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Abstract

In this study we investigate an urban planning problem where an area is to be rehabilitated.
The area is divided into several sub-areas any of which could be the starting point for the
rehabilitation process. The ultimate goal is to find a rank order for the alternative sub-
areas, which simultaneously solves the problem of where to start the rehabilitation. If all
information were given on the ordinal scale, we could use e.g. the classical minimum
violation principle to solve this problem. In this paper, we have generalized this approach
to cover the cardinal scale and pairwise information.
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1. Introduction

Issues dealing with urban planning, conservation, and rehabilitation are not only
economically and politically relevant but also analytically interesting. They include
traditional quantifiable aspects such as costs and benefits but, additionally, they also
involve intangibles, incommensurable effects, and qualitative features. In particular,
when evaluating plans or projects in a historical area there is a need to integrate
economic, social, architectural, and historical aspects of city life and to take these into
account simultaneously. In other words, these problems exhibit all the characteristics of
Multiple Criteria Evaluation Problems.

Multiple criteria analysis was recently introduced in the domain of urban planning (see,
e.g., Nijkamp [1975], Delft and Nijkamp [1977], Rietveld [1980], Voogd [1982],
[1983]). It rapidly showed its potential for conservation/rehabilitation applications,
particularly those oriented towards the evaluation of plans or projects (Fusco Girard
[1987], Nijkamp [1988], Albers and Nijkamp [1989]). In these cases, the evaluation
process which considers several criteria can be used to support the decision maker to
choose between different alternatives in two ways. It can either provide a rank order of
the alternative plans or projects (Albers [1989], Giordano [1997], De Toro [1997],
Bizzarro and Ferretti [1997]) or it can provide methodological assistance to help the
decision maker select his/her most preferred or the best alternative.

The use of multiple criteria analysis has two definite advantages in the domain of urban
planning, and specifically in the domain of urban conservation/rehabilitation. First, due
to the need of strong formalization, it calls for a thorough examination of the decision
environment and, thus, enables a deep understanding of it. Secondly, it allows the
inclusion of different points of view, which, in this domain, is otherwise a difficult task
to carry out.

We study a problem of urban rehabilitation, which involves five sub-areas, each of
which represents a rehabilitation project. The sub-areas are to be ranked according to
three criteria that are divided into seventeen sub-criteria in all. The rank order then
determines where to start the rehabilitation process. Agostiano [1995] analyzed the
same problem using five different methods. But the results are very conflicting and it is
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difficult to explain those conflicting rankings on the basis of the theoretical foundations
of the methods.

In this paper we propose a ranking principle based on the "Minimum Violation"
principle. The best rank order is searched for by trying to minimize the number of
conflicting pairwise orders with those defined by the original criteria. The principle is
also generalized to cover the cardinal scale and pairwise information. The results of this
approach are compared to those of Agostiano [1995]. The differences are considered in
light of minimum violation principle.

The paper proceeds as follows. In Chapter 2 we present the theoretical foundations of
the minimum violation principle. In Chapter 3 we introduce in detail the ranking
problem of the Matera rehabilitation program. We also review the previous approaches
used by Agostiano [1995], present the respective results, and criticize them. In Chapter
4 we present our results for both cardinal and ordinal data. We end the paper with
concluding remarks in Chapter 5.

2. Theoretical Foundation of the "Minimum Violation" Principle

We assume that a single decision maker (DM) has to rank n (n>0) explicitly defined
deterministic decision alternatives using p (p>1) different criteria. The basic data set can
be given in an n×p matrix A ∈  ℜ n×p whose elements aij, i ∈  I = {1,2, …, n} and j ∈  J =
{1,2, …, p} represent the criterion (numerical) values on alternatives. We use notation
A i or simply index i to refer to the alternative in row i. Correspondingly, we use notation
aj or simply index j to refer to the criterion in column j. In reference to the jth

 criterion
vector, we use aj. Furthermore, we denote 1 = [1, ..., 1]T.

We further assume that each criterion is to be maximized. To each criterion, we associate a
function vj : {a1j, a2j, …, anj} → ℜ , j = 1, 2, …, p, which defines the preference structure of a
DM over the alternatives. The resulting matrix is called a value matrix and denoted by V
with elements vij, i ∈  I and j ∈  J. We say that the value structure is given on a cardinal
scale if the scale is at least an interval one. In addition, in case the value scale is cardinal,
we assume that it is a linear transformation of the original one. The function is assumed to
be strictly increasing.

Our problem is now to find an arrangement of the form Ai p Aj p ... p Ak, where "p" is the
symbol for "less preferred to", and the subscripts i, j, ..., k range over mutually exclusive
and exhaustive subsets of integers 1, 2, ..., n. The alternatives can  be ranked according to
each criterion, but there is no unique “optimal” rank for the alternatives in the presence of
multiple criteria. Actually, there is not even a unique principle to measure the similarity of
two rankings.

As a dissimilarity measure of two rankings, we will use a pairwise violation principle: the
proportional number of conflicting pairwise orders in two rankings. In case we are able to
use cardinal information, we may take into account not only conflicting orders, but also the
differences of the values of the criteria in the pairs, which are in a conflicting order. This
kind of measure is easy to handle, if we present the original data by means of a pairwise
comparison matrix.

Definition 1. The n×n matrix C(aj) is an unweighted pairwise comparison matrix
describing the rank order of observations according to variable aj if
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Chk(aj)  = 


  1, if ahj > akj

 0, if ahj = akj

-1, if ahj < akj

 

               (2.1)
Chh(aj)  = 0

∀  h,k = 1, 2, ..., n.

Definition 2. The n×n matrix C(aj) is a weighted pairwise comparison matrix describing
the rank order of observations according to variable aj if

Chk(aj)  = ahj - akj                  (2.2)

∀  h,k = 1, 2, ..., n.

For brevity, we replace notation C(aj) by Cj and Chk(aj) by cj
hk,  respectively.  Moreover, we

denote

fj = [c j
11

 ,c j
12

 , …,c j
1n

 , … ,c j
n1

, … ,c j
nn

 ]T.               (2.3)

Note that 1Tfj = ∑
h=1

n
  ∑
m=1

n
 cj

hm
 = 0, ∀  j = 1, 2, ..., p.

Now we will define the following similarity measure for two rankings:

τ ij = 
fi

Tfj 

fi

Tfi fj

Tfj

.               (2.4)

Originally Daniels [1943-46] showed that τ ij is Kendall’s rank correlation coefficient, when
the definition of fi and fj is based on an unweighted pairwise matrix Ci and Cj. Furthermore,
Korhonen [1986] showed that τ ij is an ordinary Pearson product-moment correlation
coefficient between criteria ai and aj, when the definition of both fi and fj is based on
weighted pairwise matrices. Thus, it is very natural to generalize this definition also to the
case where one of the criteria i or j is based on an unweighted pairwise matrix and the
other one on a weighted matrix. Hence, we have a measure for conflicting rankings. The
measure is based on the (weighted or unweighted) proportion of pairwise orders in
conflict. It is scaled for the interval [-1, 1]. In case τ ij = 1, the rank orders are exactly the
same, and in case τ ij = -1, they are totally opposite. In the sequel, this measure is simply
called a correlation coefficient without any additional specifications.

Let us now consider our estimation problem. In other words, we have to find the "best"
pairwise comparison matrix C(y), which defines a complete rank order for the alternatives.
Because no ties are allowed, chk(y) ≠ 0, if h ≠ k. Equation  (2.1) is not, however, a sufficient
condition to define a transitive ordering for alternatives. Bowman and Colantoni [1972]
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proved that the ordering is transitive if it is transitive for every triple of alternatives.
Therefore, we can guarantee the existence of a transitive ordering for all alternatives by
making every triple transitive. This condition can be set as follows (see, Bowman and
Colantoni [1972]):

chi(y) + cij(y) + cjh(y) ≤ 1,  for all h, i, j = 1,2, ..., n.                (2.5)

Now we can summarize the sufficient conditions, which guarantees that the matrix C(y)
defines a complete ordering for alternatives Ai, i=1,2,...,n. For convenience, we denote by
U the unknown matrix C(y) we try to solve.





uij  = -1,1 , i ≠j               (2.6a)

uij + uji  =  0 , for all i, j = 1, 2, …, n               (2.6b)

uij + ujh + uhi  ≤  1 , for all i, j, h = 1, 2, … , n                (2.6c)

uii  =  0 , for all  i = 1, 2, …, n               (2.6d)

 

Let's now define the vector standing for the unknown ranking:

γ = [u11,u12, …,u1n, … ,un1, … , unn]
 T.         (2.7)

Because γTγ = n(n-1), then the correlation coefficient between the unknown ranking γ
and the variable j is as follows:

ρj = 
1

n(n-1) 
γTfj 

 fj

Tfj

.

To find the best ranking can be formulated as the following multiple criterion problem:

max ρj = 
1

n(n-1) 
γTfj 

 fj

Tfj

 = A ∑
h=1

n
  ∑
m=1

n
 uhm cj

hm, j = 1, 2, …, p      (2.8)

subject to constraints (2.6a-d),

where A = 
1

n(n-1) ∑
h=1

n
  ∑

m=1

n
  (cj

hm
)
2
 

.
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Problem (2.8) is a typical multiple criteria problem having no unique solution. A
"reasonable" solution is called nondominated and defined as follows:

Definition 3. A rank order u*, u* ∈  V, is nondominated iff ∃/  u, u ∈  V, such that ρ*
≥ ρ and ρ* ≠ ρ, where ρ* is standing for the correlation coefficients corresponding to u*
and ρ is standing for the correlation coefficients corresponding to u.

Definition 4. An alternative u*, u* ∈  V, is weakly-nondominated iff ∃/  u, u ∈  V,
such that ρ* > ρ, where ρ* is standing for the correlation coefficients corresponding to
u* and ρ is standing for the correlation coefficients corresponding to u.

If a rank order is not nondominated it is dominated.

Obviously, there are many nondominated rankings for each problem. Because no single
ranking exists with the maximum values on all criteria, the rational DM will choose one
nondominated ranking. Which alternative is chosen depends on the DM’s preference
structure. To be able to make a decision, he/she needs a tool to help him/her to find
his/her "best" ranking. In multiple criteria decision making (MCDM), the most
preferred is usually used as the synonym for the best. Generally, it is not an easy task to
develop a method that helps a DM to find the most preferred ranking by means of model
(2.8). With reference to one approach, see Korhonen and Soismaa [1981].

However, in our approach we enumerate all possibilities and then use a discrete multiple
criteria method to solve the problem. Being biased, we use our own system VIMDA (A
Visual Multiple Criteria Decision Support System for Discrete Alternatives with
Numerical Data), which is based on Discrete Reference Direction Method developed by
Korhonen [1988].

3. Description of the Matera rehabilitation program (Agostiano

[1995])

The problem area under investigation is the “Sassi” neighborhood in Matera, a town in
southern Italy, situated on the right hand side of a deep gorge. The first settlements date
back to the Paleolithic age. It is also possible to find evidence from Hellenic and Roman
ages. The first settlements were basically in caves and only later in the 7th and 8th
centuries man-made dwellings were added to the natural caves giving the “Sassi” a rare
mixture of natural and built living environment. This old part of the town is
characterized by different small courts with their own small squares, steps, buildings,
and caves, which are organized on different levels because of the morphology of the
place.

The actual condition of the “Sassi” is the object of several scientific investigations and
of many special regional and national laws. Several plans have been developed but only
a recent law passed in 1986 gives enough power to the local government and enables
the use of those plans already developed. The first executive plan refers to half of the
total “Sassi” area. It divides the area into 18 sub-areas, which are differentiated by
dimensions, future activities, and intervention stakeholders. Each sub-area requires a
unique executive design and has been divided into minimal units of intervention, i.e.
those parts of the sub-area that require simultaneous intervention.
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This study deals with the 5 most promising sub-areas (numbers 7, 8, 9, 10, and 12) of
the 18 sub-areas in the first executive plan. The objective is to find a rank order for the 5
sub-areas, which at the same time determines where to start the rehabilitation.

3.1 The evaluation matrix

Each sub-area is evaluated with three main criteria. They deal with economic and
technical feasibility, historical and environmental aspects, and social objectives. Each
criterion is divided into sub-criteria that can be described in numbers. Economic and
technical feasibility (criterion A) is divided into 7 sub-criteria. Historical and
environmental aspects (criterion B) comprise 6 sub-criteria. Social objectives (criterion
C) contain 4 sub-criteria. Thus, the data consists of 17 sub-criteria in all. Table 1
describes the evaluation matrix.

Sub-area 7 Sub-area 8 Sub-area 9 Sub-area 10 Sub-area 12

CRITERIA

1A Total cost (Millions of Lire) 8520 13370 2970 3090 3950

2A Unitary real rehabilitation cost (Lire/m2) 1) 962000 1067000 1088000 1089000 1241000

3A Unitary services rehabilitation cost (Lire/m2) 487000 460000 444000 493000 285000

4A Project iter 2 5 5 1 5

5A Property index 240 127.5 100 100 151

6A Use index 252 269 231 273 266

7A Rehabilitated Units (%) 26 7 27 28 6

8B Architectonic value (%) 44 18 17 28 28

9B Rural churches 0 2 0 1 0

10B % of oldest units 3 5 1 4 2

11B % of prevailing units 2 1 5 3 4

12B Environmental value 13 11 7 18 10

13B Conservation index 227 271 241 219 227

14C Residential density 25 11 14 16 8

15C % of units for residence 33 29 47 31 42

16C % of units for services 17 25 23 11 24

17C Accessibility index 128 167 237 117 260

Table 1. The evaluation matrix.

As can be seen from Table 1, criteria 4A, 10B, and 11B are given on ordinal scales,
whereas the rest are given on cardinal ones. In the sequel, for brevity, we call a criterion
on an ordinal (cardinal) scale an ordinal (cardinal) criterion.

3.2 Review of previous approaches

Agostiano [1995] applied five different multiple criteria methods in order to find the
rank order for the five sub-areas on the basis of the 17 sub-criteria. The following
methods were used: (i) forecasted value, (ii) concordance analysis, (iii) numerical
                                                
1) Agostiano [1995] gave sub-areas 9 and 10 the same ranking on this sub-criterion.
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interpretation, (iv) regime analysis according to Hinloopen-Nijkamp, and (v) score
method according to Israels-Keller (for the methods see e.g. Nijkamp et al. [1990] and
Voogd[1983]). Although some of these methods allow the use of cardinal information,
Agostiano [1995] used only ordinal data by transforming the original evaluation matrix
into the respective ranking matrix.

The method of forecasted value uses either ordinal or cardinal information. In the latter
case it is known as weighted sum. Starting from the evaluation matrix, Agostiano [1995]
first transforms all criterion values into ordinal numbers. The "forecasted value" of each
alternative is then computed by multiplying the value of each sub-criterion by its
respective weight and adding the products. The alternatives are ranked according to the
scores and the one achieving the highest one is considered the best.

Also concordance analysis (see Roy [1968, 1972]) can make use of either ordinal or
cardinal information. Here ordinal data was used. The method, however, requires
cardinal information on weights. For each pair of alternatives, the concordance set is
first determined; i.e., the set of all criteria corresponding to which the first alternative is
at least preferable to the second one. The concordance index is then computed to
indicate the weight of the concordance set. It is the sum of the standardized weights of
the criteria belonging to the respective concordance set. Next the sum of the
concordance indices is computed for each alternative. The one with the highest score is
considered the best one.

The method of numerical interpretation uses qualitative information. Each pair of
alternatives is compared to each pair of criteria. For each pair of alternatives a square
matrix (where the number of criteria determines the dimension) is computed. The cells
in the matrix (+1, 0, or -1) are determined based on the rank orders of the pairs of
criteria and the respective weights. The information in these matrices is then aggregated
by summing the upper triangular parts of each matrix into a cell in a new matrix where
the number of alternatives determines the dimension. Finally a score is computed for
each alternative by calculating row sums of the square matrix. The alternative with the
highest score is regarded as the most favorable one.

To some extent regime analysis according to Hinloopen-Nijkamp (Hinloopen et al.
[1983]) can be interpreted as an ordinal generalization of pairwise comparison methods
such as concordance analysis (Nijkamp et al. [1990]). The ordinal evaluation matrix and
the possibility to use ordinal weights constitute the difference between these two
approaches. The focus of regime analysis according to Hinloopen-Nijkamp is on the
sign of the rank orders between two alternatives. A regime matrix that contains regime
vectors for each pair of alternatives is first computed. The elements of the vectors are
(+1, -1, or 0) depending on whether the sign of differences between the rank orders of
the criteria are positive, negative, or zero. For each pair of alternatives we then calculate
a weighted sum over the criteria and get an index (a sum), the sign of which determines
whether one alternative is preferred to another one. Because of ordinal weight
information the sign of the index is not always unambiguous. To circumvent this
difficulty assuming a uniform probability distribution the set of feasible weights is
partitioned so that for each subset of weights a definite conclusion can be drawn about
the sign of the index. The final ranking is determined by computing for each alternative
a success index by adding the probabilities of this alternative being preferred to the
other ones and dividing the sum by the number of alternatives minus one. The
alternative corresponding to the highest success index is considered to be the best one.
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Score method according to Israels-Keller (Israels and Keller [1986]) is related to regime
analysis. In this method all the quantitative weight alternatives generated by the
qualitative weight vector are taken into account. These weight vectors are applied
consecutively to the scores of the evaluation matrix, in this case those of the ranking
matrix. For each alternative the result is a score, a weighted sum valid for a certain set
of weights. The higher the score compared to the other alternatives the more attractive
that alternative is. The scores are then used to rank the alternatives. The one with the
highest score is regarded as the most preferred one.

It should be pointed out that Agostiano [1995] used the methods in two phases. The
sub-areas were first ranked within each of the three criteria, that is, by using the
respective sub-criteria. These three rank orders were then used as data in the second
phase.

3.3 Results from Agostiano [1995]

Using the five methods from above Agostiano [1995] carried out the analyses by
employing four different scenarios where the importance of the main criteria varies. In
scenario 1 all criteria are considered to be of equal importance. Criterion A is regarded
as "twice" as important as the other two in scenario 2. In scenario 3 criterion B is
considered clearly more important than two other ones; it is deemed "twice" as
important as the two others. In scenario 4 the emphasis is on criterion C which is
regarded as "twice" as important as criteria A and B. Table 2 summarizes the scenarios.

Scenario 12) Scenario 2 Scenario 3 Scenario 4

CRITERION A 0.33 (0.0471) 0.5 (0.070) 0.25 (0.036) 0.25 (0.036)

CRITERION B 0.33 (0.055) 0.25 (0.042) 0.5 (0.083) 0.25 (0.042)

CRITERION C 0.33 (0.0825) 0.25 (0.0625) 0.25 (0.0625) 0.5 (0.125)

Cardinal weights

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CRITERION A

CRITERION B wA = wB = wC wA > wB = wC wA = wC < wB WA = wB < wC

CRITERION C

Ordinal weights

Table 2. The scenarios for the numerical experiments.

In Table 2 the term in parentheses is the weight per sub-criteria of that particular
criterion. The results from the study of Agostiano [1995] are reported in the following
figures3).

                                                
2) In scenario 1 Agostiano [1995] reported equal weights for the 17 sub-criteria (i.e., 0.058) but obviously
used the correct weights shown in the table.
3) In Figures 1a-1d a higher value is always better.
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Figure 1a. Results from the five methods with weight scenario 1.

It is clear from Figure 1a that the five methods all result in different rank orders for the
sub-areas when all criteria have equal weights (scenario 1). Except for sub-area 10 all
other sub-areas are ranked first with at least one method, sub-area 9 with two methods.
Sub-area 10 is ranked last with all methods. With the score method according to Israels-
Keller it ties this place with sub-area 12. It is interesting to notice that the method of
forecasted value ranks sub-area 12 first, whereas the score method according to Israels-
Keller ranks it last. Regime analysis according to Hinloopen-Nijkamp results in three
ties for the second place, which means that, in this case, it can only distinguish the best
and the worst sub-areas.

Figure 1b. Results from the five methods with weight scenario 2.
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When more weight is put on criterion A (scenario 2), the methods of numerical
interpretation and regime analysis according to Hinloopen-Nijkamp produce the same
ranking for the sub-areas. This can be seen in Figure 1b. Moreover, the rank order with
the method of numerical interpretation is the same as in scenario 1. This is also true for
the score method according to Israels-Keller. Compared to scenario 1, the method of
forecasted value and concordance analysis switch the sub-areas in the first and second
places, sub-areas 9 and 12 and 8 and 9, respectively.

Sub-area 9 is ranked first with four methods and sub-area 7 with one method. In the
latter case sub-area 9 is ranked second. As in scenario 1 sub-area 10 is ranked last with
all methods and in the same way it ties this place with sub-area 12 when the score
method according to Israels-Keller is used.

Figure 1c. Results from the five methods with weight scenario 3.

In scenario 3 with emphasis on criterion B (Figure 1c) the five methods result again in
different rankings. However, regime analysis according to Hinloopen-Nijkamp
generates the same rank order as in scenario 2. This is also the same ranking as with the
method of numerical interpretation in scenarios 1 and 2.

In scenario 3, sub-area 8 is ranked first three times and sub-areas 7 and 9 each once. It is
worth noticing that regime analysis according to Hinloopen-Nijkamp ranks sub-area 9
first whereas the methods of numerical interpretation and concordance analysis rank it
last.
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Figure 1d. Results from the five methods with weight scenario 4.

With more weight on criterion C the results seem more consistent than with emphasis
on other criteria as Figure 1d shows. The same rank order is produced by the methods of
forecasted value and numerical interpretation and concordance analysis. Regime
analysis according to Hinloopen-Nijkamp ranks the sub-areas in the same order as in
scenario 1 but this ranking has three ties for the second place.

In Figure 1d, sub-area 9 is ranked first in four cases and second once. Sub-area 7 is
ranked first once. Sub-area 10 is always the last one with one tie with sub-areas 8 and
12 when the score method according to Israels-Keller is used.

To summarize the results, it is clear from Figures 1a-1d that the methods used do not
usually produce the same rankings. In other words, it does make a big difference (i)
which method one selects and (ii) what magnitude of weights one uses. But there are
numerous arguments in MCDM against using importance weights as a means to elicit
and represent decision maker’s preference information (e.g., Steuer [1986, pp. 193-200],
Korhonen and Wallenius [1989], Wierzbicki [1986]). This is established above as well
where it is shown that it is possible to produce the same ranking although the weights
differ. It is also not straightforward to argue that the greater the importance of a
criterion, the larger the respective weight. Nakayama [1995] showed that there is no
positive correlation between the weight and the value of the objective at the resulting
solution. Therefore, we propose in Chapter 4 the use of an interactive method where one
does not have to specify weights in advance.

3.4 Critique of Agostiano’s [1995] results

Information in the evaluation matrix of Table 1 can be used to calculate a pairwise
comparison matrix for each criterion. Because Agostiano [1995] used only ordinal data,
we first calculate for all criteria unweighted pairwise comparison matrices. Assuming
that all sub-criteria are considered equally important within the respective criterion we
add the pairwise comparison matrices within each criterion. The results are given in

scenario 4
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Table 3. Each cell indicates how many times the alternative in row i is ranked higher
than the alternative in column j within each criterion.

Criterion A
(7 sub-criteria)

Criterion B
(6 sub-criteria)

Criterion C
(4 sub-criteria)

7 8 9 10 12 7 8 9 10 12 7 8 9 10 12
7 - 4 3 4 3 - 3 3 2 3 - 2 1 4 1
8 3 - 3 4 3 3 - 5 3 4 2 - 1 2 2
9 4 3 - 3 3 2 1 - 2 2 3 3 - 3 2
10 3 3 2 - 4 4 3 4 - 3 0 2 1 - 1
12 4 3 3 3 - 1 2 3 2 - 3 2 2 3 -

Table 3. The unweighted pairwise comparison matrices.

From Table 3 it is easy to deduce the following "common sense" ranking rules:

1. sub-area 7 should always be ranked before sub-area 8 if they are on two
consecutive places,

2. sub-area 8 should always be ranked before sub-area 10 if they are on two
consecutive places,

3. sub-area 8 should always be ranked before sub-area 12 if they are on two
consecutive places, and

4. sub-area 12 should always be ranked before sub-area 9 if they are on two
consecutive places.

In other words, the first mentioned sub-area dominates the latter one irrespective of the
possible weights for the criteria. In each case, the result is based on the fact that on two
criteria the sub-areas are tied but on the third one the first mentioned is ranked before
the latter one.

At least one of the "common sense" rules is violated for every method in the results for
scenarios 3 and 4 in Section 3.3. For scenario 1 only score method according to Israels-
Keller does not break any of the four "common sense" rules. For scenario 2,
concordance analysis and score method according to Israels-Keller obey the four rules
above, the other three methods breach at least one of them.

In scenario 1 with equal weights for the criteria the score method according to Israels-
Keller places sub-area 7 ahead of sub-area 9. But if we look at the pairwise comparison
matrices in Table 3, sub-area 9 should be ranked before sub-area 7 because (1) on
criterion A sub-area 9 wins over sub-area 7 by 4-3 from 7 possibilities, (2) on criterion
B sub-area 7 wins over sub-area 9 by 3-2 from 6 possibilities, and (3) on criterion C
sub-area 9 wins over sub-area 7 by 3-1 from 4 possibilities.

On the other hand, in scenario 2 more weight is put on criterion A. In this case,
concordance analysis ranks sub-area 9 before sub-area 8. But these two sub-areas have
the same number of pairwise winnings on criterion A. Since equal weight is to be put on
criteria B and C, sub-area 8 should be ranked ahead of sub-area 9 because on criterion B
sub-area 8 beats sub-area 9 by 5-1 out of 6 possibilities and on criterion C there is only a
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3-1 win for sub-area 8 out of 4 possibilities. Also score method according to Israels-
Keller ranks these two sub-areas incorrectly.

To summarize the result above, all five methods violate at least one of the pairwise
ranking orders provided by the original evaluation matrix. This is true for all four
scenarios.

4. Rank Order Using Minimum Violation Principle

We first calculate the pairwise comparison matrix for each criterion. We use equation
(2.1) for the sub-criteria presenting value structure on an ordinal scale (sub-criteria 4A,
10B, and 11B), and for the rest of the sub-criteria we employ equation (2.2). Equation
(2.1) defines a so-called unweighted pairwise matrix and equation (2.2) a weighted
pairwise matrix. In the latter case, we assume that the value function is a linear
monotonic function of the numerical values of the criterion.  It is decreasing for the cost
related sub-criteria (1A-3A), and increasing for the rest of the sub-criteria. All pairwise
comparison matrices Cj, j = 1,2, …, 17, are transformed into vector form as explained in
equation (2.3). Each vector consists of 25 (= 5×5) elements. We are looking for vector γ
(equation (2.7)) standing for a rank order, which simultaneously maximizes the
correlation coefficient with each given vector fj, j = 1, 2, …, 17. Unfortunately, none of
the 120 possible rankings fulfills this requirement. On the other hand, all possible rank
orders are nondominated (see, Definition 3). This is why any of those rank orders is a
rational choice. But how do we find the best ranking?

There are a number of apparent advantages of employing an interactive multicriteria
approach to help a DM to find his/her most preferred ranking from among the 120
possible nondominated ones. First, it is possible to explore the efficient frontier without
determining the weights beforehand. (Actually, it is not possible to generate all non-
dominated solutions by using the weighted sums.) Second, by moving around the
efficient frontier the DM is able to examine the mutual dependencies of the criteria.
Third, the number of active criteria (that is, taken into account at the moment) can vary
during the process as can the combination of active criteria. Fourth, the DM is free to
apply any principle (e.g, the lexicographic one) he/she chooses to select the most
preferred solution from among the proposed efficient ones. To summarize, the DM is in
control of the process throughout the session. It is usually claimed that if the number of
criteria is clearly less than ten, then the DM is able to evaluate the alternatives with all
criteria simultaneously. However, 17 criteria are too many for this kind of approach.
Therefore, he/she has to solve the problem in a stepwise manner. There are (at least)
two reasonable approaches:

1. Alternatives are first evaluated and ranked within each criterion separately. Those
three rank orders are then used as new criteria for finding the final rank order.

2. The information is first aggregated within each main criterion, and then the
aggregated information is used for finding the final rank order.

In each approach, we unfortunately lose information. In the previous case, each new
rank order does not any more include information about individual rankings. In the
latter case, the aggregation process destroys some information. If weighted sums are
used in aggregation, some potential rank orders will be eliminated from further
consideration. We will consider these principles in the following section.
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4.1 Cardinal information

When we use all 17 sub-criteria VIMDA reveals that there are no dominated rankings.
In other words, unless there is some preference information available, all rankings are
both possible and rational choices. In this application, the DM is assumed to articulate
his preference information over the main criteria. Therefore we have to use some
principle to aggregate the lower-level information. Let us first consider the approach
where the "best" rank order for each main criterion is searched.

When we consider sub-criteria below criterion A, all the 120 permutations of the
rankings are nondominated. Hence, there is no rational principle to eliminate any of
those possible rank orders. The DM’s preference structure determines which one is
chosen. Because we do not have this information available, for demonstrative purposes
we assume that he/she would like to find a rank order, which maximizes the minimum
correlation coefficient (see, problem (2.8)) between a rank order and the sub-criteria.
The same principle is applied to criteria B and C. In these two cases, some alternatives
can be eliminated, because, with criterion B, 102 alternatives are nondominated, and,
with criterion C, only 31 alternatives are nondominated. The results are shown in Table
4.

Sub-area
7 8 9 10 12

Criterion A 2 4 5 3 1
Criterion B 4 2 5 3 1
Criterion C 1 4 3 5 2

Table 4. Rank orders of the sub-areas based on the maximum of minimum correlation
between the sub-criteria and the rank order chosen.4)

Assuming that "maximizing the minimum correlation"-principle corresponds to the
DM’s preferences we are able to reduce the 17 rank orders into three different orders
and continue the analysis with these three new rankings from Table 4. Because the
DM’s preference information is not available, we do not complete this analysis.

Another approach to reduce the number of criteria is to first aggregate all rank orders at
the lower level to the level of the three main criteria by using some pre-specified
principle. This can be done for example as follows: within each criterion, we calculate
the average of the correlation coefficients; in other words, we assume that the sub-
criteria are considered equally important within each criterion. It means that our
aggregated criterion is based on "average non-violation". This principle is used for
comparative purposes, because it corresponds to the idea used by Agostiano [1995] in
his analyses.

Table 5 below shows the rank orders of the sub-areas when we maximize the average of
the correlation coefficients separately for each criterion.

                                                
4) In this and subsequent tables a higher value is always better.
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Sub-area
7 8 9 10 12

Criterion A 5 1 2 3 4
Criterion B 3 5 1 4 2
Criterion C 3 2 5 1 4

Table 5. Rank orders of the sub-areas based on "average non-violation" for each
criterion separately.

In this way the problem is reduced into a new three-criteria one where each criterion is
based on average non-violation. Using VIMDA software we can ascertain that there are
53 dominated alternatives and 67 nondominated ones. To choose the "most preferred
solution" for each scenario, we use the weights for the aggregated criteria (in Table 2)
as proposed by Agostiniano [1995] and add the results over the criteria. We then select
for each scenario the ranking that has the highest weighted sum. The results appear in
Table 6.

Sub-area
7 8 9 10 12

Scenario 1 4 2 3 1 5
Scenario 2 4 2 3 1 5
Scenario 3 5 4 2 1 3
Scenario 4 3 2 5 1 4

Table 6. Rank orders of the sub-areas based on weighted "average minimum violation"
for the three criteria.

It is interesting that in Table 6 scenarios 1 and 2 result in the same rank order. In other
words, putting equal weight on the criteria produces the same ranking as putting more
weight on criterion A than on the other two.

We would like to emphasize that we have aggregated the rankings over the three main
criteria only for demonstration purposes. Our proposal is to use an interactive approach
and enable the DM to a make free search in the nondominated set. In this way, he/she is
free to choose any nondominated alternative as his/her most preferred solution.

4.2 Ordinal information

In order to be able to compare the results from our minimum violation principle to those
of Agostiano [1995] we can only use ordinal information. Following the procedure
described in the beginning of this chapter we first calculate unweighted pairwise
comparison matrices for all sub-criteria, be they cardinal or ordinal. Then we aggregate
over the sub-criteria by computing for each criterion an "average non-violation", and
use the aggregated values in the final analysis.
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We first use VIMDA to determine the number of nondominated rankings. We find 95
dominated rankings, which, however, leaves 25 nondominated ones.

Table 7 below shows for each scenario in Table 2 the rank orders of the sub-areas based
on ordinal data and the average minimum violation principle.

Sub-area
7 8 9 10 12

Scenario 1 2 5 3 1 4
Scenario 2 2 5 3 1 4
Scenario 3 2 5 3 1 4
Scenario 4 2 4 5 1 3

Table 7. Rank orders of the sub-areas based on weighted "average non-violation" for the
three criteria.

It is interesting to note that the first three scenarios in Table 7 produce the same rank
order, although they emphasize different criteria. None of the rankings in Table 7 equal
the ones that Agostiano [1995] produced with the five methods shown in Figures 1a-1d.
However, scenario 4 results in the same rank order as concordance analysis with
scenario 2 (see Figure 1b). It will be shown later that the rank order in scenario 4 in
Table 7 does not break any of the "common sense" rules as scenario 2 did with
concordance analysis.

The rankings in Table 7 do not violate any of the four "common sense" ranking rules
based on pairwise comparison matrices in Table 3 and introduced in Section 3.4. As
regards scenario 1 with equal weights the justification for ranking sub-area 9 ahead of
sub-area 7 can be found in Section 3.4. By examining the pairwise comparison matrices
in Table 3 and bearing at the same time in mind that the criteria have equal weights it is
easy to reach the conclusion that sub-area 7 should be ranked before sub-area 10. On
criterion A sub-area 7 wins over sub-area 10 by 4-3 out of 7 possibilities. Sub-area 10
wins over sub-area 7 with 4-2 out of 6 possibilities on criterion B but loses on criterion
C by 0-4 out of 4 possibilities.

For scenario 2 we have more emphasis on criterion A and criteria B and C have equal
weights. Also in this case sub-area 9 should be ranked before sub-area 7 in pairwise
comparison. On criterion B sub-area 7 wins over sub-area 9 by 3-2 out of 6 possibilities
but on criterion C sub-area 9 wins over sub-area 7 by 4-0 out of 4 possibilities.
Moreover, for criterion A sub-area 9 wins over sub-area 7 by 4-3 out of 7 possibilities.
Hence, sub-area 9 should be ranked before sub-area 7. The reasoning why sub-area 7
should be ranked ahead of sub-area 10 can be deduced in a similar way. On criterion B
sub-area 7 loses to sub-area 10 by 2-4 out of 6 possibilities but on criterion C it wins
with 4-0 out of 4 possibilities. In addition, sub-area 7 wins over sub-area 10 on criterion
A by 4-3 out of 7 possibilities.

When criterion B is considered to have more weight, we deal with scenario 3. Because
in this case criteria A and C have the same weights sub-area 9 should be ranked in
pairwise comparison before sub-area 7 with regard to these two criteria. Sub-area 9 wins
over sub-area 7 with 4-3 out of 7 possibilities on criterion A and with 3-1 out of 4
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possibilities on criterion C. Sub-area 9 loses however to sub-area 7 by 2-3 out of 6
possibilities on criterion B. But only by putting an extremely high weight on this
criterion is it possible to rank sub-area 7 before sub-area 9. As to sub-areas 7 and 10,
sub-area 7 is so strong in pairwise comparison on criterion A (win with 4-3 out of 7
possibilities) and on criterion C (win with 4-0 out of 4 possibilities) that its defeat on
criterion B (loss with 2-4 out of 6 possibilities) does not affect the rank order unless
criterion B is regarded as remarkably more important.

In scenario 4 we emphasize criterion C. Sub-areas 9 and 8 are equally strong on
criterion A. Sub-area 8 is very much stronger on criterion B. It wins over sub-area 9 by
5-1 out of 6 possibilities. But, on criterion C that is regarded as the most important one
in this case, sub-area 9 clearly comes first. It wins over sub-area 8 by 3-1 out of 4
possibilities. In order to rank sub-area 8 ahead of sub-area 9 the weight for criterion B
should be higher than it presently is. Therefore, we conclude that sub-area 9 should be
ranked before sub-area 8. Sub-area 12 wins over sub-area 7 on criterion A by 4-3 out of
7 possibilities. It loses on criterion B with 1-3 out of 6 possibilities. But on criterion C it
again wins by 3-1 out of 4 possibilities. Therefore, sub-area 12 is so much stronger in
the latter case that it should be ranked ahead of sub-area 7. For sub-areas 7 and 10 it is
clear that the first one should be come before the latter one. On the two criteria with
equal weights, A and B, sub-area 7 wins on the first one by 4-3 out of 7 possibilities and
loses on the second one by 2-4 out of 6 possibilities. For criterion C, which is regarded
as more important than the two others, sub-area 7 is always ranked ahead of sub-area
10; in other words, it wins over sub-area 10 by 4-0 out of 4 possibilities. Consequently,
sub-area 7 should be ranked ahead of sub-area 10.

Based on the analyses above we conclude that the results in Table 7 are consistent with
those of pairwise comparison. In conclusion it is worth emphasizing that they do not
break any of the "common sense" ranking rules from Section 3.4.

5. Concluding remarks

In this paper, we have studied a problem of urban rehabilitation, which involves five
sub-areas. Each of these represents a possible rehabilitation project. The sub-areas are
characterized with seventeen criteria, which are grouped into three main criteria. On
each criterion the sub-areas are presented either on an ordinal or on a cardinal scale. The
purpose is to find a rank order for these sub-areas, which simultaneously determines
where to start the rehabilitation process.

The problem was previously considered by Agostiano [1995], who used five different
methods. Agostiano reported an expected result: different methods result in different
rank orders. However, he did not propose any guidelines for how a decision maker
might choose the best method. We have proposed the use of the "minimum violation"
principle for comparison of different methods. We have also proposed a ranking method
that is based on this principle. The purpose is to solve a multiple objective integer linear
programming model. Each objective function describes the (standardized) number of
pairwise violated rank orders between each original rank order and the rank order to be
searched. The method is interactive and it allows the decision maker to freely search
possible (non-dominated) solutions and to choose any of these as his/her most preferred
one. This approach is able to deal with both ordinal and cardinal information.
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We have demonstrated that our approach gives results that are consistent with some
"common sense" rules. None of the five methods included in Agostiano’s [1995]
experiment fulfilled all these "common sense" rules.
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