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Abstract

In this paper, we consider the problem of searching nondominated alternatives in a
discrete multiple criteria problem. The search procedure is based on the use of a
reference direction. A reference direction reflects the desire of the decision maker (DM)
to specify a search direction.  To find a set of given alternatives related somehow to the
reference direction specified by the  DM, the reference direction has to be projected
onto the set of nondominated alternatives. Our purpose is to develop an efficient
algorithm for making this projection. The projection of each given reference direction
determines a nondominated ordered subset. The set is provided to a decision maker for
evaluation. The decision maker will choose the most preferred alternative from this
subset and continues the search from this alternative with a new reference direction. The
search will end when no direction of improvement is found. A critical point in the
procedure is the efficiency of the projection operation. This efficiency of our algorithm
is considered theoretically and numerically.

 The projection is made by parametrizing an achievement scalarizing function originally
proposed by Wierzbicki (1980) to project any single point onto the nondominated set.

Keywords: Multiple Criteria, Discrete, Evaluation, Reference Point, Reference Direction.
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Pekka Korhonen

Jasmina Karaivanova

1. Introduction

A multiple objective optimization problem in the criterion space can be defined as
follows:

max q (1.1)

s.t. q ∈  Q,

where Q ⊂  ℜ p

 is a feasible region in a p-dimensional criterion space. When Q consists
of a finite number of elements which are explicitly known in the beginning of the
solution process, we have an important class of problems which may be called e.g..
(Multiple Criteria) Evaluation Problems. Those problems are sometimes referred to as
Discrete Multiple Criteria Problems or Selection Problems (for survey, see, e.g. Olson
1996).

Which kind of approach is most suitable to help the decision maker (DM) to solve an
Evaluation Problem is heavily dependent on the characteristics of the problem. The
outranking approach (Roy 1973), the multiattribute utility theory (Keeney and Raiffa
1976), the analytic hierarchy process (Saaty 1980), the regime method (Hinloopen,
Nijkamp and Rietveld 1983), the interactive programming approach (Korhonen,
Wallenius and Zionts 1984), the hierarchical interactive approach (Korhonen 1986), the
visual reference direction approach (Korhonen 1988), and the aspiration-level
interactive method (AIM) (Lotfi, Stewart, and Zionts 1992) are typical examples of the
approaches developed to solve evaluation problems, but not the same kind of problems.
A simple cross-tabulation can be made on the basis of the number of criteria and
alternatives (Table 1). However, there are many other ways to classify the problems as
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well. For instance, in the outranking approach  by Roy [1973], there is no need to
explicitly specify the criteria at all, the multiattribute utility theory by Keeney and
Raiffa [1976] is able to deal with uncertainty in criterion values, and the analytic
hierarchy process by Saaty [1980] is developed to handle the hierarchical structure of
criteria.

Table 1: A Classification of  Multiple Criteria Evaluation Methods
# of Criteria

# of Alternatives Small Large

Small Roy [1973], Keeney and Raiffa [1976],
Hinloopen, Nijkamp and Rietveld [1983]

Saaty [1980],

Korhonen [1985]

Large Korhonen, Wallenius and Zionts [1984],
Korhonen [1988], Lotfi, Stewart, and Zionts
[1992]

A key issue in Multiple Criteria Decision Support (MCDS) is to generate nondominated
solutions to the DM’s evaluation in such a way that the DM's preferences are taken into
account. In interactive methods, the system will communicate with the DM and
information the system will get through this communication process is used to model
his/her preferences. The preference information is further used to control the search
process. The ultimate goal is to help the DM to find the most preferred alternatives from
among the set of nondominated alternatives. During the last twenty-five years, a lot of
various approaches to solve multiple criteria problems have been developed. For an
excellent introduction to multiple objective programming methods, see Steuer [1986].
Correspondingly, Olson [1996] provides a good introduction to various multiple criteria
evaluation methods.

In early methods, the generation of  nondominated solutions was based on the use of
criterion weights, limiting consideration to nondominated extreme points (see, e.g., Zionts
and Wallenius [1976]) in multiple objective linear program and to nondominated
alternatives which can be obtained as an optimum of a linear function in multiple criteria
evaluation problems. Today, many systems are based on the use of aspiration level (or
reference point) projections, where the projection is performed using the Chebyshev-type
achievement scalarizing functions. These functions can be controlled either by varying
weights (keeping aspiration levels fixed) or by varying the aspiration levels (keeping
weights fixed). The same idea was originally proposed in a somewhat different form by
Steuer and Choo [1983] and Wierzbicki [1980].

The Achievement Scalarizing Function is also the main theoretical basis in the  Reference
Direction Approach proposed by Korhonen and Laakso [1986]. Instead of projecting one
point at a time onto the nondominated frontier - like in the original reference point
approach by Wierzbicki [1980] - Korhonen and Laakso [1986] proposed the
parametrization of an achievement scalarizing function making it possible to project the
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whole direction onto the nondominated frontier.  The problem can be easily solved by
using  linear parametric programming. When a reference direction is projected onto the
nondominated frontier in multiple objective linear programming, a curve traversing across
the frontier is obtained. Then an interactive line search is performed along this curve. The
idea enables the DM to make a continuous search on the nondominated frontier.

When the reference direction approach  is extended to evaluation problems, the projection
of a reference direction onto the set of nondominated alternatives requires the solving of an
integer parametric programming problem. Because the problem has a special structure, it is
possible to develop an efficient algorithm for the problem. The first algorithm proposed
by Korhonen [1988]. The aim of this paper is to present an improved version. The
algorithm presented in this paper is much more sophisticated than the previous one. The
algorithm is capable of solving the problems of many hundred alternatives in a few
seconds, whereas the old version required even minutes.

The plan of this paper is as follows. In section 2 some preliminary considerations are
given. The algorithm for solving discrete Multiple Criteria Problems is presented in
section 3. We conclude the paper in section 4.

2. Preliminary considerations

2.1. Problem Formulation and Basic Definitions

We assume that a single decision maker (DM) has to choose one alternative from
among a set of n (n>0) explicitly defined deterministic decision alternatives using p
(p>1) (quantitative) criteria, which the DM would like to maximize. The basic data set
can be given in an n×p matrix A ∈  ℜ n×p whose elements aij, i ∈  I = {1,2, …, n} and j ∈
J= {1,2, …, p} represent the criterion values on alternatives. We use notation ai or
simply index i to refer to the alternative in row i. Thus each decision alternative is a point

in the criterion space ℜ p.  When we refer to the index of the element, for which fk = 
 
max fi 

 i∈ I
,

we use notation 
 
arg max fi

       i∈ I
. (Note that k is not necessarily uniquely defined.)

Let x ∈  ℜ p and y ∈  ℜ p be two vectors. We will use notation x ≥ y to denote that xi ≥ yi

for all i = 1,2, …, n. Correspondingly, notation x > y means that xi > yi for all i = 1,2,
…, n.

Definition 1. An alternative ai*, i ∈  I, is nondominated iff ∃/  aj, j ∈  J, i ≠ j  such that aj ≥
ai and aj ≠ ai.
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Definition 2. An alternative ai*, i ∈  I, is weakly-nondominated iff ∃/  aj, j ∈  J, i ≠ j  such
that aj > ai.

If an alternative is not nondominated it is dominated.

The Multiple Criteria Problem considered in this paper can  be defined as follows:

 
’max’ ai

 i∈ I
. (2.1)

Because no single alternative exists with the maximum values for all criteria, the
rational DM will choose one nondominated alternative. Which alternative is chosen
depends on the DM’s preference structure. To be able to make a decision, he/she needs
a tool to help him/her to find his/her ‘best’ alternatives. Inmulticriteria decision making
(MCDM), the 'best' alternative is usually called the most preferred alternative.
Conceptually, the most preferred alternative is the alternative maximizing the DM's
utility at the moment, when he/she makes the final choice. In practice, we cannot
guarantee that the final choice is the DM's most preferred alternative in the sense that it
is really preferred to all other alternatives. How good the final choice is depends on the
algorithm used to support the DM to search for the most preferred alternative.

2.2. Solution principle

Our proposal is an interactive approach, which makes it possible for the DM to make a
free search among the set of nondominated alternatives until he/she is convinced that no
better alternative than the current choice can be found. We do not need to assume
anything about the DM's choice behavior. The DM will control the search by varying
aspiration levels for criterion values. The point characterized by aspiration levels is also
called a reference point by Wierzbicki [1980]. At each iteration, he/she will choose the
most preferred alternative from among the set of alternatives available, and specify the
new aspiration levels describing his/her desire to change the current criterion values.
The reference direction is specified as a vector starting from the current alternative and
passing through the reference point. The reference direction expresses the DM’s desire
to move from the current alternative, but it does not provide realistic suggestions to
move.

To find concrete alternatives somehow related to the reference direction, that direction
has to be projected onto the set of nondominated alternatives. The projection can be
done by using an achievement scalarizing function developed by Wierzbicki [1980].
Originally, Wierzbicki developed the achievement scalarizing function to project any
single (reference) point onto the nondominated frontier in multiple objective linear
programming. Korhonen and Laakso [1986] extended the original idea by parametrizing
the achievement scalarizing function. The extension made it possible to project any
direction instead of a single point onto the nondominated frontier. When the method is
applied to a discrete multiple criteria problem, a new (ordered) finite subset is produced
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for the DM’s evaluation. A visual representation (see, Korhonen 1988) can then be used
to present the subset in an illustrative form for the DM’s evaluation.

The simplest form of the achievement scalarizing function for each alternative is
defined as follows:

si(g, w) = 
 
max  (gj - aij)/wj

 j∈ J
, i = 1, 2, …, n (2.2)

where g ∈  ℜ p is a given reference point, and w∈  ℜ p, w > 0, is a given weighting vector.

By solving the following minimizing problem

 
min si(g, w)
 i∈ I

(2.3)

the solution is one of the (weakly)-nondominated alternatives. The weakly-
nondominated alternatives are not a problem in an evaluation problem, because
dominated alternatives could be easily eliminated from a set of a finite number of
alternatives.

To generate an ordered set of nondominated alternatives for the DM’s evaluation, we
parametrize the achievement scalarizing function:

Shi(t, r, w) = si( ah + tr, w) =  
 
max (ahj + trj - aij)/wj

 j∈ J
 , (2.4)

where ah, h ∈  I, is a current alternative and r, r ∈  ℜ p, is a given reference direction. The
alternatives solving the problem

 
min Shi(t, r, w)
 i∈ I

, (2.5)

when t: 0 → ∞ define an ordered set of nondominated decision alternatives. The set
containing the indices of those alternatives is denoted by M = {m1, m2, …, mk}, k ≤ n.
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Definition 3. Alternative aα ∈  M iff α = 
 
 arg min Shi(t, r, w)
       i∈ I

 for some t ≥ 0 and if aα

precedes alternative aβ, α ≠ β, in set M then there exists tα  ≥ 0 for which  α =
 
 arg min Shi(tα, r, w)
       i∈ I

 such that tα ≤ tβ for all tβ ≥ 0  for which β = 
 
 arg min Shi(tβ, r, w)
       i∈ I

.

It is easy to see that the solutions of problem (2.5) are solutions of the following
parametric programming problems:

min ε

s.t. (2.6)

ATx  + εw  -  z =  ah + tr,

  1Tx =  1

   xi =  0 or 1, for i = 1,2, ..., n

     x, z  ≥ 0,

when t: 0 → ∞, where 1 = [1, 1, ..., 1]T ∈  ℜ n. Like in parametric programming, in general
our task is to identify a) the parameter values with which the bases change and b) the
entering and leaving variable. However, the special structure of problem (2.6) makes it
possible to develop algorithms, which are much more efficient than general integer
parametric programming.

Our algorithm is based on the idea to operate with functions Vi(t), i = 1,2, …, n, t ≥0:

V i(t) =  Shi(t, r, w) = 
 
max (ahj + trj - aij)/wj

 j∈ J
 , (2.7)

where ah, r, w are taken as given. If we denote bij  = (ahj - aij)/wj, i = 1,2, …, n and j = 1,2,
…, p, and dj = rj/wj, j = 1,2, …, p, so we may simply write

V i(t) = 
 
max (bij + tdj)
 j∈ J

. (2.8)
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Thus our problem is to identify all indices k ∈  I for which

Vk(t) = 
 
min Vi(t)
i∈ I

(2.9a)

or in other words

k =  
 
 arg min Vi(t)
       i∈ I

 for some t ≥ 0. (2.9b)

The problem is illustrated in Figure 1. The shaded area describes the values higher than

the values of function 
 
min Vi(t)
i∈ I

.  Our idea is to study the values of that function piece by

piece and to recognize the points, where the function with a minimum value will
change.

Figure 1: Illustration of function   
 
min Vi(t)
i∈ I

  and the principles of the algorithm

V2(t)

V i(t)

∆T

Tcross

tT0 T2T1

T2’

T3

V3(t)
V1(t)
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2.3. Some Theory

First, we consider the properties of the functions Vi(t), i = 1, 2, …, n, which we can
utilize in our algorithm:

Lemma 1. Consider the function Vi(t), i ∈  I, and let t0 ≥ 0 be an arbitrary value of
parameter t. If bij + t0dj  ≥ bik + t0dk and dj ≥ dk for some j, k ∈  J, then Vi(t) ≥ bij + tdj  ≥
bik + tdk, when t ≥ t0.

Proof. We see immediately that Vi(t) = 
 
max (bim + tdm)
m∈ J

 ≥ bij + tdj  ≥ bij + t0dj + (t - t0)dj ≥

bik + t0dk + (t - t0)dj ≥ bik + t0dk +  (t - t0)dk = bik + tdk.

Corollary 1.1 If bij + t0dj  > bik + t0dk and dj > dk, then bij + tdj  > bik + tdk, when t ≥ t0.

Corollary 1.2 If V i(t1) = bij + t1dj for some j ∈  J and t1 ≥ 0, and Vi(t2) = bik + t2dk for
some, k ∈  J, k ≠ j, t2 ≥ 0, and t2 > t1, then necessarily dk ≥ dj. Furthermore, if bij + t1dj > bik

+ t1dk, then necessarily dk > dj.

Proof. Assume dj > dk. Because bij + t1dj ≥ bik + t1dk by definition of Vi(t), then from
Lemma 1 it follows that bij + tdj  > bik + tdk, for all t ≥ t1 ⇒  the contradiction with the
assumption that Vi(t2) = bik + t2dk. The proof of the latter part is straightforward.

Lemma 2. Each function Vi(t), i ∈  I and t ≥ 0,  has the following properties:

a)  functions Vi(t) are piecewise linear and the number of linear pieces are at most
p,

b)  functions Vi(t) are  convex, and

c)  V i(t)  ≥ bij + tdj for all j = 1,2, …, p.

Proof.

a)  For each t ≥ 0, there exists k, such that Vi(t) = bik + tdk =  
 
max (bij + tdj)
 j∈ J

 ⇒  function

V i(t) is piecewise linear. By Corollary 1.2, if for t1 and t2, t2 > t1, Vi(t1) = bij + t1dj  and
V i(t2) = bik + t2dk, bij + t1dj  > bik + t1dk, then dk > dj. There are at most p elements for
which this is true.
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b)  Let t1 ≥ 0 and t2 ≥ 0 be two arbitrary values of parameter t, and let λ ∈  [0, 1]. Then

V i((1-λ)t1 + λ t2) = 
 
max [bij + ((1-λ)t1 + λt2)dj]
 j∈ J

  = 
 
max [(1-λ)bij + λbij + (1-λ)t1dj + λt2dj]
 j∈ J

= 
 
 max [(1-λ)(bij + t1dj) + λ(bij + t2dj)]
 j∈ J

 ≤ 
 
 max (1-λ)(bij + t1dj)
 j∈ J

 +
 
 max λ(bij + t2dj)
 j∈ J

≤  (1-λ)V i(t1) + λV i(t2) ⇒  the convexity of Vi(t).

c)  The result immediately follows from the definition of Vi(t).

A key task in our algorithm is to recognize the indices k ∈  I which cannot be the
solution of (2.9b), when t ∈  T, where T is a specific interval. For this purpose we will
prove the following Lemmas.

Lemma 3. Consider functions Vm(t) and Vi(t), m, i ∈  I, for which  Vm(t0) =  bmk + t0dk ≥
V i(t0) = bij + t0dj, k, j ∈  J, and dk ≥ dj, then Vm(t) ≥ Vi(t) for all t ≥ t0 for which dk ≥ dh,
V i(t) = bih + tdh.

Proof.   Let  t* > t0 be arbitrarily chosen and assume Vi(t*) = bih + t*dh, and dk ≥ dh, h ∈
J. By Lemma 2 c), Vm(t*) ≥  bmk + t*dk and by definition of Vi(t), Vi(t) = bij + t0dj  ≥ bih +
t0dh for all h ∈  J. Thus Vm(t*) ≥ bmk + t*dk = bmk + t0dk  + (t*-t0)dk ≥ bmk + t0dk  + (t*-t0)dh ≥
bij + t0dj + (t*-t0)dh ≥ bih + t0dh + (t*-t0)dh =  bih + t*dh = Vi(t*). The result concerning the
strict inequality follows immediately.

Corollary 3.1 If V m(t0) > Vi(t0), then Vm(t) > Vi(t), for all t ≥ t0 for which dk ≥ dh.

Corollary 3.2 If dk = 
 
max
 j ∈ J

dj when Vm(t0) ≥ Vi(t0),  then Vm(t) ≥ Vi(t) (Vm(t) > Vi(t)) for all

t ≥ t0.

Proof.  Because dk ≥ dh for all h ∈  J, the result follows immediately from Lemma 3.

Lemma 4. Consider functions Vm(t) and Vi(t), m, i ∈  I, and  assume Vi(t) = bij + tdj, j ∈
J, when t ∈  [t1, t2]. If there exists k such that bmk + t1dk ≥ bij + t1dj and dk ≥ dj, then Vm(t)
≥ Vi(t) for all t ∈  [t1, t2].

Proof. The result follows directly from Lemma 1 and Lemma 3.

Corollary 4.1 If bmk + t1dk > bij + t1dj, then Vm(t) > Vi(t) for all t ∈  [t1, t2].
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Corollary 4.2 If dk > dj, then Vm(t) > Vi(t) for all t ∈  (t1, t2].

3. Outline of the proposed algorithm

In the following, we describe our algorithm step by step and intersperse comments
between the steps to clarify the reading of the algorithm. Without loss of generality we
assume that all alternatives are nondominated, and there are no identical alternatives.

When a linear function bij + tdj determining the maximum of function Vi(t) with the
certain value of t is not unique, we use one with a maximal dj. To do this we define

β(i,t) = 
 
arg max dj

     j∈Θ (i,t)
 , where  Θ(i,t) = { θ  θ = 

 
max [biθ + tdθ]
 θ∈ J

, and let π: J → J be a

function permutes the index set J such that dπ(1) ≤ dπ(2) ≤ … ≤ dπ(p). Accordingly, π-1 is
standing for the inverse function.

For example, if we have d4 ≤ d1 ≤ d2 ≤ d3, then dπ(1) ≤ dπ(2) ≤ dπ(3) ≤ dπ(4) ⇒  π(1) = 4, π(2)
=1, π(3) = 2, and π(4) = 3. Correspondingly, π-1(4) = 1, π-1(1) =2, π-1(2) = 3, and π-1(3) =
4.

Step 1: Initialization

Assume the index of the current alternative is r, and let the reference direction be
ρ. Set m := 1, M[m] := r, K := I - {r}, Tmin := 0, bij = (arj – aij)/wj, and dj = ρj/wj,
where i = 1,2, …, n and j = 1,2, …, p.

Because we assumed that all alternatives were nondominated, any alternative is a
feasible choice.

Step 2: Determining Range of Inspection ∆T

Determine the upper bound for the range ∆T = [Tmin, Tmax] of inspection as
follows:

Tmax: =  



 
min {t   β(r, t)  ≠ β( r, Tmin)} , if {t   β(r, t)  ≠ β( r, Tmin)}  ≠  ∅  
∞  ,  otherwise 

 

and set  Tcross := Tmax.  Set j := β( r,Tmin), i := 0, and inew := 0.
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We determine the range ∆ T such that the function Vr(t) is linear, when t ∈  ∆ T.
We will determine parameter Tcross such that

Tcross = 



 
min {t  t ∈  Γ }, if Γ  ≠  ∅ , Γ  = {t   Vi(t) ≤  Vr(t), i ∈  I, i∉  r, and t ∈  [Tmin, Tmax]}
Tmax,  otherwise 

 

Step 3: Finding the Next Potential Element of Vector M

Repeat

i:= i + 1

If i > n then go to Step 5.

if (i ∈ K) then

NeverCross := 


   True, if biπ(p) + Tmindπ(p) ≥ brj + Tmindj

 False, Otherwise

NoCross := NeverCross

See Corollary 3.2 for explanation

If NoCross

then

K := K - {i}

If K = {r} then Stop.

else

       NoCross := 


  True, if ∃  k ∈  J for which dk ≥ dj and bik + Tmindk ≥ brj + Tmindj

 False, Otherwise

See Lemma 4 for explanation

    end

until (i ∈  K) and not NoCross

Step 4: Finding the First Possible Crossing Point  within Range [Tmin, Tmax]

If (i ∈ K) and not NoCross then

begin

ξ := π-1(j)

τcross := Tmin

jcross := 0
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h := 1

While (h < ξ) and (dj > dπ(h)) do

begin

if  biπ(h) + Tmindπ(h) > brj + Tmindj then

begin

      t = 
biπ(h) - brj

dj - dπ(h)

 

if t ≥ Tcross then go to Step 3.

By Lemma 2 c) Vr(t) < Vi(t), when t ∈   [Tmin, Tcross]

if t > τcross

then

     τcross := t

      icross := i

                               jcross := π(h)

end

h := h + 1

end

h := ξ

Repeat h := h + 1 until (h>p) or (dj ≠ dπ(h))

 While (h ≤ p) do
begin

t = 
brj - biπ(h)

 dπ(h) - dj

 

if t < τcross then go to Step 3.

h := h + 1

end

Tcross := τcross

inew := icross

jnew := jcross

end
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Go to Step 3.

Step 5: Updating Vector M

If T cross < Tmax

 then

set

m := m + 1

M[m] := M[m] + inew

Tmin := Tcross

r := inew

j := jnew

Go to Step 2

       else

Tmin := Tmax

Go to Step 2

4. Consideration of Computational Efficiency of the

Algorithm

The algorithm is implemented in Turbo Pascal and the computational results are run
with a 386 processor. It is well known that the algorithmic complexity is connected with
the computational resources (so called elementary operations) for the worst case
behavior of a given algorithm. In our case we found that the number of the elementary
operations of the type {+, - , x , < , > , =} when determining the set M for a given
reference direction is restricted by the following expression:

H  = p2 + 5n2 +5pn2 - 3pn +8p - 4. (4.1)

As we can see the highest degree in the above polynomial is pn2. This expression,
however, can not give enough information about the real behavior of our algorithm. It is
supposed to work much better in practice. That is why we have also computed some
experimental results.

The data sets are randomly generated in such a way that all alternatives are efficient.
The results are given in Table 2
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Table 2: Average Computing Times (in seconds) for Finding Set M for a Reference
Direction

(The results for each cell are computed 5 times)

p
N 3 5 7 9
50 0.22 0.13 0.18 0.18
100 0.57 0.36 0.35 0.44
150 1.11 0.60 0.66 0.52
200 1.21 0.89 0.86 0.97
250 1.64 1.45 1.15 1.27
300 2.19 0.98 1.73 1.00
350 2.40 1.89 1.62 1.46
400 2.45 2.30 2.34 1.77

As we can see from Table 2, the polynomial describing the worst case behavior does not
explain the resultsvery well. To search a proper model we started with the polynomial
(4.1). The results are given in Table 3 (Model IT). The corresponding R2 = 0.923. We
also constructed a so-called unrestricted model (Model IIT) by adding variable n. After
making some experiments, we ended up with the model called a restricted model
(Model IIIT). Our purpose was to choose as simple a model as possible. For this model
R2 = 0.920.

To test the sufficiency of this model, we tested the hypothesis:

H0: β1 = β3 = β4 = β5 = 0

H1: βi ≠ 0 for at least one i = 1, 3, 4, and 5

Using the F-test

F(fr-fu, fu) = 

R
2
u-R

2
r

f r - fu

1-R
2
u

fu

  = F(30-25, 25) =

0.936-0.920
30 - 25
1-0.936

25

  = 1.223,

where fr and fu are the degrees of freedom of the restricted and unrestricted model,
correspondingly.

To choose the risk level α=0.05, we conclude H0, because
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P{F(5,25) ≥ 1.223} = 0.328.

In addition, we test the hypotheses H0: βi = 0 against the alternative hypotheses H1: βi ≠
0, i = 2,5 with risk level α = 0.05, we conclude H1 in the both cases.

Thus, we think that the model T =  β2

pn
100 +  β6n + ε explains quite well the computing

times of our algorithm in practice. At first glance, it sounds strange that β
−

2 < 0, but it is
quite understandable. When the number of criteria increases, the number of elements in
set M decreases as shown in Table 3, and the efficiency of the algorithm to recognize
the alternatives not belonging to set M improves computing times.

To explain the results in Table 4, we started with a simple model (Model IS) by using p
and n as a independent variables. We got R2 = 0.778. The results in Table 5 indicate that
the size of set M may be proportional to log n instead of n. That’s why we used the
model (Models IIS). Because  for β0, we conclude H0: β0 = 0 (H1: β0 ≠ 0) α = 0.05, we
choose as a final model (Model IIS):

S0 =  β1p + β2log n + ε.

For this model R2 = 0.817 provides a quite good fitting.
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Table 3: Searching the Model for Fitting Numerical Results in Table 2
Model IT: Basic Model

T = β0 +  β1p + β2

pn
100 + β3

pn2

1000  + β4

n2

1000 + β5 p
2 +  ε

R
2
0= 0.923 β

−
0 β

−
1 β

−
2 β

−
3 β

−
4 β

−
5 β

−
6

Coeff. 1.01 -0.27 0.065 -0.0021 0.017 0.015
Dev. 0.35 0.12 0.024 0.0006 0.002 0.01
t-Stat 2.94 -2.21 2.68 -3.49 7.96 1.55
P-Value 0.007 0.036 0.012 0.002 0 0.134

Model IIT: Unrestricted Model

T = β0 +  β1p + β2

pn
100 + β3

pn2

1000  + β4

n2

1000 + β5 p
2 + β6n + ε

R
2
u=0.936 β

−
0 β

−
1 β

−
2 β

−
3 β

−
4 β

−
5 β

−
6

Coeff. 0.18 -0.14 -0.071 0.0008 -0.003 0.015 0.00
93

Dev. 0.49 0.12 0.064 0.0014 0.009 0.009 0.00
41

t-Stat 0.36 -1.16 -1.1 0.55 -0.34 1.67 2.25
P-Value 0.721 0.259 0.28 0.59 0.733 0.108 0.03

3
Model IIIT: Restricted Model

T =  β2

pn
100 +  β6n + ε

R
2
r =0.920 β

−
0 β

−
1 β

−
2 β

−
3 β

−
4 β

−
5 β

−
6

Coeff. -0.035 0.00
73

Dev. 0.006 0.00
04

t-Stat -5.35 17.6
9

P-Value 0 0

Table 4: The Average Size of Set M (The results for each cell are computed 5 times)
p

N 3 5 7 9
50 16.4 9.6 9.6 8.6
100 23.6 14.6 13.2 14
150 30 18.6 14.8 13
200 27.4 17.2 17.4 15.6
250 31.4 22 18 18.6
300 33 18.2 20.6 13.4
350 34 22 18.8 15.6
400 32.8 26.2 19 18.9
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Table 5: Searching the Model for Fitting Numerical Results in Table 4
Model IS: Basic Model

S0 =  β0 +  β1p + β2n + ε

Intercept p n

R
2
r =0.778 β

−
0 β

−
1 β

−
2

Coeff. 25.55 -2.19 0.032

Dev. 2.1 0.27 0.005

t-Stat 12.17 -8.09 6.01

P-Value 0 0 0

Models IIS: log n -Model

S1 =  β0 +  β1p + β2log n + ε

Intercept p log n

R
2
r =0.818 β

−
0 β

−
1 β

−
2

Coeff. 1.75 -2.19 13.6

Dev. 4.63 0.24 1.92

t-Stat 0.38 -8.93 7.1

P-Value 0.71 0 0

Model IIIS: log n - Model

S2 =  β1p + β2log n + ε

Intercept p log n

R
2
r =0.817 β

−
0 β

−
1 β

−
2

Coeff. -2.16 14.28

Dev. 0.23 0.64

t-Stat -9.42 22.34

P-Value 0 0

5. Conclusion

We have presented an algorithm to solve discrete multiple criteria problems. The
algorithm is based on the reference direction approach. In order to minimize the solution
time we use some heuristic tests eliminating those alternatives that have no chance to be
a desired projection onto the nondominated set of given points. Our computational tests
show that our algorithm is working in practice much better than the worst case behavior
predicts.
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