of adaptive walks. Having identified such statistics would
allow for classifying fitness landscapes in such a way that the performance of evo-
lutionary processes can be predicted. Even though some statistics have been sug-
gested for this purpose and are already well-analyzed (Weinberger 1990, Stadler
1992, Stadler 1996, Barnett 1997), presently discussed statistics do not seem to be
appropriate for obtaining sufficiently accurate predictions of evolutionary waiting
times.
In this study we focus on specific fitness landscapes of well-known problems and

investigate the durations (or waiting times) of evolutionary processes on these land-
scapes. We introduce a new type of correlation statistics, different from those used so
far, and show by comparing observed and predicted waiting time distributions that
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these statistics might be very useful for understanding, predicting, and classifying
evolutionary processes on high-dimensional fitness landscapes.
In Section 2 we examine three different fitness landscapes of the Travelling Sales-

man Problem, obtained by using different mutation operators. Section 3 extends this
analysis to the NKp Model of epistatic evolution. A summary of our findings and a
sketch of open questions resulting from this study is provided in Section 4.

2 The Travelling Salesman Problem

2.1 General information

A salesman who has to visit each city on a given list, knowing the distance between
all pairs of cities, will try to minimize the length of his tour. This optimization task
is called The Travelling Salesman Problem (TSP). Although it has been studied in
great detail, there exists no algorithm which finds the shortest tour faster than by
complete testing of all possible tours. The time until the optimal solution is found
thus grows more than exponentially with an increase in the number of cities, and
the TSP therefore belongs to the class of hard integer programming problems with
non-polynomial solution times.
In many cases of actual interest, however, the focus is not on detecting the

shortest possible tour, but on finding a tour that is sufficiently close to the optimum
within a feasible computation time. For this purpose it is convenient to let candidate
solutions simply evolve towards better ones. Such algorithms, which make use of
basic principles of evolution like mutation and selection (sometimes crossover and
recombination are also considered), are called evolutionary algorithms and have been
established as efficient tools for finding quasi-optimal solutions of many optimization
problems (Beasley 1997, Pasemann et al. 1999).
In this study the landscape of the TSP is chosen as a benchmark problem because

of its canonical genotype-to-fitness map and the attention that it has received in
recent studies of fitness landscapes (Stadler and Schnabl 1992, Reidys and Stadler
1999).
For the following examples of the TSP, 25 cities have been distributed randomly
according to a uniform distribution over the square [0, 327]2. Every tour starts in
City 1, visits each other city once and ends again in City 1.
The biological terms, taken to describe evolutionary processes, are used as follows

in the context of the TSP:

• Genotypes

Each possible tour corresponds to a genotype; its vector representation is given
by the sequence of cities. For every genotype, the length of the resulting tour
is calculated according to a two-dimensional distance table involving all pairs
of cities. For 25 cities, the total number of different genotypes is 24!, which is
of order 1023. Because of this extremely large number of possibilities a strategy
of testing all tours in order to find the best one is infeasible.

• Fitness

3



150 300

150

300

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 2: The 25 cities of a sample TSP.

The fitness f of a specific genotype g is given by

f(g) =
1

l(g)

where l(g) is the length of the genotype g.

• Mutation

To mutate a genotype, every operator that changes the vector in a way that
the mutated genotype is still a possible tour can be considered. Here, three
frequently used mutation operators are chosen (Manderick 1997). For each of
these mutation operators, two positions within the tour, corresponding to two
indices of the genotype vector, are chosen at random.

– point mutation: the cities at two indices of the vector are swapped. If
the fourth and the eight index are chosen, a mutant of the tour
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] is the vector [1, 2, 3,8, 5, 6, 7,4, 9, 10, ...].

– reverse mutation: the order of cities between two indices is reversed. A
mutant of the tour [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] is the vector
[1, 2, 3,8,7,6,5,4, 9, 10, ...].

– remove and reinsert: the city at the first index is taken out and reinserted
at the second index. A mutant of the tour [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] is
either the vector [1, 2, 3,5,6,7,8,4, 9, 10, ...] or [1, 2, 3,8,4,5,6,7, 9, 10, ...],
depending on the order in which the two indices were chosen.

• Selection
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In every generation, each genotype produces two offspring individuals which
are both once mutated. The best third of the union of the old population
and the offspring is taken over to the next generation. This process thus
keeps the population size (chosen at 15 individuals below) constant. Two
individuals that can be transformed into each other by a single mutation are
called neighbors.

• Evolutionary waiting times

Evolutionary waiting times are stochastic variables defined as the number of
generations necessary for a population to evolve between two given fitness
values. In this work we concentrate on waiting times as these provide crucial
statistics of an evolutionary process.

The fitness landscape of the TSP (Stadler 1992, Stadler and Schnabl 1992,
Fontana et al. 1993, Happel and Stadler 1996) as well as those derived from other
well known problems (Schuster et al. 1994, Schuster 1997, Barnett 1998) have al-
ready been studied in detail. Most of those analyses focus on a specific type of
auto-correlation function to describe the structure of fitness landscapes. This func-
tion can be defined based on time series obtained from unbiased random walks on a
given landscape. During such walks, the genotype of a single individual is repeatedly
mutated without considering the fitness of resulting mutants. These auto-correlation
functions are utilized to measure the ruggedness of a given fitness landscape. How-
ever, as pointed out by Barnett (1998), these auto-correlation functions alone may
be inadequate to characterize evolutionary dynamics. Another property of fitness
landscapes, their degree of neutrality, also seems to play an important role. Two
genotypes are said to be neutral, if they have the same fitness. If large networks of
such neutral genotypes are embedded in a fitness landscape, a population is to drift
along them. Hill-climbing is then confined to the occasional transfer of the popula-
tion to neutral networks of higher fitness. As shown by Barnett (1998), the degree of
neutrality does not necessarily influence the auto-correlation function of a landscape
and thus can be tuned independently of a landscape’s ruggedness. Understanding
the interplay of ruggedness and neutrality is crucial for a characterization of a wide
variety of fitness landscapes (Huynen et al. 1996).

2.2 Point Mutation

Point mutations of a TSP genotype are realized by choosing at random two different
indices of the genotype vector. At these two positions, the entries of the vector are
then swapped. This generates an offspring genotype with a tour length different from
that of its parent. In the next subsections we investigate, starting with results on the
real evolutionary process, the performance of different reduced descriptions of the
resulting fitness landscape. The salient question here is which structural statistics
of the landscape are essential for understanding and predicting the duration of a
population’s adaptive walk on this landscape.
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Figure 3: Length distribution of random TSP tours.

2.2.1 The Evolutionary Algorithm

Before we focus on the evolutionary waiting times on our specific TSP landscape,
we give some basic information concerning the behavior of the utilized evolutionary
algorithm.
Randomly produced tours normally have a length between 2900 and 4900. The

distribution of these length values is shown in Figure 3.
A population of 15 individuals, each producing two mutated offspring per gener-

ation, rapidly tends to climb the fitness landscape, see Figure 4, where the shortest
tour length decreases from about 3000 to about 1500 in 200 generations. The best
fitness in the population normally remains constant for a number of generations and
then suddenly jumps to a higher level. This is a common property of evolutionary
algorithms and is referred to as epochal evolution.
The best tour found by all different mutation operators discussed in this paper

has a length of 1369 and typically is found within 100-200 generations. This solution
certainly is very close to the global optimum of this TSP.
To test the different reduced descriptions of fitness landscapes studied in this

paper, it is necessary to obtain statistics of evolutionary waiting times for different
fitness intervals. For this purpose, we have chosen initial and final fitness values
from the interval 1/5000 to 1/2900; producing random tours with fitness values in
this range is relatively easy, and this is a prerequisite for obtaining valid statisti-
cal distributions of waiting times. In particular, initial fitness values are chosen
1/5000, 1/4300 and 1/3600, and final fitness values 1/4300, 1/3600 and 1/2900. To
construct the distribution of evolutionary waiting times from a certain initial fitness
fi to a final value ff we proceed as follows. In generation 0, the population is ini-
tialized with a random genotype that has a fitness of approximately fi. The number
of generations necessary until one individual of the population reaches fitness ff is
stored as the waiting time of a run. For a given pair of initial and final values,
results of 2000 such runs are combined to obtain the distribution of waiting times;
an example is shown in Figure 6.
In the following subsections we consider landscape statistics of increasing com-
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Figure 4: The evolution of the highest fitness in a population. Periods of constant
fitness are interspersed with sporadic jumps, a characteristic property of evolutionary
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Figure 5: The shortest tour found for our sample TSP.
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Figure 6: A matrix of waiting time distributions for 3 initial and 3 final fitness
values, based on an evolutionary algorithm that uses point mutations. This graph
serves as a target for results derived from different reduced descriptions of fitness
landscapes, and allows to assess their absolute and relative performance. Since de-
creases in population fitness cannot arise in the evolutionary algorithm considered
here, waiting times for three pairs of fitness values are infinite; the corresponding
distributions are replaced with filled circles.

plexity and compare their suitability for predicting the actual distributions of evo-
lutionary waiting times.

2.2.2 Percolation

The basic concept of percolation theory is a grid in a multidimensional space with
each lattice site being independently filled with probability p (Kesten 1982, Grim-
mett 1989). If p exceeds a certain threshold, a subset of the filled sites forms a
connected infinite cluster that percolates through the entire grid. Cluster statis-
tics have been used to study a wide variety of problems (Sahimi 1994, Stauffer and
Aharony 1995).
One of the simplest ways of analyzing a given fitness landscape is to divide all

elements of the genotype space into two classes by introducing a certain fitness
threshold. Those genotypes with fitness beyond the threshold are in class 1, all
others in class 0. All elements of the multidimensional genotype space of a TSP
can then be considered as belonging to either of these two clusters with probability
p and 1− p, respectively. A percolation approximation of a fitness landscape then
amounts to (i) considering only the labels 0 or 1, while ignoring actual fitness values,
and (ii) assuming that genotypes independently belong to either cluster according
to a probability p. The probability p is estimated from a large number of random
TSP tours.
The evolutionary algorithm is then imitated as follows: The entire population is
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in class 0 initially. In each generation, 300 new individuals (for 25 cities each TSP
genotype has 25 ∗ 24/2 = 300 neighbors under point mutation) are assigned label 0
or 1 according to p. Out of these, 30 offspring (15 individuals produce two offspring
each) are chosen. If an offspring in the population belongs to the higher fitness class
(class 1), the process stops. Otherwise it continues with the next generation.
To compute the matrix of waiting times, percolation probabilities for the three

different final fitness values are calculated. Initial fitness are ignored in this approx-
imation.
In order to calculate the probability pstop(g) for the described process to end in

a certain generation g, we first have to define some variables:

A ... total number of different genotypes

N ... number of neighbors for each genotype

m ... number of offspring per generation

p ... probability for one individual to be in the higher fitness class (class 1)

A1 ... number of all genotypes in class 1 (≈ Ap)

The probability pk to have k neighbors in class 1 out of N possible is then given
by

pk =

(

A1
k

) (

A−A1
N−k

)

(

A

N

)

=
A1! (A− A1)!N ! (A−N)!

k! (N − k)! (A1 − k)! (A− A1 −N + k)! A!

=

(

N

k

)

A1! (A− A1)! (A−N)!

(A1 − k)! (A− A1 −N + k)!A!
.

If N and k are relatively small compared to A (which is true for our TSP landscape),
this equation is well approximated by

pk ≈

(

N

k

)

pk(1− p)N−k.

Now, m offspring are chosen out of the N neighbors; these are not necessarily
different. The probability p∗ to have at least one individual of higher fitness in the
next generation can now be calculated,

p∗ = 1−
N−1
∑

i=0

pi

(

N − i

N

)m

.

The probability pstop(g) is then given by

pstop(g) = (1− p
∗)g−1p∗.

For our TSP landscape we have A = 24! , N = 300 , and m = 30;
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Figure 7: Waiting time distributions for reaching certain final fitness thresholds as
predicted by the percolation approximation. Initial fitness values are ignored in this
approximation. Compare the depicted distributions to those in Figure 6.

It is not surprising that this drastic simplification of the fitness landscape is too
coarse. The waiting time statistics in Figure 7 show that the actual evolutionary
process is much faster than this reduced description suggests. In the actual process,
the probability for choosing a neighbor with fitness above the final value increases
over the generations as the population successively attains higher fitness values. The
percolation approximation cannot capture this critical effect.
As a next step we thus incorporate a critical landscape feature: the neighborhood

of a genotype strongly depends on its own fitness.

2.2.3 Monomorphic correlation

The results obtained for the percolation approximation suggest dividing all geno-
types into more than just two fitness classes, with each class having a different
distribution of neighbor fitness. The correlation cij between classes i and j is deter-
mined by the probability for a random neighbor of an individual of class i to be in
class j. The correlation matrix C = (cij) is then used to define the transition matrix
T of a Markov chain that approximates the evolutionary algorithm (Rudolph 1997).
In this approximation, the whole population is still considered to reside in the same
fitness class, and is thus assumed to be monomorphic. A transition from class i to a
higher fitness class j occurs if at least one offspring belongs to fitness class j, but no
offspring is in one of the classes higher than j. Transition to lower fitness classes are
not possible; the population will therefore remain in the same class if no offspring
possesses a higher fitness. To calculate the probability tij for a transition from i to
j we need the following variables, assuming that i and j are fixed:

c+ ... union of all fitness classes higher than j

c0 ... class j

10



c− ... union of all fitness classes lower than j

pl ... probability for a random neighbor of an individual of class i to belong to
cl, l = +, 0,−

N ... number of neighbors for each genotype

m ... number of offspring per generation

The probability wlk to have k neighbors in cl is determined by a binomial distri-
bution, wlk =

(

N

k

)

pkl (1−pl)
N−k. Again, m individuals are chosen out of N neighbors.

The probability tij for a transition from class i to j is the probability to have no
offspring in c+ but at least one in c0. Thus,

tij =
N−1
∑

n=0

w0n

(

N − n

N

)m

−

N
∑

n=1

w2n

(

n

N

)m

.

The resulting transition matrix T = (tij) defines a Markov chain and allows us to
derive expectations for the moments of waiting time distributions. In particular, the
mean number of generations needed for attaining the absorbing state (final fitness)
from different starting classes (initial fitness) can be computed. These results are
presented below.
Coarse-grained correlation. We begin by introducing four fitness classes, seper-

ated by the three final fitness values used, e.g., in Figure 6. The correlation matrix
C = (cij), where cij is the probability for a random neighbor of an individual of
class i to belong to class j, is estimated by randomly mutating random genotypes
of class i. The resulting 4 × 4 transition matrix defines a Markov chain for which
waiting time distributions are computed. These turn out to be closer to the actual
ones; yet, systematic differences of mean values and variances illustrate the need for
further refinement of this correlation-based approach.
Figure 9 shows that even if the population already is in the class next to the final

one, producing an offspring the fitness of which exceeds the final fitness threshold
takes too much time. The many transitions within classes, leading from the lower
bound of a class’ fitness range to the upper bound are neglected by only allowing
for a small number of classes. This observation suggests to introduce a fine-grained
classification of fitness values.
Fine-grained correlation. To improve the predictive accuracy of the correlation

approximation we consider a 31 × 31 correlation matrix. 30 equally spaced fitness
thresholds between tour lengths 2900 and 5000 serve as the boundaries of a fine-
grained classification. As before, the correlation matrix is obtained by randomly
generating neighbors of random genotypes of a given class. In this manner, small
changes in fitness values, which can be decisive for the dynamics of an evolutionary
algorithm, are no longer neglected.
The fact that most of the probability mass of a correlation matrix is concentrated

around its diagonal indicates that neighboring genotypes tend to possess similar
fitness values. Yet, the possibility that they belong to distant fitness classes is given.
Using the same principles for constructing a Markov chain as described above, Figure
11 shows the resulting transition matrix T = (tij) of the process.
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fitness values as predicted by monomorphic evolution based on a coarse-grained cor-
relation approximation. Comparison of depicted distributions to those in Figure 6
shows that waiting times are overestimated by this approach.
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Figure 11: The transition matrix of the Markov chain that provides a correlation-
based approximation of the evolutionary algorithm. A population at generation g
jumps to higher fitness classes in the next generation with probability p. Class 31 is
called an absorbing state; if the population reaches it, the process stops.

The fine-grained correlation matrix provides a detailed summary of the adja-
cency relations between the different fitness classes; the neighborhood structure
for different TSP genotypes should therefore be described with sufficient accuracy.
We thus might expect that the waiting time distributions derived from this sim-
plified process are a close match to the actual ones. And, indeed, the fine-grained
monomorphic correlation approximation is the first approach presented here that
succeeds in capturing many of the qualitative and quantitative features of the evo-
lutionary algorithm as summarized in Figure 6. The results presented in Figure 12
therefore underline that a fine-grained correlation matrix as defined above carries
salient information about a fitness landscape’s structure.
Although correlation approximation of the fitness landscape results in predic-

tions that are not far away from observations on the actual evolutionary algorithm,
it is interesting to ask why the simplified process is always a bit faster than the
evolutionary algorithm itself. A detailed investigation of fitness distributions for
all generations of the evolving population reveals that in each generation fitness
values of genotypes in the population are spread over a wide range of classes. For
this reason, the assumption of monomorphism (implying that all individuals of the
population belong to a single fitness class) is inaccurate. Instead of assuming tran-
sitions of the whole population’s fitness from one class to another, individuals in the
population need to be envisaged as belonging to different fitness classes.
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Figure 12: Waiting time distributions as predicted by monomorphic evolution based
on a fine-grained correlation approximation. Comparing these distributions with
those in Figure 6 shows that a relatively good approximation of the actual evolution-
ary algorithm has been achieved.

2.2.4 Polymorphic correlation

In this subsection we further improve our approximation of the evolutionary algo-
rithm of the TSP. We use the same statistics as before, namely the 31 × 31 matrix
of correlation probabilities for each pair of fitness classes. However, instead of con-
sidering only one class that represents the fitness of the whole population, different
individuals of the population can now belong to different fitness classes in each
generation. The population’s state in one generation is no longer a specific fitness
class, but is given by a frequency distribution over all 31 possible fitness classes.
In other words, we allow the population to be polymorphic. As before, offspring
from a given fitness class are produced according to the probabilities provided by
the correlation matrix. The transition matrix of this Markov process describes the
probability for a population with a certain frequency distribution of fitness values
to jump to another composition of fitness classes in the next generation. As there
are

(

45

15

)

population states, the transition matrix was not calculated. Instead, we
have directly implemented the stochastic process and have combined the outcome
of 2000 trials to construct the distribution of waiting times, shown in Figure 13.
It turns out that, at least for this special fitness landscape, the polymorphic cor-

relation approximation is an excellent way to predict the time scales of evolution.
Comparing these results with those derived by applying the monomorphic correla-
tion approximation shows that allowing for the specific composition of fitness values
within a population is crucial for obtaining accurate predictions. These findings raise
the question whether this approach will also perform for other fitness landscapes in a
similarly accurate and equally successful way. A first test is to investigate the fitness
landscapes of other TSPs, resulting from considering new mutation operators.
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Figure 13: Waiting time distributions as predicted by polymorphic evolution based
on a fine-grained correlation information. Comparison with Figure 6 shows that this
approach yields almost exact predictions of waiting times. Although the full TSP is
approximated by a 31 × 31 matrix, the match with the actual process is remarkably
good.

2.3 Reverse Mutation

In this section, we use the same configuration of 25 cities and maintain all other
parameters, only the mutation operator is changed. For producing an individual’s
offspring by reverse mutation, we choose two indices. The cities between the smaller
and the larger index are now rearranged in reverse order. As two genotypes can
be neighbors under reverse mutation while being seperated by a large distance in
genotype space under other mutation operators, resulting fitness landscapes may
have very different features. The importance of the mutation operator for deter-
mining the structural features of fitness landscapes is underscored by the fact that
under reverse mutation the evolutionary algorithm needs many more generations
for reaching the three final fitness classes, than were required under point mutation.
On the other hand, tours with length under 1400 are hardly ever found within 100
generations under point mutation, whereas this task seems to be achieved much
more rapidly under reverse mutation. Even the tour of length 1369, see Figure 5,
was found within this time limit.
As the polymorphic correlation approach provided the best approximation of the

actual waiting times under point mutation, here we focus on an evaluation of this
way of imitating the evolutionary process under reverse mutation. As in the case of
point mutation, the correlation matrix is estimated by generating random neighbors
of random genotypes. The structure of neighborhoods is similar to the one obtained
for point mutation and yet possesses some different properties.
The waiting time distributions obtained from 2000 simulation runs of the corre-

lation-based stochastic process exhibit a very close match with the waiting times
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Figure 14: The correlation matrix for reverse mutation. Producing an offspring
with significantly higher fitness appears to be easier under point mutation, at least
in the depicted range of fitness values. Under reverse mutation, individuals in class
0 (lowest fitness) hardly ever have neighbors which are at least five fitness classes
higher.
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of the evolutionary algorithm, see Figure 15. Again, the polymorphic correlation
approximation is successful in describing the evolutionary algorithm.
We conclude our investigations of the TSP by investigating a third mutation

operator, resulting in yet another fitness landscape.

2.4 Remove-and-Reinsert Mutation

To apply the remove-and-reinsert mutation operator, we choose two indices succes-
sively. The city at the first index will now be taken out and inserted at the second
index. The cities in between move backwards or forwards by one index. Notice that
for such remove-and-reinsert mutations the order of the two indices is important,
whereas point mutations and reverse mutations are symmetric in this respect. Using
the same configuration of the TSP, each genotype now has 600 neighbors. Nonethe-
less, the correlation matrix has the same basic features as before, characterized by
a strong emphasis of correlations along the diagonal, see Figure 16.
A comparison of actual and predicted waiting times for remove-and-reinsert mu-

tation, see Figure 17, demonstrates again that the correlation matrix captures all
the information necessary to describe the behavior of the much more complex evo-
lutionary algorithm.
Statistics describing the structure of neighborhoods for a fine-grained fitness

classification of genotypes have proved to carry the appropriate information for
predicting evolutionary waiting times on TSP landscapes. We now have to leave the
realm of TSP landscapes and demonstrate successful applications of this method to
other landscapes with widely different structural features. In certain respects, the
TSP fitness landscape is exceptional; in particular, neighbors that have exactly the
same fitness, so-called neutral neighbors, are occurring very rarely. The impact of
neutral networks on TSP landscapes may thus be negligible (Huynen et al. 1996).
In the next chapter we therefore turn our attention to fitness landscapes that

allow for tuning the degree of neutrality.

3 NKp Fitness Landscapes

The family of NK landscapes was first introduced by Kauffman (1993) and later
extended to the family of NKp landscapes (Weinberger 1990, Fontana et al. 1993).
The original idea was to envisage a bitstring of length N as a genotype. All loci
(positions on the genotype vector) therefore carry one of the alleles (entries) 0 or
1. For each locus i of the genotype, we choose at random K different other loci,
which we then call epistatically linked to locus i. The fitness contribution of locus
i thus depends on the entries of K other loci and on the locus i itself. To each
of the resulting 2K+1 combinations we assign a random number from the interval
[0, 1], which determines the contribution to fitness by locus i. In order to calculate
the fitness of the whole genotype, we need a fitness table for each locus and for
each combination of linked loci. The final fitness value is the sum of the fitness
contributions of all loci, divided by N .
Adding the parameter p is a proximate way of incorporating neutrality into the

model: The contribution of a specific combination of loci is 0 with probability p,
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Figure 15: Waiting times of the evolutionary algorithm with reverse mutation (top)
and distributions predicted by the polymorphic correlation approximation (bottom).
The predictive accuracy is remarkable.
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Figure 16: The correlation matrix for remove-and-reinsert mutation.

and is assigned randomly from the range [0, 1] with probability 1− p. This model is
even easier to justify biologically than the original NK model. Many combinations
of alleles do not influence a genotype’s fitness. The probability for neutral neighbors
on the resulting fitness landscape can now be adjusted by simply changing the
parameter p.
Mutating a genotype of the NK or NKp model is changing a random vector entry

from 1 to 0 and vice versa. In this study we used the same definitions of selection
and waiting times as for the TSP, only the population size was reduced to five.
In the subsections below, we present two types of NKp landscapes with different

degree of neutrality.

3.1 Low neutrality

To examine a NKp landscape with low probability of neutral neighbors, we chose
the following parameters: N = 15, K = 3, p = 0.3. We proceed as we did for the
TSP and estimate the correlation matrix, see Figure 18.
Comparing the actual waiting time distribution with those predicted by a poly-

morphic correlation approximation, shows encouraging results. For low degrees of
neutrality the correlation matrix again seems to provide enough information to char-
acterize evolution on NKp fitness landscapes.

3.2 High neutrality

For landscapes with a very high degree of neutrality, a simple correlation approxima-
tion may be insufficient. Differences of neighborhood structures within one fitness
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Figure 17: Actual (top) and predicted (bottom) waiting times for remove-and-
reinsert mutation.
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Figure 18: The correlation matrix for NKp genotypes belonging to 52 different
fitness classes. The matrix shows the same property of strong emphasis on the
diagonal as did the various TSP landscapes.

class are neglected. Such differences are expected to occur as a population drifts
from the entrance point of a neutral network to an exit, from where it can reach a
higher fitness class. Even if the probability for finding a better neighbor is very high
at a neutral network’s exit, the population probably still needs to evolve for several
generations to reach such ’portals’. A simple correlation approximation does not ac-
count for this subtlety and can thus only provide mediocre estimates of evolutionary
waiting times, see Figure 21.
For p = 0.99, a division into more than 17 fitness classes was not possible, valid

statistics are only obtained for this relatively coarse classification, see Figure 20.
An improvement of these predictions probably might require incorporation of

new statistics of the landscape, allowing to describe population drifts along neutral
networks.

4 Conclusions

Although the metaphor of a fitness landscape on which a population is evolving
towards adaptive peaks has served as an important basis for understanding evolu-
tionary processes in different areas of science, the question which landscape statistics
are critical for predicting evolutionary change on these landscapes so far has not been
resolved. In this paper, we have suggested a potential answer to this question, based
on polymorphic correlation approximations of evolutionary algorithms.
One of the essential features of an evolutionary algorithm concerns the probabil-

ity for a population of a certain initial fitness to reach a final fitness threshold within
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Figure 19: Actual (top) and predicted (bottom) waiting times for evolution on a
NKp landscape with low degree of neutrality (p = 0.3). The similarity of both results
is again very satisfactory.
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Figure 20: The correlation matrix for a NKp landscape with p=0.99 shows the high
probability for neutral neighbors.

g generations. This information is summarized in the distribution of waiting times.
Comparing the actual waiting times of evolutionary algorithms for several specific
problems to predictions based on various candidate statistics served to assess the
relative merits of those simplified landscape descriptions.
In Section 2 we have focused on the Travelling Salesman Problem, combined

with the point mutation operator. Within this setting, the complexity of landscape
statistics has been increased in a sequence of several steps:
1. Percolation. All individuals on the landscape are considered to have fitness

values above or below a given threshold with probability p and 1 − p, respectively
(Gavrilets and Gravner 1997). The results of an approximate evolutionary process
based on this simplification showed that introducing more fitness classes and ac-
counting for their specific distribution of neighboring fitness values are vital steps
for overcoming the poor predictive accuracy of the percolation approximation.
2: Coarse correlation with monomorphic population. In a next step we have used

correlation statistics of the landscape. This has enabled us to take into account
that genotypes in different fitness classes are surrounded by different neighborhood
structures. Although a coarse classification of fitness values into just a small number
of fitness classes, while treating the population as being monomorphic, resulted in
improved predictions relative to the percolation approximation. Yet, the simplified
processes still resulted in too long waiting times.
3: Fine correlation with monomorphic population. A fined-grained correlation

matrix served as the basis for the next step and was supposed to better represent
the possibility of small changes in fitness values, which can be critical for describing
the evolutionary process. Predicted time scales of evolution lay quite close to those
of the actual evolutionary algorithm. However, the fact that the waiting times were
systematically underestimated led us to conjecture that the simultaneous presence
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Figure 21: Actual (top) and predicted (bottom) waiting times for evolution on a
NKp landscape with a very high degree of neutrality (p = 0.99). The comparison
shows that actual evolution takes many more generations to attain a final fitness
class; the many steps within one fitness class that probably result from diffusion
along neutral networks are not considered by the correlation approximation.
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of different fitness values within a population is important for predicting the mode
of evolutionary change.
4: Fine correlation with polymorphic population. Allowing the population to be

polymorphic, so that individuals in one generation can belong to different fitness
classes resulted in remarkably accurate predictions of evolutionary waiting times.
All the information needed for this very close approximation of the evolutionary
algorithm is provided by a fine-grained correlation matrix.
Until now, mainly two different correlation functions have been used to describe

fitness landscapes; these are often referred to as auto-correlation functions. Based
on these functions, however, rough approximations of the behavior of the evolu-
tionary process were possible (Stadler 1995, Manderick 1997). One type of these
functions is based on the auto-correlation of fitness values in time series that result
from random walks on a fitness landscape. The dynamics of such random walks are
only determined by mutation and fitness values or selective pressures are not consid-
ered. Auto-correlations are then averaged over all possible initial conditions for the
random walk. The second type of auto-correlation function is based on considering
the correlation of fitness values between pairs of genotypes at varying mutational
distances. It can be shown that these two types of auto-correlation functions carry
equivalent information (Stadler 1995).
The correlation measure presented in this study at the same time reduces and

enhances the statistical information provided: the focus of this new measure is on
single mutational steps (reduced information) but the initial fitness of considered in-
dividuals is maintained in the measure (enhanced information). The success of these
landscape statistics, allowing for almost perfect prediction of evolutionary waiting
times, shows that we open up a new pathway for improving our understanding of
fitness landscapes.
Our study of NKp fitness landscapes with varying degree of neutrality confirmed

that the correlation matrix of a landscape provides all the information necessary
for describing evolution in systems with a rather low probability for neutral neigh-
bors. For landscapes with a higher degree of neutrality, it seems that additional
considerations are required. For example, a population that drifts along a neutral
network can probably be represented by a diffusion process, which either takes ad-
ditional landscape statistics into account or utilizes the information provided by the
correlation matrix in an innovative way.
In summary, we have shown that for many fitness landscapes a sufficiently fine-

grained correlation matrix provides an excellent basis for predicting evolutionary
change on these landscapes. Evolutionary processes on landscapes with very high
degrees of neutrality require additional study.
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