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h i g h l i g h t s

• A dynamic control model for the competition between two languages is developed.
• Family formation and intergenerational language transmission are modeled explicitly.
• Investments into status planning can be used to support the minority language.
• If bilingualism is valued high enough, survival of both languages can be optimal.
• Optimal steady states depend on initial distribution of speakers.

a b s t r a c t

We develop a dynamic language competition model with dynamic state intervention. Parents choose
the language(s) to raise their children based on the communicational value of each language as well
as on their emotional attachment to the languages at hand. Languages are thus conceptualized as
tools for communication as well as carriers of cultural identity. The model includes a high and a low
status language, and children can be brought up as monolinguals or bilinguals. Through investment into
language policies, the status of the minority language can be increased. The aim of the intervention is
to preserve the minority language in a bilingual subpopulation at low costs. We investigate the dynamic
structure of the optimally controlled system as well as the optimal policy, identify stable equilibria and
provide numerical case studies.
1. Introduction

In many of the states in this world, one can find two or more
larger language groups, often in form of a majority language
and one or several minority languages. This is by no means a
static situation, since ‘‘[a]ll over the world, people are stopping
speaking minority languages and shifting to languages of wider
communication’’ (Sallabank, 2012, p. 104). This often results in the
displacement of the minority languages by the majority language.
To some extend such processes are inevitable and can be observed
throughout human history. Nevertheless, in the modern world the
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decline of minority languages appears to occur much faster than
ever before. It is predicted that 90% of the currently 7000 spoken
languages will not survive the end of the century (Krauss, 1992).

Language shift and maintenance

In response to this accelerated process of (minority) language
decline, revitalizing and maintaining (endangered) minority lan-
guages is on the agenda of many of their speakers. Moreover,
governments, non-governmental organizations as well as inter-
national organizations such as the European Union ‘‘are actively
working to save and stabilize endangered languages’’ (Fernando
et al., 2010, p. 49). In scientific discourses a large variety of argu-
ments to support (minority) language rights or to save endangered
languageswere put forward over the past decades. In this paperwe
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will not assess such arguments in detail or develop new ones,1 but
rather investigate in a formalmodel setting the possibilities, effects
and costs of language policies aiming at saving endangered lan-
guages. To do so,we first have to identify causes of language shift as
well as measures that are available to reverse language shift. Here
again, we will not go into all the details and mostly refer to the
extensive literature on this topics, see e.g. Fishman (1991), Crystal
(2000), Nettle and Romaine (2000), and May (2011). Furthermore,
we have to specify the target function: what is the desired state of
affairs that language policies should aim at?

Referring to Nettle and Romaine (2000) and Crystal (2000),
Sallabank groups cause for language shift in four often over-
lapping main categories: (a) natural catastrophes, famine, dis-
ease, (b) war and genocide, (c) overt repression and (d) cultural/
political/economic dominance, where the last one is themost com-
mon, cf. Sallabank (2012, pp.103f). Since we are interested in such
cases, where individuals voluntarily choose to change to the ma-
jority language or not to pass the minority language to the next
generation, we concentrate on the last category. Especially in na-
tion states with one official/national language (which is often but
not necessarily the language of themajority) this language is dom-
inant in education, politics,media and public life. Inmodern demo-
cratic states the result is ‘‘that the majority culture [. . . ] is endemic
and omnipresent; and minority cultures, having very little, if any,
public legitimization and private space, thereby constantly decline
in survival potential, the more their members participate in the
‘greater general good’’’ (Fishman, 1991, p. 63). Here, uneven power
relations between the national majority and minorities play a ma-
jor role. Minorities are often underrepresented in politics and in
the public sphere and socially disadvantaged, cf. May (2011). This,
in turn, can lead to negative attitudes towards the minority lan-
guage, which are also internalized by its speakers (Sallabank, 2012,
p. 104). When the two main aspects of language are considered –
language as a tool for communication and language as a carrier of
cultural identity – it is no surprise, that a language that cannot be
used in the majority of societal domains and that is furthermore
stigmatized to some degree will not be learned, spoken or passed
to the next generation.2

A language shift is a process that is typically comprised of three
phases. In a first phase, called diglossia, formal language domains
are dominated by the majority language which implies a loss of
official and public functions of the minority language. This forces
the speakers of the minority language to use the dominant one. In
a second phase more and more speakers of the minority language
become bilingual, while both languages are still used, at least in
some domains. Especially among the younger generation one can
observe a decreasing number of speakers. This causes a further
decline of domains where the minority language can be or is used.
The third phase finally is the replacement of theminority language:
‘‘For a generation or two, some bilingual arrangements may be
observed, but often [. . . ] these prove to be way-stations on the
road to a new monolingualism in the larger language’’ (Edwards,
2010, p. 6).

The language shift process can be counteracted by language
policies aiming at the survival of the minority language. Language
planning can be divided into three categories: status planning,
corpus planning and acquisition planning. All three can have a
positive impact on the chances of survival of minority languages.
Through status planning, e.g. giving some official status to the

1 For an overview of the current discussions concerning language rights see e.g.
May (2011) or Sallabank (2012). See also Fishman 1991 for a popular work on
reversing language shift.
2 ‘‘The communicative value of languages is largely determined by the number of

speakers it gives access to and by the status or social positions of these speakers’’
(Robichaud and Schutter, 2012, p. 127).
minority language, the prestige of the language can be increased
for its speakers as well as for the other members of the society.
Corpus planning, which aims at standardizing the orthography
and grammar of a language, can also increase its prestige and at
the same time can reduce learning costs. Teaching the minority
language at school, which belongs to the category of acquisition
planning, enables students to learn the language properly/in the
first place and can also have a positive impact on its status and
identity value. In general, (re)introducing and/or strengthening
the minority language in at least some domains can enhance the
chances that it stays vital.

In this paper we concentrate on the role of the state in language
revitalization processes. We presuppose that the state is basically
interested in supporting the minority language by guarantying
minority language rights.3 At the same time, we assume that
the state aims at ensuring social cohesion by enabling wide
communication possibilities. The existence of two linguistically
segregated language groups can threaten the solidarity between
the society members and hence social cohesion. Even without
referring to a necessity of a shared national identity for solidarity
and cohesion one can at least say that ‘‘a shared language
contributes to democracy’’ (Robichaud and Schutter, 2012, p. 135).
Enabling wide communication possibilities while guarantying
minority rights can be achieved through widespread bilingualism.
If the minority language can be preserved in form of a relatively
large number of bilingual individuals, the languageminority is able
to pass cultural values linked to the minority language to the next
generations while communication possibilities throughout the
society are assured. As outlined earlier, bilingualism is often a step
towards the death of theminority language. Thus, preservation of a
vital bilingual community requires a continuous effort by the state.
In our model – and this is operationalized into the target function
– that the state tries to maximize the number of bilingual speakers
at minimal expenditures.

Language competition models

In the past two decades a wide variety of language competition
models were developed. One important point of departure for
this new research on language competition was the work by
Abrams and Strogatz (2003). There, a simple language competition
model with two monolingual subpopulations is developed. The
fraction of speakers of each language evolves according to a
differential equation, which takes into account the size of the
subpopulations and the prestige of both languages. Although
the authors can fit their model to aggregated empirical data of
endangered languages, it shows some weaknesses. In Abrams and
Strogatz (2003) neither bilingual speakers nor the social structure
of the population are considered. Moreover, it is predicted that
always one of the two competing languages will die out in the long
run. Due to such limitations, the model was revised and extended
by many authors, especially from the field of (statistical) physics.
Patriarca and Leppänen (2004) and Patriarca and Heinsalu (2009)
include spatial components in their adoptions of the AS model.
Taking geographical inhomogeneities into account they were able
to show that it is possible that both languages survive in two

3 As mentioned above, there are many arguments supporting such policies:
‘‘Indeed, the dynamics of ethnic tension involving language, leading in some cases

to political conflict, occur most often not when language compromises are made
or language right are recognized, but where they have been historically avoided,
suppressed or ignored’’ (May, 2011, p. 161).

‘‘So people’s self-respect and dignity are often affected by the esteem their
language gets from others or from the state. We might then justify different
language policies by appealing to the importance of language recognition for
individuals dignity’’ (Robichaud and Schutter, 2012, p. 136).



different geographical regions. Mira and Paredes (2005) introduce
the concept of similarity between competing languages and prove
that both languages can survive if they are close to each other.
Stauffer et al. (2007) propose microscopic or individual based
versions of the AS model and apply simulation techniques instead
of averaging over the whole population. Mira and Paredes (2005),
Minett and Wang (2008), Heinsalu et al. (2014) and others extend
the A–S model by additionally considering bilinguals. Pinasco and
Romanelli (2006) propose a Lotka–Volterra type model inspired
by population dynamics to model language competition and also
show the possibility of coexistence. Spatial extensions of this
model can be found in Kandler and Steele (2008), Kandler et al.
(2010). A good review of the different approaches is given in
Patriarca et al. (2012).

In the model of Abrams and Strogatz (A–S model) speakers of
two language A and B are assumed. Speakers of A can convert to
speakers of language B and vice versa, while the population size
remains constant. Minett and Wang point out that ‘‘in practice,
[. . . ] typically a speaker does not suddenly give up one language
completely in favor of an other’’ (Minett and Wang, 2008, p. 23).
Therefore, they include bilingual speakers in their adoption of the
A–S model. Furthermore, Abrams and Strogatz implicitly consider
language transmission from one generation to the other when
fitting their mathematical model to empirical data from more
than a hundred years without theorizing this fact. Minett and
Wang therefore consider two modes of language transmission:
(1) vertical, i.e. transmission from parents to their children
and (2) horizontal, i.e. (adults) learning the second language
and becoming bilingual. For the vertical mode, a uniparental
model of transmission is applied. In contrast, Wickström (2005)
only considers vertical transmission, but explicitly models family
formation. It is assumed that adults mate due to a random search
and matching process with a success probability that is smaller
for couples with an A-monolingual and a B-monolingual partner
than for all the other possible couples. In the so formed families
offspring is produced and raised in one – or in some cases both – of
the parents’ languages, depending on the communicational value
of each language and their status/prestige. As Wickström (2005)
we only consider the vertical mode, i.e. intergenerational language
transmission.4

In Wickström (2014) it is illustrated that the A–S model and
its extension by Minett and Wang (2008) can be reformulated
in terms of the general model presented in Wickström (2005).
Furthermore the spatial model in Patriarca and Leppänen (2004)
can be interpreted as a version of the Wickstr’́om framework with
two subpopulations I and II, which value language A differently.
It is shown that under some general assumptions on the nexus
between transition probabilities and the size of the subpopulations
stable steady states of the system are the same as derived by
Patriarca and Leppänen (2004) in spatial terms. For this paper we
build on the general model formulation presented in Wickström
(2005) and Wickström (2014). Hence we consider speakers of the
majority language A, speakers of the minority language B and
bilingual speakers C .

Only some of the language dynamics models outlined above
deal with language revitalization policies. In terms of a mathe-
matical model, such policies can be operationalized as a change
of relevant model parameters that are related to the linguistic
environment: ‘‘political, social and/or economic changes can lead
to a change in the sociolinguistic environment and consequently
to a change in the competition dynamics’’ (Kandler et al., 2010,
p. 3859f). Yet, most often model parameters are assumed to be

4 Transmission in the family is the gold standard of language vitality and themost
important factor in language survival (Fishman, 1991, p. 113).
constant over time. Tomaintain a bilingual equilibriumMinett and
Wang (2008) suggest a simple intervention strategy:whenever the
amount of speakers of the minority language drops below some
threshold value, then the status of the minority language or some
othermodel parameters has to be increased. That such a ‘‘dramatic
intervention’’ (Fernando et al., 2010, p. 51) is quite unrealistic, was
already mentioned in Minett and Wang (2008). It can be seen as
a theoretical approximation of a more sophisticated intervention,
which starts to increase the minority language status when the
numbers come close the threshold.

A greater effort to model language planning was undertaken in
Fernando et al. (2010). They consider intergenerational language
transmission as well as horizontal transmission. In contrast to
Wickström (2005) parents do not just choose one or two languages
to raise their children in. Instead, the probability that a child speaks
a language L strongly depends on the amount of L-conversations
it is exposed to. Within the family this amount only depends on
the linguistic repertoires of the parents. Furthermore, Fernando
et al. consider the influence of the community by taking into
account conversations heard in the public sphere and languages
taught at school. This is also reflected in three different kinds
of interventions contemplated there: (1) increasing the status of
the minority language,5 (2) increase the amount of the minority
language heard in public and (3) formal language teaching. In their
simulations Fernando et al. illustrate the effect of different kinds of
governmental interventions.

After 100 years simultaneously the status of the minority
language as well as the amount of that language used in public is
increased and the minority language is taught in formal education
to some monolinguals of the high-status language. In the model
this is realized by increasing three corresponding parameters at
year 100. Citing Fernando et al. (2010, p. 51) when reviewing
Minett and Wang (2008) one may ask: ‘‘How such a dramatic
intervention could be achieved is not explained’’.

In Kandler et al. (2010) the authors fit their basic model
with time-independent parameters (‘‘shift coefficients’’) to data on
language competition between Welsh and English in Wales. For
the period from 1901 to 1971 the model captures the observed
dynamics quite well. Yet, the basic model could not adequately
account for maintenance interventions implemented in the past
40 years, which could be the cause of reduced decline of Welsh.
Therefore, the authors extend their basic model ‘‘by incorporating
a simplified concept of (extended) diglossia’’ (p. 3862). The high-
status language is used in important domains as higher education
or non-local businesses. This yields an incentive for speakers of
the minority language to become bilingual. At the same time,
political interventions might support the low status language in
other domains such as local legislation. This, can create incentives
for monolinguals of the dominant language to become bilingual
and for bilingual parents to transmit both languages to the next
generation. Kandler et al. introduce an additional term in their
model that captures the demand of participation in domainswhere
the low status language is used. This demand is reflected by the
parameter w1. Assuming that w1 doubles after 1971, the extended
model is able to approximate the empirical data. The increase of
w1 is a result of language planning incentives.

5 Unlike most of the models listed above, there is no explicit status parameter
in Fernando et al. (2010). The status of the minority language is reflected by the
parameter that ‘‘measures the effectiveness of hearing language [the minority
language] in motivating its learning (i.e. the receptiveness of the child to [the
minority language])’’ in an AA or AC family (p. 60). This parameter is not to be
understood as an individual trait of the child. Among other things, it represents
‘‘the ‘‘status’’ of [the minority language], where status is used to mean the entire
constellation of societal factors that motivate the learning of a given language’’ (p.
60, emphasis in original). This status related parameter functions as an amplifier for
B-conversation heard by a child.



In the above three examples, language planning policies are
modeled as a change in model parameters. These changes occur
at some single point in time, i.e. at some point in time the value
a parameter (or multiple parameters) jumps to another value.
Depending on the parameter that is changed as well as on the
size of the jump, such a ‘‘dramatic intervention’’ might be rather
unrealistic. In their adoption of the model proposed in Minett
and Wang (2008), Bernard and Martin (2012) also include the
opportunity for policy makers to alter the status of the minority
language. In contrast to the previous approaches, they assume that
the variation of the status at each time step is bounded. Hence, the
size of the jump is limited, which yields a potentiallymore realistic
model for intervention. Setting up a dynamic control model, they
were able to show that when starting in a given domain there
exist adequate intervention strategies such that both monolingual
subpopulations can be preserved.

In this paper we also propose a language competition model
with dynamic intervention. A first difference to themodel analyzed
in Bernard and Martin (2012) is that we build on the general
model formulation presented in Wickström (2005). Secondly, in
our approach the status cannot be regulated directly. Instead,
we assume that the state has a certain budget that can be used
for status planning. To increase or even stabilize the status of a
(minority) language continuous investments into status planning
are necessary. Hence, we assume that whenever the state reduces
its efforts to maintain the minority language beyond a certain
value, then the status of that language decreases. This implies
that without any intervention the status tends to zero in the
long run. The investment strategy is denoted by a process (st)t≥0.
Since the budget is assumed to be finite, we can normalize
the investment such that st ∈ [0, 1]. Thirdly, we propose an
optimal control model. The aim of languages policies is not to
maintain monolingual subpopulations of both languages, but to
maintain both languages in a scenario with large communication
possibilities throughout the society. Hence, the aim is to maximize
the amount of bilingual speakers. Furthermore, investments into
status planning are costly. Therefore, the objective here is to
maximize the bilingual subpopulation at minimal costs.

The dynamic control model proposed below is a three-state
system. The three states are: the fraction of speakers of language A
(denoted by pA), the fraction of speakers of language B (denoted
by pB) and the relative status of language B (denoted by S). The
fraction of bilingual speakers is simply given by pC = 1 − pA −

pB, and the relative status of the majority language A is given
by 1 − S. In Fernando et al. (2010) the authors criticize such an
assumption in the model of Minett and Wang because it implies
‘‘that it is impossible tomake one languagemore attractivewithout
making the other less so’’ (Minett andWang, 2008, p. 50). However,
in a language competition situation, where individuals have to
decide for one language, the other or both, this assumption makes
sense when we think of relative attractiveness instead of absolute
attractiveness. Hence, instead of statements as ‘language A has an
attractiveness value of 3.5’ the model here only allows statements
like ‘language A is three times as attractive as language B’.

The evolution of the system is described by three differential
equations. The status can be affected by state intervention s, i.e. Ṡ =

g(s, S), where g is some function increasing in s. The evolution of
the distribution of speakers depends only on the distribution itself
and on the status S. Hence, the fractions pL, L = A, B, C , can be
influenced by state intervention, but only indirectly through the
controlled status.

2. Model

We consider a (large) population consisting of individuals
equipped with one of three different language repertoires L:
Table 1
Distribution of families for a given distri-
bution of adult speakers.

F φF

AA p2A + pApB
AB 0
AC 2pApC
BB p2B + pApB
BC 2pBpC
CC p2C

monolingual speakers of the dominant language A, monolingual
speakers of the minority language B and bilinguals speakers C .
The relative sizes (fractions of the population) of the respective
language repertoire groups are denoted by pA, pB and pC . The
fractions add up to 1, hence pC = 1 − pA − pB. The variable S
represents the relative status of the minority language B in the
society.

2.1. Family formation

In every generation individuals form families. There are six
family types F : AA (two A monolinguals), AB, AC , BB, BC and
CC . Family formation is assumed to be random but restricted by
the condition that both adults should share a common language,
i.e. they should be able to communicate with each other. Hence,
couples with an A-monoglot and a B-monoglot are excluded. Given
any distribution of speakers pA, pB, pC , the expected distribution of
family types is given in Table 1, where φF denotes the fraction of
F-type families.6

2.2. Family behavior

Families bring up their children either as monolinguals in A
or B, or as bilinguals. The fraction of F-type families bringing up
children with language repertoire L is denoted by αL(F; ·) ∈ [0, 1].
Naturally, the α’s add up to one: for every family type F
L

αL(F; ·) = 1.

The α-functions are one of the main ingredients of the model
proposed here. Parents choose a language repertoire depending
on their own languages, on their emotional attachment to those
languages as well as on the communication values of all the
languages at hand. Therefore, the fraction of families of type F
raising their children as L’s varies with the current distribution of
speakers in the society as well as with the statuses of languages
A and B. Hence, αL(F; ·) = αL(F; pA, pB, S). The dependence on
the variables pL captures the practical advantage of belonging to
a certain language group, since they measure the frequency with
which an individual encounters another individual in group A, B
and C , respectively, and hence measure howmany people one can
communicate with. Following the individual utility maximization
approach developed in Wickström (2005), we assume that αA is
non-decreasing in pA and pC , and non-increasing in pB, and vice
versa for αB:

∂αA(F; pA, pB, S)
∂pA

,
∂αB(F; pA, pB, S)

∂pB
≥ 0

∂αC (F; pA, pB, S)
∂pA

,
∂αC (F; pA, pB, S)

∂pB
≥ 0

∂αA(F; pA, pB, S)
∂pB

,
∂αB(F; pA, pB, S)

∂pA
≤ 0.

6 See Appendix for a more detailed derivation of the expected distribution φF .



This reflects the first aspect of language mentioned in the
introduction: language as a tool for communication. The second
aspect – language as a carrier for cultural identity – is reflected in
the dependence of the α′s on the family type F and the relative
status of the minority language S. It is hypothesized that the
emotional attachment in the family to a certain language, and
hence the frequency of its transmission to the next generation,
depends on its strength in the family. The stronger the position of
a language L in the family, the higher is the fraction αL:

1 ≥ αA(AA; ·) ≥ αA(AC; ·) ≥ αA(CC; ·) ≥ αA(BC; ·)

≥ αA(BB; ·) ≥ 0
0 ≤ αB(AA; ·) ≤ αB(AC; ·) ≤ αB(CC; ·) ≤ αB(BC; ·)

≤ αB(BB; ·) ≤ 1.

It is furthermore assumed that both parents shall be able to
communicate with their children, cf. Fernando et al. (2010). Hence,

αA(BC; ·) = αA(BB; ·) = 0
αB(AC; ·) = αB(AA; ·) = 0.

The average emotional attachment to a language L also depends on
the general prestige or cultural status of the language in the society.
The higher the status, the higher is the willingness of its speakers
to pass their language to the next generation.We therefore assume
that αA is non-increasing in S, while αB is non-decreasing in S:

∂αA(F; pA, pB, S)
∂S

≤ 0

∂αB(F; pA, pB, S)
∂S

≥ 0.

From the assumptions made above two properties of the α
functions can be concluded. Since αB(AA) αA(BB) are equal to zero,
we get
∂αA(AA; pA, pB, S)

∂pA
=

∂αB(BB; pA, pB, S)
∂pB

= 0.

Furthermore, αB(AC; ·) = αA(BC; ·) = 0 yield
∂αA(AC; pA, pB, S)

∂pA
=

∂αB(BC; pA, pB, S)
∂pB

= 0.

2.3. Dynamics

While in Abrams and Strogatz (2003) a constant population size
is assumed, other researches explicitly model logistic population
growth, see e.g. Pinasco and Romanelli (2006) or Kandler et al.
(2010). If growth rates and carrying capacities vary between the
language repertoire groups, then the population dynamics can
have a major impact on possible steady states. Yet, if growth is
homogeneous throughout all the groups and a common carrying
capacity is assumed, then population dynamics do not affect the
steady states, cf. Heinsalu et al. (2014). In this paperwe also assume
homogeneous growth at rate θ and a common carrying capacity K .
Since the number of children born in a family and thus the overall
population dynamics are independent of the status,7 considering
status planning does not violate the homogeneity assumption.
Therefore, themodel proposedhere ‘‘could describe the interaction
between linguistic groups that have already reached a state in
which reproduction and access to resources takes place in similar
ways’’ (Heinsalu et al., 2014, p. 5), and cannot account for situations
in which one language repertoire group has much less access to
resources than the other language repertoire groups.

7 The relative status S only influences parents decisions on the language
repertoires of their children.
Let N denote the size of the population, and NL, L = A, B, C ,
denote the sizes of the language repertoire groups. The dynamics of
the overall population size is described by the logistic differential
equation

Ṅ = θN

1 −

N
K


= θN


L


F

αL(F; ·)φF −
1
K
NL


.

The size of language repertoire group L changes according to

ṄL = θN

F

αL(F; ·)φF − θ
N
K
NL.

Therefore, the relative size of language repertoire group L, pL =

NL/N , evolves according to

ṗL = θ


F

αL(F; ·)φF − pL


.

For languages A and B this reads as

ṗA
θ

= (p2A + pApB)αA(AA) + 2pApCαA(AC)

+ p2CαA(CC) − pA (2.1)
ṗB
θ

= (p2B + pApB)αB(BB) + 2pBpCαB(BC)

+ p2CαB(CC) − pB, (2.2)

where αL(F) = αL(F; pA, pB, S).

2.3.1. The status variable
The status of the minority language B is expressed in the

variable S, 0 ≤ S ≤ 1. Investments in status planning s can increase
the status of the minority language:

Ṡ = f (S, s) − µS. (2.3)

It is assumed that the function f is non-increasing in S and non-
decreasing in s. Furthermore, for s = 0 the function f should be
zero. This implies, that without any state intervention the relative
status of the minority language B converges to zero at rate µ.

2.4. The objective function

The aim of state intervention is a large bilingual subpopulation.
At the same time, state interventions to increase the status of
the minority language are costly. Hence, the decision maker is
looking for an investment policy (s(t))t≥0, st ∈ [0, 1], that yields
a high level of individual bilingualism (benefit) at low costs. By
w(pA(t), pB(t), s(t)) we denote the value of the system at time t ,
i.e. benefits minus costs at time t . We require w to be increasing in
pC = 1− pA − pB, non-increasing in pA and pB, and decreasing in s.
The total discounted value is given by

∞

0
e−rtw(pA(t), pB(t), s(t))dt,

where r ∈ (0, 1) denotes the discount rate. The problem of finding
the best investment strategy for languagemaintenance can nowbe
formulated as a maximization problem:

max
(st )t≥0


∞

0
e−rtw(pA(t), pB(t), s(t))dt.

Note, that S(t) and therefore pA(t) and pB(t) depend on the size of
s prior to time t , cf. (2.3), (2.1) and (2.2).

3. Specific functional forms

In this section we provide specifications of the α-functions, the
status dynamics and the objective function that satisfy the general
assumptions made above.



For parameters 0 ≤ η < β < δ and ε + γ < ζ < 1 let

αA(AA; pA, pB, S) = 1 − ηSpB
αA(AC; pA, pB, S) = max{0, ζ (1 − S) − βSpB}
αA(CC; pA, pB, S) = max{0, ε(1 − S) + γ (1 − S)pA − δSpB}

and

αB(BB; pA, pB, S) = 1 − η(1 − S)pA
αB(BC; pA, pB, S) = max{0, ζ S − β(1 − S)pA}
αB(CC; pA, pB, S) = max{0, εS + γ SpB − δ(1 − S)pA}.

These constructions imply, that given a sufficiently high fraction
of A speakers in the society and a sufficiently low status of the
minority language B, bilingual or even mixed couples (BC) will not
raise their children as monolinguals in B, since in this scenario
neither B is a very useful communication tool in this society nor can
the prestige of this language really compensate the communication
disadvantage.

Throughout the paper we will assume η to be zero. In this case
the system dynamics simplify to

ṗA
θ

= pC [2pAαA(AC; pA, pB, S) + pCαA(CC; pA, pB, S) − pA] (3.4)

ṗB
θ

= pC [2pBαB(BC; pA, pB, S) + pCαB(CC; pA, pB, S) − pB] . (3.5)

3.1. Dynamics for fixed status

For the moment let S be fixed. The essential dynamics of pA and
pB can each be described by two parameters, cf. Wickström (2005).
These parameters are introduced in the following. Let p∆

B (S) denote
the fraction of B speakers where pA = 0 and ṗA = 0. Hence,

αA(CC; pA, pB, S) = 0 ⇒ ε(1 − S) − δSpB = 0

⇔ p∆
B (S) =

ε

δ

1 − S
S

.

For p∆
A respectively we get

p∆
A (S) =

ε

δ

S
1 − S

.

Next we look for p∗

A and p∗

B . p
∗

A is the fraction when ṗA = 0 given
pB = 0. Hence, p∗

A is a solution to

0 = 2pAαA(AC; pA, pB, S) + (1 − pA)αA(CC; pA, pB, S) − pA,

or, with the above specifications, p∗

A is the unique positive solution
to the quadratic equation

0 = γ p2A −


2ζ + γ − ε −

1
1 − S


pA − ε. (3.6)

Note, p∗

A < 1 iff S > 1/2ζ . From this, we easily conclude that p∗

A is
increasing in ζ , ε and γ , and decreaseswith an increase of S. On the
other hand, p∆

A increases in ε and S and decreases with an increase
in γ . It is unaffected by a change of ζ .

From the relations between p∆
A , p

∆
B and p∗

A, p
∗

B we can identify
possible bilingual equilibria for the fixed status S:

Lemma 3.1. Let η = 0.

(a) If p∆
A ≤ p∗

A < 1 there exists a stable equilibriumwith 0 < pA < 1
and pB = 0; the fraction of A-speakers equals p∗

A
(b) If p∆

B ≤ p∗

B < 1 there exists a stable equilibriumwith 0 < pB < 1
and pA = 0; the fraction of B-speakers equals p∗

B
(c) If 1 ≥ p∆

A > p∗

A and 1 ≥ p∆
B > p∗

B , we have a stable
equilibrium with bilinguals and monolinguals in both languages
(pA, pB, pC > 0).
Table 2
Possible stable equilibria for the fixed status problem for different values of S. The
first line contains intervals for S, while the second one shows the corresponding
potential stable equilibria. ‘‘A, AB’’ means that a pure A-monolingual steady state as
well as a steady state with monolingual speakers of A and B is possible.

S ∈ [0, S] (S, S̃ ∧ 1 − S̃) (S ∨ 1 − S̃, S̃] (S∨S̃, 1−S̃)

Steady state A, AB AC AC , BC ABC

Lemma 3.2. Let η = 0. For monolingual stable equilibria the follow-
ing statements hold true
(a) pA = 1 is a stable equilibrium if and only if S ≤ 1 − 1/2ζ .
(b) pB = 1 is no stable equilibrium
(c) pA, pB ∈ (0, 1) with pA + pB = 1 is stable iff

pAαA(AC; pA, pB, S) + pBαB(BC; pA, pB, S) ≥
1
2
. (3.7)

A necessary condition for this last inequality is S ≤ 1 − 1/2ζ .
Lemma3.1 canbe establishedusing a phase diagram, cf.Wickström
(2005). The proof of Lemma 3.2 is found in the Appendix.

3.2. Variable status and status control

Nowwe specify the dynamics of theminority language status S,
which is increasing as a result of investments into language policies
and decreasing due to a general negative trend. We assume the
following functional form:

Ṡ = f (S, s) − µS = ν(1 − 2S)
√
s − µS, (3.8)

where ν > 0 is a model parameter correlated to the effectiveness
of intervention. Here two assumptions are made: (a) for a low
status language the necessary effort to increase its status is low,
while for a high status language it takes more effort. (b) Language
B stays the minority language. This assumption is expressed in the
term (1 − 2S). The status cannot exceed 1/2, while the (1 − S),
which can be interpreted as the status of A, does not fall below 1/2.
A can be thought as the first official language.

The control variable s is bounded (s ≤ 1). Thus, any steady state
status S (Ṡ = 0) has an upper bound:

S ≤
ν

2ν + µ
.

Since p∗

A is decreasing in S, while p∆
A increases in S, Lemma 3.1(a)

yields a second upper bound for S, which is relevant for equilib-
ria with 0 < pA < 1 and pB = 0. A third one results from
Lemma 3.1(b), see below. A minimal value for this kind of equilib-
rium is given by p∗

A(S) < 1,where p∗

A is the unique positive solution
to (3.6).

We therefore introduce the following status thresholds

S :=
ν

2ν + µ

S̃ : p∗

A(S̃) = p∆
A (S̃)

S := 1 −
1
2ζ

.

Note, that due to symmetry it holds p∗

B(1 − S̃) = p∆
B (1 −

S̃). Table 2 shows possible stable equilibria for the fixed status
problem corresponding to these threshold values. Fig. 1 illustrates
some of the cases listed in Table 2.

To find optimal state intervention strategies we need to
consider the derivatives of the function f (S, s) = ν(1 − 2S)

√
s:

∂ f
∂s

(S, s) =
ν

2
1 − 2S

√
s

, (3.9)

∂ f
∂S

(S, s) = −2ν
√
s. (3.10)



(a) S = 0.3 < 0.375 = S. (b) S = 0.3 < 0.375 = S.

(c) S = 0.4 < 0.49 ≈ min{S̃, 1 − S̃}. (d) S = 0.4 < 0.49 ≈ min{S̃, 1 − S̃}.

(e) S = S ≈ 0.42. (f) S = S ≈ 0.42.

Fig. 1. Panels (a), (c) and (e) show phase diagrams for fixed S for different values of S. Panels (b), (d) and (f) show trajectories for fixed S for different values of S. For the
trajectories the initial distribution is pA = 0.6 and pB = 0.2. Parameters are as in Example 5.1 in Section 5.
3.3. Objective

Departing at the initial state pA(0), pB(0) and S(0) the aim of the
optimization problem is to find the best investment policy (s(t))t≥0
such that, r ∈ (0, 1), k > 0, ξ ∈ [0, 1],

∞

0
e−rt k · pC (t) − [pB(t) + pC (t)]ξ s(t)


dt (3.11)

is maximized, while the system is developing according to (3.4),
(3.5) and (3.8). For ξ = 0 the costs for the state intervention do not
depend on the numbers of speakers of language B. Here one can
think of adding language B to (street-)signs. For ξ = 1 the costs
linearly increase with the number of speakers—one could think of
bilingual education in schools.
4. Optimal control and optimal steady states

Substituting pB + pC by 1 − pA in the objective function, the
Hamiltonian can be expressed as

H(pA, pB, S, s) = k · pC − (1 − pA)ξ s + λAṗA
+ λBṗB + λS (f (S, s) − µS) , (4.12)

where λA, λB and λS are the costate variables measuring the
marginal value of the corresponding state variables pA, pB and S,
respectively.

We assumed that the control variable is bounded, i.e. that the
budget for language policies fostering bilingualism is limited. This
budget constraint is formalized by the inequality s ≤ 1. To include
the constraint in the formal model we define the Lagrangian
L := H + ω(1 − s), where ω is the Lagrange multiplier. For



the identification of the optimal intervention at a given state we
consider the derivative of Lwith respect to the control variable s:

Ls = −(1 − pA)ξ + λS
∂ f (S, s)

∂s
− ω. (4.13)

To identify optimal intervention, we are looking for s and ω such
that Ls = 0 and ω(1 − s) = 0. We have

Ls = 0 ⇔ (1 − pA)ξ + ω = λS ·
∂ f (S, s)

∂s  
≥0

⇒ λS ≥ 0.

Note, if pA < 1 then we even have λS > 0. For the explicit form of
the function f defined in (3.8) we get

Ls = 0 ⇔ (1 − pA)ξ + ω = λS ·
ν

2
1 − 2S
√
s∗

⇔ s∗ =


λS

ν

2
1 − 2S

(1 − pA)ξ + ω

2

. (4.14)

The second derivative of L with respect to the control variable
s is non-positive if λS > 0 in which case the Legendre Clebsch
condition is satisfied. Whenever pA = 1, in which case λS = 0
could be possible, s = 0 is obviously optimal. Applying the optimal
control we have

Ṡ = f (S, s∗) − µS = λS
ν2

2
(1 − 2S)2

(1 − pA)ξ + ω
− µS. (4.15)

If the constraint is inactive, i.e. s < 1, then ω = 0. If, in contrast,
the constraint is active (s = 1), then

ω = λS
ν

2
(1 − 2S) − (1 − pA)ξ ≥ 0. (4.16)

4.1. Stationary points

To state the co-state equations we first introduce some
functions. For L = A, B set
gL(pA, pB, S) := 2pLαL(LC; pA, pB, S) + pCαL(CC; pA, pB, S) − pL,
which equals ṗL/(θpC ) whenever pC > 0. Then,
H = pC (k + θλAgA + θλBgB) − (1 − pA)ξ s + λS(f (S, s) − µS).
Using this notation we have

HpA = −(k + θλAgA + θλBgB) + θλApC
∂gA
∂pA

+ θλBpC
∂gB
∂pA

+
ξ

(1 − pA)1−ξ
s, (4.17)

HpB = −(k + θλAgA + θλBgB) + θλApC
∂gA
∂pB

+ θλBpC
∂gB
∂pB

, (4.18)

HS = θpC


λA

∂gA
∂S

+ λB
∂gB
∂S


+ λS


∂ f (S, s)

∂S
− µ


. (4.19)

The co-state equations are then given by

λ̇A = rλA − HpA ,

λ̇B = rλB − HpB ,

λ̇S = rλS − HS .

To find inner stationary points we try to identify solutions
(p̂A, p̂B, Ŝ, λ̂A, λ̂B, λ̂S) to
0 = ṗA = ṗB = Ṡ = λ̇A = λ̇B = λ̇S .

For p̂A and p̂B to be stationary we need either p̂C = 0 or
gA(p̂A, p̂B, Ŝ) = gB(p̂A, p̂B, Ŝ) = 0.

Note, any steady state status 0 < Ŝ < S corresponds to a steady
state control variable 0 < ŝ∗ < 1 and hence to some ω̂ = 0. In this
case, the stationarity of the status (Ṡ(Ŝ, λ̂S) = 0) yields an explicit
relation between Ŝ and λ̂S , cf. (4.15):

λ̂S =
2µ
ν2

Ŝ

(1 − 2Ŝ)2
(1 − p̂A)ξ . (4.20)

Plugging this into (4.14) we get for the stationary optimal
intervention

ŝ∗ =


µ

ν

Ŝ

1 − 2Ŝ

2

< 1. (4.21)

If Ŝ = S, then ŝ has to be equal to one and thus λ̂S ≥ 2 2ν+µ

νµ
(1 −

p∗

A(S))
ξ has to hold true, cf. (4.16).

Using the explicit expression for the function f introduced in
Section 3, the equation λ̇S = 0 yields

0 = −θ p̂C


λ̂A

∂gA
∂S

+ λ̂B
∂gB
∂S


+ λ̂S


r + µ + 2ν


λ̂S ·

ν

2
1 − 2Ŝ

(1 − p̂A)ξ


∧ 1


. (4.22)

4.1.1. Monolingual stationary points
First we want to consider stationary points with p̂C = 0.

Obviously, if pC = 0, then the linguistic composition wont
change anymore, since families of type AB are impossible, while no
bilinguals, which function as a kind of language transmitters, are
part of the population. In the steady state all families are of types
AA and BB and children of such families are raised monolingual
in the respective language. Hence, both monolingual language
groups reproduce themselves independent of the statuses of both
languages. Thus, the state does not invest any money to support
the status minority language, which would produce costs without
having any positive effect, i.e. Ŝ = ŝ∗ = 0.

4.1.2. Bilingual stationary points
Nowwewant to consider stationary pointswith a bilingual sub-

population, i.e. pC > 0. Using the notation introduced above this
yields that whenever p̂L > 0 the stationarity implies gL(p̂, Ŝ) = 0.

4.1.3. Bilingual stationary points with pB = 0
The most interesting case is when monolingualism in the

minority language B vanishes and only monolinguals in A and
bilinguals remain. Such a state is desirable, since all society
members are able to communicatewith each other, while speakers
of B can still preserve their cultural identity. If pB = 0 we need
ṗB ≤ 0. This is equivalent to p̂A ≥ p̂∆

A (S).
Let

S < S ≤ min{S, S̃}

and pA = p∗

A(S). The co-state equation λ̇A = rλA − HpA = 0 is
independent of λB, since gB = 0 and ∂gB/∂pA = 0, see A.2. Hence,
we can deriveλA(S) = λA(pA, S). Given thisλA we can choose some
λB such that λ̇B = 0. In A.2 it is also shown that ∂gB/∂S = 0.

To identify optimal steady states we have to distinguish two
possibilities. First we can check if there is a steady state at S. To do
so, it has to be investigated if there exists a λ̂S > 2 2ν+µ

νµ
(1−p∗

A(S))
ξ

which solves

0 = λ̇S(λ̂S) = λ̇S(S, pA(S), λA(S), λ̂S).

The second case covers S < S < S. Here, let λS(S) be defined
by (4.20). In this case steady states can be found by identifying
statuses S which solve

0 = λ̇S(S) = λ̇S(S, pA(S), λA(S), λS(S)).



Depending on the parameter constellation and especially depend-
ing on k, ν and µ such a solution exists. If k is too small, then no
such solution exists, that means it is not profitable to maintain the
minority language B.

Lemma 4.1. For k sufficiently large there exists at least one solution
Ŝ∗

∈ (S,min{S, S̃}] such that

0 = λ̇S(Ŝ∗) = λ̇S(Ŝ∗, pA(Ŝ∗), λA(Ŝ∗), λS),

where λS = λS(Ŝ∗) if Ŝ∗ < S, and λS > 2 2ν+µ

νµ
(1 − p∗

A(S))
ξ if

Ŝ∗
= S.

For a proof see Appendix.

4.1.4. Bilingual stationary points with pB > 0
For an optimal steady state with pA, pB, pC > 0 we need

S ∨ S̃ < Ŝ ≤ (1 − S̃) ∧ S.

This is only possible if S̃ < S < 1/2, which does not hold true for
all parameter constellations, cf. Example 5.1.

For fix S we need the following for any steady state:
αA(AC), αB(BC), αB(CC) > 0. The last inequality is due to S < 1/2
and ζ < 1. If αA(CC) = 0, then ζ (1 − S) > 1/2 has to hold true,
else αA(CC) > 0.

As before, for suitable S (here max{S, S̃} < S < S), we can find
pA(S) and pB(S) such that ṗA = ṗB = Ṡ = 0. For some parameter
constellations there can be more than one stable solution pA(S)
and pB(S) such that ṗA = ṗB = 0. Furthermore we get a unique
λS(S). The co-state equations yield a linear system in λA, λB with 3
equations and coefficients depending on S. To identify the optimal
status, one has to check if this linear systemhas a solution for some
suitable S. This also holds true at the left boundary. At the right
boundary one has to check if the linear system in λA, λB and λS has
a solution with a sufficiently large λS , see above.

5. Numerical calculations

In this section we numerically investigate the linguistic
behavior of the population under the optimal policy. We show the
existence of different stable and optimal steady states. Moreover,
we illustrate the dependence of the selected steady state on the
initial distribution of speakers aswell as on howmuch bilingualism
is valued with respect to expenditures by the decision maker
(parameter k). To analyze the evolution towards the steady states
we plot exemplary trajectories.

Two examples are considered. For both of them we set η =

0. In Example 5.1 we choose µ, the rate of decline of the
minority language status S, to be 0.2, which is relatively high.
In contrast, Example 5.2 depicts a case where the status of the
minority language declines rather slowly over time (µ = 0.01).
Furthermore, the parameter ζ , which measures the aggregated
weight that is put on the status in the decision of LC families,
L = A, B, to socialize their children as monolinguals in L, is slightly
higher in Example 5.1. In both example we chose the discount rate
r to be 0.5.

Example 5.1. β = 0.4, δ = 0.7; γ = 0.1, ε = 0.4, ζ = 0.8;
ν = 0.5, µ = 0.2, θ = 1 and ξ = 0.

Example 5.2. β = 0.4, δ = 0.7; γ = 0.1, ε = 0.4, ζ = 0.7;
ν = 0.5, µ = 0.01, θ = 1 and ξ = 0.

First we calculate the S- thresholds, cf. Section 3.2. In Exam-
ple 5.1 we have S = 0.375, S = 0.417 and S̃ = 0.492, while in
Table 3
This table contains stable bilingual steady states – if such exist – for Examples 5.1
and 5.2 for different values of k. The steady state values of the status Ŝ, the optimal
control ŝ∗ , the fraction of speakers p̂A and p̂B as well as the steady state objective
kp̂C − ŝ∗ are listed. Here r = 0.5 and ξ = 0.

k ξ Ŝ ŝ∗ p̂A p̂B kp̂C − ŝ∗

Example 5.1

60 0 – – – – –

75 0 0.41 0.74 0.85 0 10.3
1 S ≈ 4.2 1 0.81 0 13.4

90 0 S ≈ 4.2 1 0.81 0 16.3

Example 5.2 20 0 0.47 0.03 0.44 0.03 10.6

Example 5.2, S = 0.286, S = 0.495 and S̃ = 0.463. According
to these numbers and the statements made in Section 3.2, stable
equilibria with pA, pC > 0 and pB = 0 are possible for both exam-
ples. In Example 5.2 furthermore equilibria with pA, pC > 0 and
pB > 0 are possible, since S̃ < S. This is not the case for Exam-
ple 5.1, since there S < S̃. The actual stable bilingual equilibria are
displayed in Table 3. For Example 5.1 we investigate the influence
of different values of k, namely k = 60, k = 75 and k = 90. For
Example 5.2 we concentrate on the case of k = 20. For any pa-
rameter constellation there also is a manifold of steady states at
(p̂A, p̂B, Ŝ) = (p̂A, 1− p̂A, 0), where p̂A can take any value between
zero and one. In these steady states it is optimal to have ŝ = 0.
Note, however, that not every point on this manifold is a candidate
for the optimal long run solution due to its stability properties, cf.
Lemma 3.2. Next, we analyze the two examples in greater detail.
Example 5.1, k = 60

If k is small the decision maker does not have a particularly
high incentive to support the status of the minority language B in
the long run. As can be seen in the first row of Table 3 there is no
bilingual steady. The following happens. Let us consider a situation
where the fraction of A speakers, pA, is relatively high, while pB and
pC and the status variable S are small. Because of the dominance
of A speakers, most families are of type AA. Thus, pA increases.
Initially pC decreases due to the low status of B and the low chances
of A speakers of meeting a bilingual partner. This development is
challenged by the decision maker who invests much into raising
the status of B. Under such a policy the incentive to raise their
children bilingual increases for AC and CC couples. This yields an
increase in the number of bilinguals. An other effect of is that
BC couples have a stronger incentive to raise their children as B-
monoglots. However, since the fraction of B and C speakers is small,
the policy does not have a strong effect on the overall development
of the language and over all pB decreases even further. As a result,
it soon does not pay off anymore to invest into the status of the
language as these measures affect less and less people. Thus, the
status of B decreases again. Consequently, the incentive to raise
children bilingual and therefore the fraction of bilinguals decreases
as well. In the long-run the majority of the population only speaks
A and bilingual speakers disappear completely in the long run. This
behavior is illustrated in Figs. 2 and 3.
Example 5.1, k = 75, ξ = 0

Table 3 shows that for k = 75 there exists a steady state
with 15% bilinguals and no monolingual speakers of the minority
language B. To obtain this fraction of bilingual speakers in the long
run, 75% of the budget has to be used. If this bilingual steady is
reached or not depends on the initial state values. For the initial
states considered in Figs. 4 and 5 the system converges to that
steady states. If the initial pB, pC and S would be even smaller
than in Fig. 4, the system is likely to converge to a steady state
with almost only A-monolingual speakers, few B-monoglots and
no bilinguals.

For the base case (pA = 0.85, pB = 0.05, S = 0.1), see Fig. 4 and
the left panel of Fig. 6, the fraction of the bilingual population first



Fig. 2. Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.1, k = 60).
Fig. 3. α-functions for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1
(Example 5.1, k = 60).

decreases, since the status of language B is low, as are the fractions
of B and C speakers, so themajority of couples consist ofA speakers.
Due to the dominance of AA couples and the high likelihood that
AC and CC couples raise their children as A-monoglots, pA first
increases. Initially one would invest as much as possible into the
status to increase it. As a first result of this policy BC couples
get a stronger incentive to raise their children as B-monoglots.
Furthermore, AC and CC couples become less likely to raise their
children just as speakers of language A and instead are more likely
to raise the children bilingual than before. Consequently, pA now
decreases while pC increases see Fig. 4. Hence, the negative term
in αB(BC) decreases and evenmore BC families raise their children
as B’s. This is a problem as long as pB, which is continuously
decreasing, is above some threshold. To avoid this effect, the
increase of S is slowed down for a while, until pB is small enough
and then increased again to obtain the steady state status.

If, in contrast to the base case, the initial status is high, see
Fig. 5 and the right panel of Fig. 6, then initially the state does not
have to invest as much into increasing the status of the minority
language. Due to the high status of B, many AC couples will raise
their kids bilingual. As a result, at the beginning pA decreases while
pC increases. Furthermore, the fraction of language B speakers is so
low that BB and BC couples are rather unlikely and pB decreases.
To further support the growth of pC it is optimal to increase s for
some time. Due to the smaller fraction of B speakers, AA and AC
couples are more likely than BC or CC couples, thus, pA recovers
after some time and even grows. At some point of time the status
S and the fraction of bilingual speakers pC are high enough while
pB is very low, such that s can be lowered again until it reaches its
steady state.
Example 5.1, k = 75, ξ = 1

For ξ = 1 the costs for state intervention increase with the
number of speakers of B, i.e. B-monoglots as well as bilinguals.
Thus, the higher pA, the lower are the costs for state intervention.
In Fig. 7 we can see that for the base case, the system behaves
quite similar to the case of ξ = 0. The major difference is that
state intervention is not just maximal in the beginning, but the
entire budget is used over the entire time horizon. Due to the
large amount of A-monolinguals the intervention is much cheaper
compared to the case where ξ = 0 (more than 80% cheaper).
Therefore, in the long run the status and pC are higher while the
pA is smaller, cf. Table 3.
Example 5.1, k = 90

If k is large, then it is optimal to approach a steady state where
the state invests the entire budget to reach the maximal possible
status for minority language B, see Table 3. This yields a maximal
amount of bilingual speakers while no B-monolinguals remain
within the population. For the base case, see Fig. 8, initially the
state spends as much as possible for improving the status of B.
For similar reasons as before, pA first increases while pB and pC
first decrease. This changes after some time. Once pB has become
small enough, the state can afford to decrease efforts. However, to
ensure a growth in the number of bilingual speakers, it is necessary
to increase expenditures after some time again. This is the main
difference to the casewith a low k; where onewould first decrease,
then increase, and then decrease the expenditures s. i.e. the later
increase is apparently necessary to reach a steady state with a
proper bilingual population.
Example 5.2, k = 20

Table 3 shows that in the bilingual steady state for the
parameter constellation considered in Example 5.2 all three
linguistic repertoires remain intact in the long run. This is themajor
difference to Example 5.1 and is mainly due to the much lower
value of µ (µ = 0.2 in Example 5.1 and µ = 0.01 in Example 5.2).
Here with the low µ it is much less costly to keep the status at
a high level. The development of the population groups is similar
to before, however, pB only decreases for a certain time, then the
status of language B is so high that even CC couples have a small
incentive to teach their children only language B. Due to the small



Fig. 4. Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.1, k = 75, ξ = 0).
Fig. 5. Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.4 (Example 5.1, k = 75, ξ = 0).
Fig. 6. α-functions. In the both panels pA(0) = 0.85 and pB(0) = 0.05. In the left panel S(0) = 0.1, while in the right one S(0) = 0.4 (Example 5.1, k = 75, ξ = 0).
depreciation of S it is not necessary to spend much for keeping the
status high, so one would only invest much into the status in the
beginning to get it to a high level and then decrease control efforts
over time. Example 5.2 with k = 20 is visualized in Fig. 9. Note, in
the long run only 3% of the budget is used to guaranty that more
than half of the population is bilingual.
6. Conclusions

The state aims at ensuring wide communication possibilities,
while recognizing and supporting – if this is not too costly – mi-
nority language rights. This trade-off between a commonly spo-
ken language and the preservation of a minority language is



Fig. 7. Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.4 (Example 5.1, k = 75, ξ = 1).
Fig. 8. Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.1, k = 90).
Fig. 9. Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.2, k = 20).
approached through bilingualism. To investigate how language
policies can be used to preserve a minority language in a bilin-
gual subpopulation we developed an abstract language dynamics
model. The point of departure is individual utility maximization,
while here only intergenerational language transmission is
considered. Families decide to bring up their children either as
monolinguals in the majority or the minority language, or as bilin-
guals. This decision is based on how they value the communi-
cational value of each language and their emotional attachment
to the languages at hand. Through a continuous investment into



language policies the state can increase the status of the minority
language and thereby foster bilingual parenting in families with
one or two bilingual parents. It is assumed that the state wants to
maximize the number of bilingual speakers at minimal costs.

In Wickström (2005) it was already proven that for a constant
status and proper parameter constellations stable bilingual steady
states are possible. Here we could furthermore show that such
bilingual steady states can evenbe optimalwhen costs for language
policies are taken into account. It was illustrated that for some
cases there are steady states only with monolingual speakers of
the majority language and bilinguals but without anymonolingual
speakers of the minority language. In such a state all individuals
within the population can – in principle – communicate with each
other while the minority can preserve its language. For other cases
we could see that small subpopulation with monolingual speakers
of the minority language survives in the long run optimal state.
As one would expect, bilingual steady states are only optimal, if
bilingualism is valued high enough with respect to expenditures.

Whether or not a bilingual steady state is not only possible
but really targeted by the decision maker, depends on the initial
distribution of speakers as well as the initial status of the minority
language. If both the status and number of speakers of theminority
language are too low, then it is not worthwhile to invest in
language maintenance in the long run, which results in a purely
monolingual population. In most of the examples considered in
the numerical analysis, the initial values were high enough and it
was illustrated how expenditures change over time to achieve an
optimal bilingual steady state in the long run.

For future research the current model will be extended. To get
closer to the real-world complexity of language acquisition and
transmission within a large population, we will add to the model
language learning in formal education as well as adult language
learning. Furthermore, language policies will be investigated in
greater detail. We also intend to adjust the model to cases of new
minorities, that means minorities which are based on temporary
or permanent migration.
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Appendix

A.1. Family type distribution

Consider a population of size 2N , where N is large. Suppose
that the population consists of N female and N male individuals.
Let NA denote the number of female A-monolinguals, NB the
number of female B-monolinguals and NC the number of female
bilinguals. We assume that these numbers are the same for the
male population. The distribution of speakers is given by pA =

NA/N , pB = NB/N and pC = NC/N .
Family formation can be conceptualized as a repeated random

procedure of choosing pairs. Let us start with one randomly chosen
pair consisting of a female X and a male Y . The probability that
X = L1 and that Y = L2, L1, L2 ∈ {A, B, C}, is given by

P[X = L1, Y = L2] = P[X = L1]P[Y = L2] = pL1pL2 .

Note that a family type L1L2, L1 ≠ L2, is obtained either by X =

L1, Y = L2 or by X = L2, Y = L1 (for the family type we do not take
the gender of the parents into account). Hence, the probability of
obtaining a pair of type L1L2 is given by

P[L1L2] =


p2L1 : L1 = L2

2pL1pL2 : L1 ≠ L2.

Now, all N pairs are chosen randomly after one another. The
total expected number of L1L2-type pairs equals N · P[L1L2] and
hence the expected fraction of L1L2-type pairs is P[L1L2]. After
this first step we have N pairs with 2NpApB of them being of
type AB. Recall, we assume that parents shall be able to properly
communicate with each other, and therefore we exclude AB
families. Splitting these AB pairs again and repeating the random
selection we obtain new pairs of types AA, BB and AB. This
procedure is repeated until only AA and BB pairs are left. This way,
half of the 2NpApB pairs of type AB will be transformed into AA
pairs, while the other half will form BB pairs. As a result, we obtain
the numbers presented in Table 1. Note, due to the law of large
numbers (N is assumed to be large), the realized number of L1L2-
type of pairs can be approximated by the expected number.

A.2. Partial derivatives of gA and gB when pB = 0

Given the definition of gA and gB, their partial derivatives are
given by

∂gA
∂pA

= (1 − S) [2ζ − (ε + γ pA) + (1 − pA)γ ] − 1

∂gB
∂pA

= −αB(CC) − δ(1 − S)(1 − pA)1{αB(CC)>0}

∂gA
∂pB

= − [S(2βpA + δpC ) + (1 − S)(ε + γ pA)]

∂gB
∂pB

= 2αB(BC) − αB(CC) + γ S(1 − pA)1{αB(CC)>0} − 1

∂gA
∂S

= −2ζpA − (ε + γ pA)(1 − pA)

∂gB
∂S

= (1 − pA)(ε + δpA)1{αB(CC>0)}.

Note, if pA ≥ p∆
A , then αB(CC) = 0 and hence ∂gB/∂pA = ∂gB/∂S

= 0.

A.3. Proof of Lemma 3.2

Since η = 0, every constellation with pA + pB = 1, which
implies pC = 0, is a steady state (ṗA = ṗB = 0). In the following
we investigate their stability. Let fLL denote the matrix

fLL =


∂ ṗA
∂pA

∂ ṗA
∂pB

∂ ṗB
∂pA

∂ ṗB
∂pB


and define a := pA(1 − 2αA(AC)) and b := pB(1 − 2αB(BC)). For
pC = 0 the matrix fLL equals

a a
b b


and has eigenvalues λ1 = 0

and λ2 = a + b. If pA = 1 and hence pB = 0 the non positivity of
a + b = a is equivalent to S ≤ 1 − 1/2ζ . If in contrast pA = 0 and
pB = 1 we need for stability that a + b = b ≤ 0. This is equivalent
to S ≥ 1/2ζ and cannot be true since S < 1/2 and ζ ≤ 1. If
pA, pB > 0 we have

a + b = 1 − 2(pAαA(AC) + pBαB(BC)).

Consider the function

h(p) = pαA(AC; p, 1 − p, S) + (1 − p)αB(BC; p, 1 − p, S).



Then stability, i.e. a + b ≤ 0, is equivalent to h(pA) ≥ 1/2. We
will investigate the four possible cases separately. If αA(AC) =

αB(BC) = 0, then h = 0. So we can except this first case. As a
second case let αA(AC) = 0 and αB(BC) > 0. Then,

f (p) = (1 − p)(ζ S − β(1 − S)p) ≤ (1 − p)ζ S < 1/2, (A.23)

since S < 1/2 and (1 − p), ζ < 1. Thus, we can exclude this case
as well. As a third case let αA(AC) > 0 and αB(BC) = 0. Here,

f (p) = (1 − p)(ζ (1 − S) − βS(1 − p))
= pζ − S(pζ + βp(1 − p)).

To get f (pA) ≥ 1/2 we need pA ≥ 1/2. Then, f (pA) ≥ 1/2 yields

S ≤
pAζ − 1/2

pAζ + βP − A(1 − pA)
.

The right hand side of the last inequality is increasing in pA for
pA ≥ 1/2. Hence, to achieve f (pA) ≥ 1/2 we need at least

S ≤
ζ − 1/2

ζ
= 1 −

1
2ζ

.

In case 4 we have αA(AC), αB(BC) > 0. Here, f is a convex function
in p:

f (p) = ζ S + (ζ − 2ζ S − β)p + βp2.

Hence, for all 0 < p < 1, f (p) ≤ max{f (0), f (1)}. We have
f (0) = ζ S < 1/2 and f (1) = ζ (1 − S). For S > 1 − 1/2ζ ,
f (1) < 1/2. Summarizing we can see that in the first two cases no
stable steady state exists, while in the last two cases a necessary
condition for stability is given by S ≤ 1 − 1/2ζ . �

A.4. Proof of Lemma 4.1

For S ∈ (S,min{S, S̃}] let pA = p∗

A(S), while pB = 0.

Case 1: S ≤ S̃
Set S = S. The stationarity of λA yields

0 =


r − θpC

∂gA
∂pA


λA + k −

ξ

(1 − pA)1−ξ
.

Note that for pA = p∗

A(S) it is easy to check that ∂gA/∂pA ≤ 0. To
achieve stationarity of λS , we have to find a λS ≥ 2 2ν+µ

νµ
(1 − pA)ξ

such that

0 = λ̇S = −θpCλA
∂gA
∂S

+ λS(r + µ + 2ν).

Since λA < 0 increases in k and ∂gA
∂S < 0, the solution to the above

linear equation is sufficiently large, if k is sufficiently large.

Case 2: S̃ < S
Here the stationarity of λA yields

0 =


r − θpC

∂gA
∂pA


λA + k −

ξ

(1 − pA)1−ξ
s∗(S),

and λS = λS(S) is given by (4.20). We seek for a proper S such that
λ̇S = 0 holds, cf. (4.22), where ∂gB/∂S = 0. If the first summand of
(4.22) is denoted by f1(S) and the second one by f2(S), then we aim
to solve −f1(S) = f2(S). It is easy to check that at S (note, p∗

A(S) =

1)we have f1(S) = 0. Depending on ξ it holds f2(S) > 0 (for ξ = 0)
or f2(S) = 0 (for ξ > 0). Furthermore, f2(S) → ∞ for S → 1/2,
while −f1 is bounded. Since f2 is independent of the parameter k
while −f1 is growing linearly in k, we get for sufficiently large k
that −f1(S) > f2(S) for some relevant S. Summarizing we have for
sufficiently large k: −f1(S) ≤ f2(S), −f1(S) > f2(S) for some S ∈

(S, 1/2), f2(1/2) = ∞, −f1(1/2) < ∞ and f1, f2 are continuous
functions on (S, 1/2). Hence, there exists at least one intersection
between the two functions in the interval (S, 1/2). �

References

Abrams, Daniel M., Strogatz, Steven H., 2003. Linguistics: Modelling the dynamics
of language death. Nature 424 (6951), 900.

Bernard, C., Martin, S., 2012. Building strategies to ensure language coexistence in
presence of bilingualism. Appl. Math. Comput. 218 (17), 8825–8841.

Crystal, David, 2000. Language Death. Cambridge University Press, Cambridge.
Edwards, John, 2010.Minority Languages andGroup Identity: Cases and Categories,

Vol. 27. John Benjamins Publishing, Amsterdam, Philadelphia.
Fernando, Chrisantha, Valijärvi, Riitta-Liisa, Goldstein, Richard A., 2010. A model

of the mechanisms of language extinction and revitalization strategies to save
endangered languages. Hum. Biol. 82 (1), 47–75.

Fishman, Joshua A., 1991. Reversing Language Shift: Theoretical and Empirical
Foundations of Assistance to Threatened Languages, Vol. 76, Clevedon,
Multilingual matters.

Heinsalu, E., Patriarca, M., Léonard, J.L., 2014. The role of bilinguals in language
competition. Adv. Complex Syst. 17 (01), 1450003.

Kandler, Anne, Steele, James, 2008. Ecologicalmodels of language competition. Biol.
Theory 3 (2), 164–173.

Kandler, Anne, Unger, Roman, Steele, James, 2010. Language shift, bilingualism
and the future of Britain’s Celtic languages. Philos. Trans. R. Soc. B 365 (1559),
3855–3864.

Krauss, Michael, 1992. The world’s languages in crisis. Language 68 (1), 4–10.
May, Stephen, 2011. Language and Minority Rights: Ethnicity, Nationalism and the

Politics of Language. Routledge, New York, London.
Minett, JamesW., Wang, William S.Y., 2008. Modelling endangered languages: The

effects of bilingualism and social structure. Lingua 118 (1), 19–45.
Mira, Jorge, Paredes, Ángel, 2005. Interlinguistic similarity and language death

dynamics. Europhys. Lett. 69 (6), 1031.
Nettle, Daniel, Romaine, Suzanne, 2000. Vanishing Voices: The Extinction of the

World’s Languages: The Extinction of theWorld’s Languages. Oxford University
Press, New York.

Patriarca, Marco, Castelló, Xavier, Uriarte, J.R., Eguíluz, Víctor M., San Miguel, Maxi,
2012. Modeling two-language competition dynamics. Adv. Complex Syst. 15
(03n04).

Patriarca, Marco, Heinsalu, Els, 2009. Influence of geography on language
competition. Physica A 388 (2), 174–186.

Patriarca,Marco, Leppänen, Teemu., 2004.Modeling language competition. Physica
A 338 (1), 296–299.

Pinasco, Juan Pablo, Romanelli, Liliana, 2006. Coexistence of languages is possible.
Physica A 361 (1), 355–360.

Robichaud, David, Schutter, Helder De, 2012. Language is just a tool! On
the instrumentalist approach to language. In: Spolsky, Bernard (Ed.), The
Cambridge Handbook of Language Policy. In: Cambridge Handbooks in
Language and Linguistics, Cambridge University Press, Cambridge.

Sallabank, Julia., 2012. Diversity and language policy for endangered languages.
In: Spolsky, Bernard (Ed.), The Cambridge Handbook of Language Policy.
Cambridge University Press, Cambridge.

Stauffer, Dietrich, Castelló, Xavier, Eguiluz, Victor M., San Miguel, Maxi, 2007.
Microscopic Abrams–Strogatz model of language competition. Physica A 374
(2), 835–842.

Wickström, Bengt-Arne, 2005. Can bilingualism be dynamically stable?: a simple
model of language choice. Ration. Soc. 17, 81–115.

Wickström, Bengt-Arne, 2014. Nachhaltiges überleben vonminderheitensprachen:
eine übersicht einiger modelle. In: Dötsch, Jörg (Ed.), Dogma und Evolu-
tion. Beiträge zum 60. Geburtstag von Dietmar Meyer. Metropolis-Verlag,
Marburg.

http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref1
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref2
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref3
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref4
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref5
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref7
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref8
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref9
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref10
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref11
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref12
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref13
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref14
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref15
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref16
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref17
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref18
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref19
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref20
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref21
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref22
http://refhub.elsevier.com/S0165-4896(16)30002-6/sbref23

	Optimal language policy for the preservation of a minority language
	Introduction
	Model
	Family formation
	Family behavior
	Dynamics
	The status variable

	The objective function

	Specific functional forms
	Dynamics for fixed status
	Variable status and status control
	Objective

	Optimal control and optimal steady states
	Stationary points
	Monolingual stationary points
	Bilingual stationary points
	Bilingual stationary points with  pB = 0 
	Bilingual stationary points with  pB >0 


	Numerical calculations
	Conclusions
	Acknowledgments
	Appendix
	Family type distribution
	Partial derivatives of  gA  and  gB  when  pB = 0 
	Proof of Lemma 3.2
	Proof of Lemma 4.1

	References


