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Abstract

In addition to the efficiency scores, Data Envelopment Analysis also provides the
inefficient DMUs with information on reference units which lie on the efficient frontier.
Reference units are traditionally found by projecting the inefficient DMUs radially to
the efficient surface. However, there may exist some other efficient solutions, which are
better targets. This means that it is possible to find an input-output mix that is more
suitable for example from a managerial point of view.

The purpose of this paper is to compare and contrast existing models for searching the
most preferred reference units as targets for inefficient units, and based on that to
present a dynamic and interactive way to provide these targets in Data Envelopment
Analysis based on Multiple Objective Linear Programming.

Keywords: Data Envelopment Analysis, Multiple Objective Linear Programming,
Targets, Preferences
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Models for Identifying Target Units

in Data Envelopment Analysis:

Comparison and Extension

Tarja Joro

1. Introduction

Data Envelopment Analysis (DEA) by Charnes, Cooper and Rhodes [1978] is a method
for evaluating the relative efficiency of comparable entities referred to as Decision
Making Units (DMU). DEA forms a production possibility frontier, or an efficient
surface. If a DMU lies on the surface, i.e. there is no other DMU that can either produce
the same outputs by consuming less inputs (input oriented DEA) or produce more
outputs by consuming the same amount of inputs (output oriented DEA), it is referred to
as an efficient unit, otherwise inefficient. DEA also provides efficiency scores and
reference units for inefficient DMUs. The efficiency score tells the percentage by which
a DMU should decrease its inputs (input oriented DEA) or increase its outputs (output
oriented DEA) in order to become efficient. Reference units are hypothetical units on
the efficient surface which can be regarded as target units for inefficient units. They are
in the traditional DEA obtained by projecting an inefficient DMU radially to the
efficient surface. The production theoretical argument for this principle is that the DMU
preserves its current input-output mix.

However, from a managerial point of view it is possible that some other solution on the
efficient surface might be a more preferable target, i.e. there exists an input-output mix
that is more suitable for the inefficient unit than the one obtained through radial
projection. One line of research in DEA concentrates on finding these targets for
inefficient DMUs (Golany [1988], Thanassoulis and Dyson [1992] and Zhu [1996]).
The DMU can use the targets as goals or benchmarking units when working its way
toward efficiency.

In Golany [1988] a set of hypothetical reference units is generated and presented to the
DMU. The DMU may choose one of them to be a target, or new reference units may be
generated. In Thanassoulis and Dyson [1992] the DMU may articulate its preferences as
a set of preference weights over improvements for different input-output levels, or as an
ideal target (not necessarily optimal nor feasible). The target corresponding to the
preference weights or the ideal target is then calculated. In the model by Zhu [1996],
DMU articulates its preferences as weights reflecting the relative degree of desirability
of the potential adjustments of current input or output levels.
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In Golany [1988] and in the preference weight model by Thanassoulis and Dyson
[1992] it is possible to choose a target from among the reference units that dominate the
unit under consideration. In these cases some of the output (or input) levels of the target
are better while no input (or output) levels are worse. In Zhu [1996] and in the ideal
target model by Thanassoulis and Dyson [1992] it is possible to choose also a target not
dominating the unit under consideration. This means that in the target either the usage
of some inputs is bigger, or the production of some outputs is smaller, and thus the
input-output mix is to be reorganized to a greater extent than when choosing a
dominating target.

In this paper we present an approach that enables the search of the target in a dynamic
and interactive way with existing software. The approach is based on methods
developed for Multiple Objective Linear Programming (MOLP). There are several
suitable methods (see Steuer [1986] for an excellent survey), here we use the Reference
Point approach (Wierzbicki [1986]), Reference Direction approach (Korhonen and
Laakso [1986]) and its Dynamic Extension, Pareto Race (Korhonen and Wallenius
[1988]). In Pareto Race it is possible to move along the efficient surface and scan all
hypothetical and existing efficient reference units.

The rest of the paper is organized as follows. Section 2 reviews the basic DEA models.
Section 3 reviews the existing approaches to finding targets, and the 4th section
introduces our approach. The 5th section concludes the paper.

2. Basic DEA Models

Assume we have n DMUs each consuming m inputs and producing p outputs. Let X ∈

ℜ
m×n
+

and Y ∈  ℜ
p×n
+  be the matrices, consisting of nonnegative elements, containing

the observed input and output measures for the DMUs. We further assume that there are
no duplicated units in the data set. We denote by xj (the jth column of X)  the vector of
inputs consumed by DMUj, and by xij the quantity of input i consumed by  DMUj. A
similar notation is used for outputs. Furthermore, we denote 1 = [1, ..., 1]T. The
subscript zero refers to the unit under consideration. We use here output oriented CCR
formulations with constant returns to scale (Charnes, Cooper and Rhodes [1978]) and
output oriented BCC formulations with variable returns to scale (Banker, Charnes and
Cooper [1984]):
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Output-Oriented CCR Primal
(CCRP - O)

Output-Oriented BCC Primal
(BCCP - O)

max ZC =  θ + ε(1Ts+ + 1Ts-)

s.t.                                                   (2.1a)
       Yλ  -  θy0 -  s

+ =  0
       Xλ           + s-  =  x0

                  λ, s- , s+ ≥ 0
                             ε > 0

max ZB =  θ + ε(1Ts+ + 1Ts-)

s.t.                                                   (2.1b)
       Yλ  -  θy0 -  s

+ =  0
       Xλ           + s-  =  x0

                                   1
Tλ = 1

                       λ, s- , s+ ≥ 0
                             ε > 0

A DMU is efficient iff ZC* = ZB* = 1 and all slack variables s-, s+ equal zero; otherwise it
is inefficient (Charnes et al. 1994).

For the purposes of the approaches presented later in this paper, we introduce a
combined model that simultaneously minimizes inputs and maximizes outputs. In DEA,
the efficiency of a DMU is traditionally determined either maximizing outputs subject
to given input levels or minimizing inputs subject to given output levels. The Additive
model which was the first model considering simultaneously both input minimization
and output maximization was introduced as early as 1985 (Charnes, Cooper, Golany,
Seiford, and Stutz [1985]). Other models considering simultaneous input minimization
and output maximization exist (see, for example, Warwick DEA-User Manual,
Thanassoulis and Dyson  [1992], Zhu [1996], Joro, Korhonen and Wallenius [1998] and
Halme, Joro, Korhonen, Salo and Wallenius [1998]).

Combined CCR Primal
(CCRP - C)

Combined BCC Primal
(BCCP - C)

max FC =  θ + ε(1Ts+ + 1Ts-)

s.t.                                                   (2.2a)
       Yλ  -  θy0 -  s

+ = y0

       Xλ + θx0 + s-  =  x0

         λ, s- , s+ ≥ 0
          ε > 0

max FB =  θ + ε(1Ts+ + 1Ts-)

s.t.                                                   (2.2a)
       Yλ  -  θy0 -  s

+ = y0

       Xλ + θx0 + s-  =  x0

            1
Tλ = 1

              λ, s- , s+ ≥ 0
          ε > 0

Define the set

Λ = 



 {λ | λ ∈  ℜ

n
+},  for a CCR model

{ λ | λ ∈  ℜ
n
+ and 1Tλ = 1},  for a BCC model
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and T = { (y, x)   y = Yλ, x = Xλ, λ ∈  Λ}. All efficient DMUs lie on the efficient
frontier, which is defined as a subset of points of set T satisfying the efficiency
condition below.

Definition 1.  A solution (Yλ*, Xλ*) = (y*, x*) of problem (2.2) is efficient iff there
does not exist another (y, x) ∈  T such that y ≥ y*, x ≤ x*, and (y,  x) ≠ (y*, x*).

Definition 2.  A point (y*, x*) ∈  T is weakly efficient iff there does not exist another (y,
x) ∈  T such that y > y* and x < x*.

The efficiency of DMUs can also be determined using the following Multiple Objective
Linear Programming (MOLP) model:

max Yλ
min  Xλ (2.3)
s.t.

λ ∈  Λ.

Like any multiple criteria model, model (2.3) has no unique solution. Its solutions are
defined analogously to the efficient solutions in DEA. One possible, currently popular
way to perform the search for solutions on the efficient frontier of a MOLP-problem is
to use the achievement (scalarizing) function (ASF) suggested by Wierzbicki [1980].
This leads to the following formulations: (Joro et al. [1998]).

Reference Point Model Primal
(REFP)

Reference Point Model Dual
(REFD)

max σ + ε (1Ts+ + 1Ts-)

s.t.                                                    (2.4a)
           Yλ  - σwy - s+ = gy

           Xλ +σwx + s-

  = gx

      λ ∈  Λ
                   λ,  s- , s+ ≥ 0
                              ε > 0

min      νTgx - µgy

   + ξ

s.t.                                                 (2.4b)
            -µTY    + νTX  + ξ1T ≥  0
              µT wy + νTwx            = 1

                        ξ = 


 0,  in a CCR model

free,  in a BCC model
                             µ, ν ≥ ε1
                        ε > 0

Vector gx consists of aspiration levels for inputs and gy of aspiration levels for outputs.
Vectors wx ≥ 0 and wy ≥ 0 are the weighting vectors for inputs and outputs, respectively.
(At least one of the weights has to be strictly positive, otherwise the value of σ is
unbounded. Without σ at the objective function the projection into the efficient frontier
would work even when all the weights are zero.)

The Reference Point model allows us also to perform DEA analysis in which both
inputs and outputs are treated simultaneously. This kind of combined DEA formulation
is obtained from (2.4 a and b) by setting wx = gx = x0 and wy = gy = y0. In combined
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models efficient DMUs receive an efficiency score of 0: the interpretation of an
efficiency score is the percentage by which the inputs should be decreased and outputs
increased to obtain efficiency. By modifying the constraint Aλ ≤ b it is possible to
obtain the CCR model, the BCC model, the model with nonincreasing returns to scale,
etc.

3. Literature Review on Target Models

Target models aim at assisting the inefficient DMU to find the most suitable target for
itself. Such models seek to project the inefficient DMU onto the efficient frontier. The
first approach that concentrates on producing preferred targets is IMOLP, Interactive
MOLP procedure by Golany [1988]. In this approach the DMU is presented with k-1
optimal targets. The DMU may use some of them as the most preferred target, or
indicate which of them is the best, and proceed with the search. In Golany’s model
DMU may choose the preferred targets for outputs, the inputs are assumed to be the
current inputs consumed by the DMU. In this paper we concentrate on models in which
the DMU may choose both target inputs and outputs.

Thanassoulis and Dyson [1992] and Zhu [1996] have introduced models for setting
targets in different situations. Thanassoulis and Dyson present target setting approaches
based on a general weight-based preference structure, and on an ideal target for
situations where some input or output is given a pre-emptive right to improve and for
situations where some input or output levels are exogenously fixed. The approach
presented by Zhu is based on a general weight-based preference structure. The notation
used in this section is unified to correspond to the notation used in section 2 to make the
comparison easier. We present here the CCR models, but the formulations can be used
as BCC models by adding the λ-restriction.

3.1. Weight-based general preference structure by Thanassoulis and Dyson

In this model the inputs and outputs are divided into two categories: those that the DMU
wishes to improve, and those that it wishes to maintain at their current levels. The Y and
X matrices containing the input and output information of different DMUs are
correspondingly divided into two matrices: YI and XI contain the information on the
inputs and outputs to be improved, and YC and XC the information on those to be
maintained at the current level. Vectors y0I, x0I, y0C and x0C contain the corresponding
information on the DMU under consideration. wx ≥ 0 and wy ≥ 0 (at least one of the
weights has to be strictly positive) are user-specified weighting vectors attached to
coefficient vectors z and p. Here z refers to the vector of factors by which the different
outputs are increased and p to the vector of proportions to which the inputs are
decreased.

By varying the weights wx and wy the DMU may search the efficient surface in the input-
output space. As a result the DMU obtains coefficient vectors p and z that define the
target corresponding to the preference weights used. By multiplying the current
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components of inputs and output vectors with the components of vectors p and z the
DMU obtains the target solution.

Mathematically the formulation is the following:

max wyTz - wxTp + ε (1Ts+ + 1Ts-) (3.1)
s.t.

Y01z - YIλ = 0
YCλ             - s+ = y0C

X01p - XIλ     = 0
XCλ            + s- = x0C

z ≥ 1
 p ≤ 1

Y0I = diag(y0I) 
1

X0I = diag(x0I)
λ,  s- , s+ ≥ 0

                      ε > 0

We modify the formulation to make it easier to compare it to the original DEA model
and to the Reference Point model. We add slack variables to all equations, and
substitute each component of vector z with the corresponding component of vector (1 +
σy) and each component of p with components of (1 - σx). Thus we obtain:

max wyTσy + wxTσx + ε (1Ts+ + 1Ts-) 2 (3.2)
s.t.

YIλ - Y0Iσ
y - sI

+ = y0I

YCλ           - sC

+ = y0C

XIλ + X0Iσ
x + sI

-  = x0I

XCλ           + sC

-  = x0C

σy, σx ≥ 0
Y0I = diag(y0I)
X0I = diag(x0I)
λ,  s- , s+ ≥ 0

             ε > 0

where s+ = 







+

+

C

I

s

s
and s- = 








−

−

C

I

s

s
. Let us assume that the DMU wishes to improve all inputs

and outputs. In this case, the only difference between the above model and the
combined DEA formulation is that instead of the scalar σ this model uses vectors σy and

                                                
1 Notation diag(a) refers to  a diagonal matrix which diagonal elements are the elements
of vector a, correspondingly.
2 The constant term wyT1 – wxT1 is omitted from the object function.
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σx, and that the objective function is thus the weighted sum of the elements of these
vectors.

Thanassoulis and Dyson have also introduced a model, in which one input or output is
given a pre-emptive right to improve. Technically, the formulation is the same as above.
The input or output to be improved is included in matrix YI or XI and all other inputs and
outputs are included in matrices YC and XC. Also the model in which some of the inputs
or outputs are exogenously fixed is technically the same, now the fixed inputs and
outputs are included in YC and XC.

3.2 Target setting with ideal targets by Thanassoulis and Dyson

The previous model is capable of finding find targets that dominate the current unit. To
be able to set also targets that do not dominate the unit, i.e. targets in which some inputs
are bigger and some outputs smaller than in the unit under consideration, Thanassoulis
and Dyson introduced the following formulation. In this model the DMU in the first
stage articulates an ideal target point (gy, gx), not necessarily optimal or feasible. Then
the DMU assigns user-specified preference weight vectors wU

x ≥ 0 and  wO

x

 ≥ 0 (at least
one of the weights has to be strictly positive) for the deviation vectors sU

x, sO

x, (under-
and overachievements of inputs) and wU

y ≥ 0 and wO

y ≥ 0 for the deviation vectors sU

y and
sO

y (under- and overachievements of outputs). Then the model minimizes the weighted
sum of the deviations. The more undesirable the deviation from the ideal level is, the
larger weight is attached to it. With the under- and overachievement vectors we can
locate a feasible point (gyf, gxf) as close as possible to the target point.

Mathematically the model is the following:

min wU

xT sU

x + wOV

xT sO

x + wU

yT sU

y

 + wO

yT sO

y (3.3)
s.t.                                      

Yλ + sU

y

 - sO

y = gy

Xλ + sU

x

 - sO

x = gx

λ,  sU

x, sO

x, sU

y, sO

y, gy, gx ≥ 0

This first stage of the model projects the ideal target point (gy, gx) to a feasible point  (gyf,
gxf), where gyf = gy + sO

y*- sU

y

 * and gxf = gx + sO

x*- sU

x* and where sO

y*, sU

y*, sO

x* and,  sU

x*
are the solution of the model (3.3). In the second stage the feasible point  (gyf, gxf) is, in
case it is inefficient, projected to an efficient point. The corresponding model is

max 1TsU + 1TsO (3.4)
s.t.                                      

Yλ  - sO = gyf

Xλ + sU = gxf

λ,  sU, sO, g
yf, gxf ≥ 0
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If sU and sO are zero, (gyf, gxf) is efficient. Otherwise the final efficient target is (gye, gxe),
where gye = gyf + sO* and gxe = gxf - sU* and where sO* and sU* are the solution of the
model (3.4).

Let us assume that the DMU chooses gy = y0 and gx = x0, and wishes to improve all
inputs and all outputs. Since this ideal point is an existing DMU, the first stage will give
(y0, x0) as (gyf, gxf). Thus for the second stage we obtain:

max 1TsU + 1TsO (3.5)
s.t.                                      

Yλ - sO = y0

Xλ + sU = x0

λ,  sU, sO ≥ 0

Notice that terms sU, sO from this model and y0σ
y, x0σ

x from the model (3.2) are equal,
they both give the distance from point (y0, x0) to the final efficient target. Thus model
(3.5) can be obtained from model (3.2) by choosing the weighting vectors to be wx = x0

and wy = y0. Since all the inputs and outputs are to be improved in (3.2) all the slack
variables are zero.

3.3. Weights-based preference structure by Zhu

In this model the DMU first specifies the preference weight vectors wx ≥ 0 and wy ≥ 0
reflecting the relative degree of desirability of the potential adjustments of current input
and output levels. By varying them the DMU may search the efficient frontier. Like in
the weights-based model by Thanassoulis and Dyson, also here DMU gets coefficient
vectors z and p that define the target corresponding to the used preference weights as a
result of the model. By multiplying the current inputs and outputs with vectors g and h
the DMU obtains the target solution.

Mathematically the model is the following:

max wyTg - wxTh + ε (1Ts+ + 1Ts-) (3.6)
s.t.                                      

Yλ - s+ = Y0g
Xλ + s- = X0h

g ≥ 1
 h ≤ 1

Y0 = diag(y0)
X0 = diag(x0)

λ,  s- , s+ ≥ 0
ε > 0
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Where 1Twy - 1Twx = 1. The original model presented by Zhu had the term 1Twy - 1Twx as
the subtractor in the objective function. Again if we substitute components of g with the
corresponding component of vector (1 + σy) and components of p with components of
(1 - σx) we obtain

max wyTσy + wxTσx + ε (1Ts+ + 1Ts-)3 (3.7)
s.t.                                      

Yλ  - Y0σ
y - s+ = y0

Xλ + X0σ
x + s- = x0

1Twy - 1Twx = 1
Y0 = diag(y0) 
X0 = diag(x0)

 λ,  s- , s+ ≥ 0
ε > 0

The difference between this model and model (3.1) is that here the nonnegativity
constraint for σy and σx has been relaxed, and the model can also give targets that do not
dominate the current unit.

3.4. Illustrative example

Below the approaches are applied to the following simple example with both CCR and
BCC assumptions. In the example, only DMU3 is CCR efficient, and all DMUs except
DMU6 are BCC efficient.

Unit Input Output
DMU1 3 1
DMU2 4 4
DMU3 6 7
DMU4 9 9
DMU5 13 10
DMU6 10 3

                                                
3 Also in this model the constant term wyT1 – wxT1 ( = 1 )  is omitted from the object function.
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        Figure 1

Table 1 and Figure 1 show the targets that different models provide for DMU6. TD1
refers to the first and TD 2 to the second model by Thanassoulis and Dyson [1992] In
TD2 ID is assumed to be the ideal target (gy, gx)4. ZHU refers to the model by Zhu
[1996].

TABLE 1: Targets obtained from different models
Model Orientation Possible targets
TD1 CCR c, d

BCC a, DMU4, DMU3, DMU2, b
TD2 CCR e, f

BCC h, DMU4, DMU3, DMU2, g
ZHU CCR origin, infinity

BCC all efficient DMUs

Which target is obtained from the possible ones depends on the weights. The obtained
targets are either existing units or solutions that lie on the edge of the part of the
efficient frontier dominating the target (or being dominated by the target). This means
that these models are generally not capable of providing a target that is located in the
relative interior of a facet. Theoretically it is possible to obtain degenerated solutions,
i.e. to have for example the whole line segment between DMU4 and DMU3 as a target.
Since with CCR assumptions Zhu’s model in this oversimplified example does not have

                                                
4 With DMU6 as (gy, gx) TD2 would obtain the same targets as TD1.
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any finite extreme points other than the origin, the target provided is either the origin or
infinity.

If we want to guarantee that in all situations targets other than origin and infinity are
received, it is possible to use the following model:

max wyTσy + wxTσx + ε (1Ts+ + 1Ts-) (3.7)
s.t.

YIλ - Y0Iσ
y - s+ = yI

min

YCλ           - s+ = y0C

XIλ + X0Iσ
x + s- = xI

max

XCλ           + s- = x0C

σy, σx ≥ 0
Y0I = diag(y0I)
X0I = diag(x0I)
λ,  s- , s+ ≥ 0
ε > 0

Here (yI

min, xI

max) refers to a vector that contains the minimum values of outputs and
maximum values of inputs to be improved from the data set. If all inputs and outputs are
to be improved, this model allows us to scan all the extreme solutions dominating (yI

min,
xI

max). In the BCC model this is not a restriction, the model allows one to scan the whole
efficient frontier. In the CCR model it restricts us to the part of the efficient frontier that
dominates the data set. It can be argued that it is probable that the realistic targets are to
be found from this area.

4. Reference Point Approach

In this paper we suggest the use of the Reference Point Approach instead of the
weighted sums. The Reference Direction approach uses the achievement scalarizing
function (ASF) suggested by Wierzbicki [1980]. By ASF it is possible to obtain also
solutions or targets that are not existing DMUs.

max σ + ε (1Ts+ + 1Ts-) (4.1)
s.t.

Yλ  - σwy - s+ = gy

           Xλ +σwx + s-

  = gx

            λ,  s- , s+ ≥ 0
            ε > 0

Let us investigate what kind of targets this model gives in the example when we vary
the weighting vector (wy, wx). As vector (gx, gy) we have used vector (y0, x0), i.e. the
inputs and outputs of DMU6.
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Six (6) targets have been calculated (from a to f) both in the CCR and the BCC context
(see Figure 2). The targets are obtained by weighting input and output with vectors (1,
0), (0.8, 0.2), (0.6, 0.4), (0.4, 0.6), (0.2, 0.8) and (0, 1). To be able to scan the whole part
of the efficient frontier dominating the data set, we suggest the use of vector  (ymin, xmax)
as vector (gx, gy) as in (3.7).

In the Reference Point approach the efficient frontier can be scanned either by changing
the weighting vectors wx and wy or the aspiration level vectors gx and gy. In the above
example we changed the weighting vector, but in computational applications it is more
effective to fix the weighting vector and change the righthandside parameters, i.e. the
aspiration level vector.

If we replace in (4.1) gx and gy  with gx + tx dx and gy + ty dy, we obtain the Reference
Direction formulation (Korhonen and Laakso [1986]). The Reference Direction
formulation can be solved with the parametric linear programming technique: thus it is
possible to provide the user with information in real time even when the problem is of
realistic size. This guarantees true interactivity. The dynamic extension of the Reference
Direction approach, the Pareto Race (Korhonen and Wallenius [1988]) is implemented
in VIG-software. Korhonen [1997] has discussed the use of the Reference Direction
approach in DEA.
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5. Conclusion

In this paper we have demonstrated how the search of the most preferred target can be
carried out with the Reference Point Approach. The advantage in using the Reference
Point Approach is that we can also find targets that are not extreme point solutions, but
lie in the relative interior of some facet.

The Reference Direction model, an extension of the Reference Point model, is
implemented as Pareto Race in VIG-software. Thus it is possible to search the targets in
a dynamic and interactive way with existing software.

The target setting extensions of DEA provide interesting possibilities to expand the use
of DEA from ex post evaluation to ex ante planning. Another way of utilizing the most
preferred target is Value Efficiency Analysis (Halme et al. [1998]). The Value Efficiency
Analysis (VEA) is a way to incorporate preference information in DEA without using
weight restrictions. In VEA it is assumed that some DM, who has control over the
DMUs, sets the most preferable values for input and output variables.
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