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Abstract

Classical risk process models in insurance rely on independency. However, especially
when modelling natural events, this assumption is very restrictive. This paper pro-
poses a new approach to introducing dependency structures between events into the
model and investigates its effects on a crucial parameter for insurance companies, the
probability of ruin. Explicit formulas, numerical simulations and sensitivity results
for dependence are established for different dependency models of first-order marko-
vian type indicating that for various scenarios dependency considerably increases
the probability of ruin.
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Dependent Risks and Ruin Probabilities

in Insurance

Hansjörg Albrecher * (albrecher@finanz.math.tu-graz.ac.at)

1 Introduction

1.1 The need for dependency models

One of the important issues of insurance industry is how to cope with the effective
insurance of natural catastrophies - events of low probability and high impact.
It is the size and frequency of these events that considerably influences a crucial
parameter for the risk exposure of an insurance company, the probability of ruin.
Its estimation traditionally is done by assuming independence in space and time
between these natural events (see Section 2.1). This is mostly due to the fact that
up to now there are in general no explicit analytical formulas for the calculation of
ruin probabilities for dependent events available in the literature.
Analytical modelling of extremal events can so far only be handled by introducing
distributions with heavy tails (i.e. higher probability for large damage occurences)
for the claim sizes in the independent model. In such a model the ruin probability
turns out to be essentially determined by the distribution of the maximum value of
the claim sizes [Embrechts 1997]. But extremal events can be triggered by inherent
dependencies and not necessarily have to be the result of an underlying heavy-tail-
distribution of the claims. If this fact is neglected, the estimated ruin probability
can, as is shown in this paper, in many realistic scenarios be drastically lower than
its real value. According to many climate experts, extremal natural events will get
more likely in the future due to recent climate changes (cf.[MacDonald 1997]).
Thus an improvement of models for dependent catastrophic events is inevitable.

Classical estimations for the ruin probability are furthermore based on the fact
that the number of claims up to an arbitrary time t constitutes a Poisson process
(cf. [Grandell 1992]), meaning that the time distance back to the last event
does not influence the timing for the next event to happen. That essentially
would mean that nature has no memory and causal intertwinings concerning its
catastrophies do not exist. However, apart from an intuitive objection to that
restriction (think for instance of the atmosphere and the ocean which can store

*Institut für Mathematik, Technische Universität Graz, Steyrergasse 30/II, 8010 Graz, Austria,
Tel: +43-316-873-7128. H. Albrecher was a participant in IIASA’s YSSP 1998.
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extremal conditions over years), looking at various data bases of natural catas-
trophies in the recent decades, this assumption seems very unlikely (see Section 1.2).

There are some generalizations of the Poisson process to so-called Cox-models (for
a nice summary see [Grandell 1992]), where the intensity of the Poisson-process
is not constant anymore, but an M-state Markov process. Reinhard [1984] has
worked out an explicit formula for the ruin probability for a 2-state Markov process.
However, all these Cox-models need the inter-occurence times to be exponentially
distributed and are not capable of considering dependencies between consecutive
claim sizes. This paper proposes a different and somewhat more general technique
to embed the classical independent models into models including dependency.

Recently numerical tools to optimise portfolio selections and insurance strategies in
the presence of dependent catastrophic events have been developed (see [Ermolieva
1997] and [Ermolieva et al. 1997]). This approach uses adaptive Monte-Carlo-
methods, which essentially require analytical blocks. Therefore it is also from
this point of view highly desirable to develop analytical models for dependency
structures.
In practice, often the first moments of a certain distribution are estimated and used
as the basis of the calculation of ruin probabilities. However, as is shown in this
paper, dependent models with first moments identical to those in the independent
case can be formulated, ending up with ruin probabilities being higher at several
orders of magnitude (see Section 3.2).

Section 2 summarizes the classical approach and gives a theorem for a generalization
of an approximation result for the ruin probability. Section 3 discusses general
concepts of dependence and thereafter different classes of dependent models of first
order markovian type are introduced and compared. Sensitivity results of the ruin
probability under dependency are, both analytically and numerically, established
and applied to the data of Section 1.2.

1.2 Empirical data

Figure 1 shows the occurence of damages with an insurance industry loss of more
than US$ 50,000,000 (normalized to the 1987 market) caused by Tornados in the
USA between 1949 and 1986 (data taken from [Friedman 1987]).
Even for the naked eye correlation and clustering is visible. Calculation of the
autocorrelation coefficient ρ for the one-step-autocorrelation model

Xi+1 = ρXi + ei,

where ei is the residuum and Xi is the corresponding variable of interest, yields
ρ = 0.3 for the correlation between the interoccurence times and ρ = 0.06 between
the damage heights, clearly indicating that these events are dependent on each other.
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Figure 1: Insurance industry losses caused by Tornados in the USA between 1949 and
1986

2 The Classical Model

A risk process can be modelled as follows: The occurence of the claims is described
by a point process and the amounts of money to be paid by the company at each
claim by a sequence of random variables. The company receives a certain amount of
premium to cover its liability and the difference between the premium income and
the (average) cost for the claims is the ’safety loading’ r.
In the classical so-called Cramer-Lundberg-model [Grandell 1992] the claim sizes
Y1, Y2, . . . are independent identically distributed (iid) positive random variables
with distribution function F and finite mean µ = E(Y1). The claims Yk arrive at
time Tk = D1 + · · · + Dk according to a homogeneous Poission process, where the
inter-occurence times D1, D2, . . . are independent exponentially distributed random
variables with intensity α. If the corresponding claim number is N(t) = sup{k ≥
1 : Tk ≤ t}, t ≥ 0, then the capital at time t is

U(t) = u+ ct− V (t), t ≥ 0,

where u is the initial capital, V (t) =
∑N(t)
n=1 Yn the total claim amount until time t

and c > 0 is the premium income rate. The ruin probability in infinite time is then
defined by

ψ(u) = P
(
inf
0≤t≤∞

U(t) < 0
)
.
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For the case of exponentially distributed claim sizes Yk there exists an explicit for-
mula for the ruin probability first established by [Lundberg 1903]:

ψ(u) =
1

1 + r
e−

ru
µ(1+r) , (1)

where r = c
αµ
− 1 is the safety loading, which is positive for a reasonable insurance

policy. Using an empirical value for µ and α, a desired value for the ruin probability
can in practice (under the assumption of independence between the claims) be
approximated by choosing a suitable risk premium rate c (this procedure relies on
the law of large numbers which only holds for independent events).

In the more general case of Y1, Y2, . . . being identically distributed according to
an arbitrary (but exponentially bounded) distribution function F , there exists the
famous Cramer-Lunberg approximation

lim
u→∞

eRuψ(u) = C, (2)

where C is a a constant and the so-called Lundberg exponent R depends on F and
is given by a functional equation (see Grandell 1992]).
This asymptotic result (2) is only proved for exponentially distributed Di. However,
the theorem at the end of this section shows, that it holds for a still wider class of
distributions.

For further purposes it is convenient to rewrite the process in the form of a random
walk

Si =
i∑

j=1

Xj (3)

where Xi = Yi − cDi, so the process direction is reversed (starting at U(t) = 0 and
causing ruin, if U(t) = u). In the classical model, X1, X2, . . . is an iid sequence
of random variables. Note that for a reasonable choice of the premium rate c,
E(Xi) < 0, so the random walk has negative drift. Using this notation the ruin
probability can equivalently be defined by

ψ(u) = P (max(0, S1, S2, . . .) ≥ u) . (4)

If the distribution function F is normal with mean µ and variance σ2, then the
random walk Sn can be seen as discrete equidistant points taken from its continuous
analogon, the well-known Wiener process W (t). But for a Wiener process W (t), it
is known that the ruin probability is

ψ(u) = P (max
t≥0
[σW (t)− µt] ≥ u) = e−

2µu

σ2 ,

so there exists a Lundberg exponent R = 2µ/σ2 for the continuous case. For our
discrete random walk with normal distribution, the following theorem applies and
hence shows the existence of a Lundberg exponent R:
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Theorem 1 Let F be the common (compound) distribution function of the iid Xi.
If F is such that there exists a constant ν with

∫ ∞

−∞
(1− F (u))eνudu = 1, (5)

then the Cramer-Lundberg approximation

lim
u→∞

eRuψ(u) = C

holds for some constant C.

Proof: The ruin probability can expressed by the recursive equation

ψ(u) =

{
1− F (u) + ∫ u−∞ ψ(u− v)dF (v) if u ≥ 0
1 if u < 0

(6)

or equivalently by

ψ(u) = 1− F (u) +
∫ u

−∞
ψ(u− v)dF (v) + g(u)

with

g(u) =
(
F (u)−

∫ u

−∞
ψ(u− v)dF (v)

)
1{u<0}.

We introduce the transformation

ψ̂(t) =
∫ ∞

−∞
etuψ(u)du

for 0 < t ≤ ν. Let h(u) = 1− F (u) + g(u). Using the transformation rule for the
convolution this yields

ψ̂(t) = ĥ(t) + ψ̂(t)F̂ (t)

or

ψ̂(t) =
ĥ(t)

1− F̂ (t)
.

Now ̂1− F (u) is by the precondition for t ≤ ν finite and ĝ(t) is finite, because
g(u) = 0 for u ≥ 0, so ĥ(t) is finite. For t = ν the transorm ψ̂ has a singularity and
therefore the behavior of ψ in the original domain for u→∞ corresponds to t→ ν
in the transformed domain. To reveal the behavior of ψ̂(t) near t = ν, we linearize
and obtain

ψ̂(t) =
ĥ(ν)

c1(ν − t)

in the vicinity of t = ν with c1 = F̂ ′(ν) =
∫∞
−∞ ue

νudF (u) being a positive constant.
But this is exactly the transform of a function of the form

ψ(u) = Ce−νu. //
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3 The Dependent Model

3.1 Concepts of dependence

We now want to introduce dependency between consecutive random variables
in a sequence into the model (throughout this paper we will consider first order
Markovian processes only (i.e. a random variable Xi+1 depends on the past
X1, . . . , Xi only through its direct ’precessor’ Xi)). Let us define what is meant by
dependency: For simplicity we will restrict our considerations to positive depen-
dence or ’association’. Heuristically spoken a pair (X, Y ) is positively dependent, if
large values of Y tend to be associated with large values of X and small values of
Y tend to be associated with small values of X.

Following [Lehmann 1966] there are three successively stronger definitions of positive
dependence:
For a first definition, one can compare the probability of any quadrant X ≤ x, Y ≤ y
with the corresponding probability in the case of independence. A pair (X, Y ) is
then positively quadrant dependent, if

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y) for all x, y. (7)

In that case, as can be shown,

E(XY ) ≥ E(X)E(Y )

if the expectations exist, with equality holding if X and Y are independent. This
essentially means that if a pair (X, Y ) is positively quadrant dependent, then
the covariance (one of the well-known measures of association), when existing, is
Cov(X, Y ) ≥ 0.
Definition (7) expresses the fact that knowledge of X being small increases the
probability of Y being small. A stronger condition is the following: Y is positively
regression dependent on X, if

P (Y ≤ y |X = x) is non-increasing inx, (8)

Condition (8) requires the conditional variable Y given x to be stochastically increas-
ing. An even stronger condition is obtained by requiring the conditional density of
Y given x to have monotone likelihood ratio, i.e.

f(x, y′)f(x′, y) ≤ f(x, y)f(x′, y′) for all x < x′, y < y′. (9)

If (9) holds, then (X, Y ) are said to be positive likelihood ratio dependent.

3.2 The normal copula model

One typical way of realizing dependence between two random variables in a math-
ematical model is to combine them through a copula, which is defined on the unit
square and combines two uniformly distributed variables according to some depen-
dence structure. There are various copula functions available in the literature (cf.
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[Joe 1993]). However, for our purpose of consecutive variables in a sequence we need
to express the dependent variable by its ’precessor’ and an independent variable in
a compact form. This is only possible for the so-called ’normal copula’

C(u, v; ρ) = ΦΣ(ρ)(Φ
−1(u),Φ−1(v)),

where ΦΣ is the bivariate normal distribution function with mean vector zero and
covariance matrix

Σ(ρ) =

[
1 ρ
ρ 1

]
, −1 ≤ ρ ≤ 1

and u and v are uniformly distributed.
Let now X1, Z2, Z3, . . . be iid with distribution function F (where the notation of
(3) is used). By the fact that a distribution function of a random variable is itself a
uniformly distributed variable, the copula can be rewritten to

F (Xi+1) = Φ
(
ρΦ−1(F (Xi)) +

√
1− ρ2Φ−1(F (Zi+1))

)
, (10)

with Φ denoting the standard normal distribution. This formula can now be used
to simulate a sequence Xi, with adjacent variables in the sequence being connected
through the normal copula. It should be noted, that the marginal distributions of the
Xi stay unchanged, which is highly desirable for a dependence model, as changes
in the marginal distribution (’the independent variables’) would have additional
impact on the value of the ruin probability and this effect could not be separated
from dependency reasons.
In (10) we haveXi+1 = Xi (complete dependence) for ρ = 1 and Xi+1 is independent
from Xi for ρ = 0. It can easily be verified that Xi+1 is positive regression dependent
on Xi for ρ ≥ 0.
We now establish a sensitivity result for the trajectory on the boundary between
the independent and dependent case. From

Xi+1 = F
−1 Φ

(
ρΦ−1(F (Xi)) +

√
1− ρ2Φ−1(F (Zi+1))

))

we get

∂Xi+1

∂ρ

∣∣∣∣∣
ρ=0

=
ϕ(Φ−1(F (Xi+1)))Φ−1(F (Xi))

f(F−1(Zi+1))
,

with ϕ and f denoting the densities of Φ and F , respectively. We eventually derive

∂Xi+1

∂ρ

∣∣∣∣∣
ρ=0

=
e
−Φ−1(F (Xi+1))

2

2 Φ−1(F (Xi))

2πf(Xi+1)
. (11)

This formula depends on F and is a sensitivity result only for the single Xi, not
for the sum; however it shows that extreme events increase this derivative for later
events considerably and thus inherit dependency can increase the probability of ruin.
For the simple case when F is a normal distribution N(−a, 1), a > 0, formula (11)
simplifies and by summation one gets
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∂Si+1
∂ρ

= Si + ia,

a structure that for the autoregressive model in the next section will occur for a
larger class of distributions F and will be interpreted there.
It is not possible to draw general conclusions from (11), but for certain distributions
F the above result certainly means an increase of ruin probability for increasing ρ;
the following simulation gives for instance some insight into the case, where F is
a convolution of an exponential distribution for the inter-occurence times and an
exponential distribution for the claim sizes:

3.2.1 Simulation technique

The risk process can be simulated on a computer by randomly drawing sample
paths (starting at initial capital u) according to a given distribution and measure
the percentage of trajectories leading to ruin until some finite time T , which is then
for a suitable large T an estimation for the ruin probability for infinite time:

ψ̂(u) =
1

N

∑

Z

1A(zt),

where Z is the set of all N trajectories zt and A ⊂ Z is the set of trajectories
leading to ruin. As this Monte-Carlo-Method would need a huge number N of runs
to keep the variance (proportional to 1/

√
N) of the result below some appropriate

threshold, an additional reduction of variance, a method called importance sampling
was applied:
If f is the density of the single steps Xi of a trajectory, and g is a density chosen in
a way that it leads considerably more trajectories to ruin than f , then

P (zt ∈ A) = Ef (1A(zt)) =
∫
1A(zt)f(x)dx =

∫
1A(zt)

f(x)

g(x)
g(x)dx

= Eg

(
1A(zt)

f(zt)

g(zt)

)
.

So the simulation uses deviates from a distribution according to density g and cor-
rects the values in each step obtaining

ψ̂(u) =
1

N

∑

Z

1A(zt)

∏
i
f(zti)

∏
i
g(zti)

.

This method is most effective, if approximately half of the trajectories due to g lead
to ruin (see e.g. [Pflug 1996]).
The random numbers used in the simulations are generated by the well-known linear-
congruence-method and the random variables are then derived using the inversion
method [Devroye 1986].
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3.2.2 Results

Figure 2 shows a simulation for the ruin probabilities for a range of realistic initial
capitals u. Yi are exponentially distributed with intensity α and the Di are expo-
nentially distributed with mean µ; the values of α and µ chosen according to the
data of the example of Section 1.2. The premium rate c is constant throughout the
simulation and its value is chosen such that for the independent case ρ = 0 we get
a value for the ruin probability that would be desireable for insurance companies.
Note that the line ρ = 0 represents the analytical Lundberg-formula (1).
It is clearly visible that an increase of ρ increases the ruin probability by orders of
magnitude and as the diagram depicts the behavior on a logarithmic scale, one can
conclude that there exists a Lundberg-exponent R also for the dependent cases,
with its value decreasing for increasing ρ. Figure 3 illustrates the relationship
between ρ and R implying a lower rate for the decrease of the ruin probability when
the initial capital u is increased (the absolute numerical values of R depend on the
units of all the parameters involved in the model, therefore it is the qualitative
behavior that is of interest in this diagram). Ignoring possible dependence of the
normal-copula kind might thus lead to wrong decisions for the choice of u.

The probable existence of R and its derivation for dependent cases is discussed from
the viewpoint of the autoregressive model at the end of the following section.

3.3 Autoregressive models

Following the notation of (3) let X1, Z2, Z3, . . . be independently distributed with
(compound) distribution function F . Let furthermore E(X1) = E(Zi) = E(Y1) −
cE(D1) = −a, a ≥ 0. Then we define the autoregressive scheme

Xi+1 = −a+ ρ(Xi + a) +
√
1− ρ2(Zi+1 + a). (12)

Obviously Xi+1 is independent of Xi if ρ = 0, and they are identical, if ρ = 1. It is
easy to see that E(Xi+1) = −a and V ar(Xi+1) = V ar(X1), so the first two moments
of Xi+1 are the same as in the independent case for every ρ. However, if we calculate
the distribution function for Xi+1, we get

P (Xi+1 ≤ w) =
∫
P (Xi+1 ≤ w|Xi = v) dF (v) =

=
∫
F

(
w − a(ρ− 1 +

√
1− ρ2)− ρv√

1− ρ2

)
dF (v). (13)

Clearly, Xi+1 is regression dependent on Xi.
For ρ 6= 0 the distribution function has changed its shape compared to the inde-
pendent case (opposed to the Normal-copula model of the last section), but as we
now want to obtain results for the vicinity of the independent case, we see that the
distribution function changes very slowly with increasing ρ, as its derivative equals
zero:

∂F (w)

∂ρ

∣∣∣∣∣
ρ=0

=
∫
f(w)(−a− v)dF (v) = 0.
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Note that for F = N(−a, 1) the autoregressive model and the Copula model of the
last section are the same.
From (12) we see that

∂Xi+1

∂ρ

∣∣∣∣∣
ρ=0

= Xi + a

and therefore

∂Si+1
∂ρ

∣∣∣∣∣
ρ=0

= Si + (i− 1)a (14)

3.3.1 Results

We can now establish a result on the qualitative behavior of the ruin probability, if
dependency of autoregressive kind comes into the model:

Theorem 2 Let I = inf{i : Si > u}. Then for the autogressive model (12)

∂ψ(u)

∂ρ

∣∣∣∣∣
ρ=0

= E ([SI−1 + (I − 1)a] f(u− SI−1)) > 0. (15)

Proof: ψ(u) =
∑∞
i=1 P (S

ρ
i ≥ u, Sρi−1 < u, . . . , Sρ1 < u), where the upper index ρ

indicates the dependence on ρ. Now Sρi can (by virtue of (14) be linearized (w.l.o.g.
as will be seen in the sequel) to Sρi = S

0
i + ρ(Si−1 + (i− 1)a) and hence

∂ψ(u)

∂ρ
=

∞∑

i=2

∂

∂ρ
P (Sρi ≥ u, S0i−1 < u, . . . , S01 < u)

=
∞∑

i=2

∂

∂ρ
P (Si + ρ(Si−1 + (i− 1)a) ≥ u, S0i−1 < u, . . . , S01 < u)

=
∞∑

i=2

∂

∂ρ

∫
· · ·

∫

Si+ρ(Si−1+(i−1)a)≥u
Si−1<u,...,S1<u

f(Si − Si−1)f(Si−1 − Si−2) · · · f(S1)dSi · · · dS1

and by the transformation Si − u = t

=
∞∑

i=2

lim
ρ→0

1

ρ

∫
· · ·

∫

Si−1<u,..,S1<u

∫ 0

−ρ(Si−1+(i−1)a)
f(u+t−Si−1))dt f(Si−1−Si−2) · · · f(S1)dSi−1 · · · dS1

=
∞∑

i=2

∫
· · ·

∫

Si−1<u,..,S1<u,Si>u

[Si−1+(i−1)a]f(u−Si−1)f(Si−1−Si−2) · · · f(S1)dSi−1 · · · dS1.

Looking at the disjoint sets Ai+1 = {S1 < u, . . . , Si < u, Si+1 ≥ u}, we see that the
integration domain of the above equation is just the disjoint union ∪∞i=2Ai and this
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yields the expected value (15) on all the ruin trajectories. //

This theorem essentially expresses the remarkable fact that only the last value SI−1
before ruin of a ruin trajectory is relevant for the dependence of the ruin probability
on increasing ρ. Asmussen [1982] has shown, that under condition (5) a sample path
leading to ruin has locally a linear drift with slope κ′(ν) just before ruin happens,
where κ(s) = E(esX) and ν is the exponent of (5). But the derivative κ′(ν) is
positive, because κ′(0) = E(Z) is negative and κ(s) is a convex function. This local
behavior is in contrast to the global picture (where the drift of Sn is negative) and
is closely related to the fact that the distribution function of a sample path leading
to ruin can be approximated by the ’associated’ Esscher-transformed distribution
function

Hν(x) =
∫ x

−∞
eνydF (y), x ∈ R,

which does not need the knowledge about whether or not the trajectory will lead
to ruin [Embrechts 1997].
For interpreting Theorem 2 this now means (qualitatively spoken) that the value
of SI−1 is close to u and most probably positive. Therefore the value of the

derivative ∂ψ(u)
∂ρ

∣∣∣
ρ=0
is certainly positive and very probably high, indicating a drastic

increase of the ruin probability compared to the independent case, if dependency
according to the autoregressive scheme (12) is in the model. Hence neglecting depen-
dency structures of this kind leads to severe underestimations of the ruin probability.

3.3.2 An advanced model

A refinement of model (12) is that different correlation coefficients for inter-occurence
times and damage heights are allowed (which might be the case in most of the
applications). So the variable Xi = Yi − cDi is now composed by




Yi = µ+ ρ1(Yi−1 − µ) +

√
1− ρ21(Y 0i − µ)

Di =
1
α
+ ρ2(Di−1 − 1

α
) +

√
1− ρ22(D0i − 1

α
),

where Y 0 and D0 are independent variables of the corresponding distributions. Note
that for ρ1 = ρ2 we have (12). (In the Tornado damage case of Section 1.2 we had
ρ1 = 0.06 and ρ2 = 0.3). It can easily be shown that again the Xi have the same
mean value and standard deviation as in the independent case for all ρ. If we now
for instance fix ρ1 we get

∂Si
∂ρ2

∣∣∣∣∣
ρ2=0

= c


i− 1

α
−

i−1∑

j=1

Dj




and applying the technique of the proof of Theorem 2 we obtain

∂ψ

∂ρ2

∣∣∣∣∣
ρ2=0

= E


c


I − 1

α
−

I−1∑

j=1

Dj


 f(u− SI−1)


 (16)
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with I again being the index for which ruin occurs. This expected value is clearly
positive (as the inter-occurence times of a ruin trajectory have to be below their
expectation) and therefore the ruin probability increases considerably, if ρ increases.
We also see that the premium rate c directly influences the sensitivity of ψ for
dependency of the variables (which was also the case for model (12), where a =
cE(Di)− E(Yi)).

3.3.3 An integral equation for complete solution

The simulation results for the copula model in Section 3.2 seem to indicate the
existence of a Lundberg-coefficent (that is an expoenential rate R for the decrease
of the ruin probability with u) also in the dependent model. Motivated to establish
a similar result for the autoregressive model, it looks appealing to generalize the
integral equation (6) of Section 2 to the dependent case. Let ψ(u, v) denote the
probability of ruin for a capital u, if the last claim size was v. Then, with (12), we
get

ψ(u, v) =




1− F (u− ρ(v + a)) +

u∫
−∞

ψ(u− w,w)dF (w − ρ(v + a)) if u ≥ 0 ∀v
1 if u < 0 ∀v

(17)
and finally the solution of

ψ(u) = 1− F (u) +
∫ u

−∞
ψ(u, v)dF (v)

is the desired ruin probability for the dependent autoregressive model. The analytic
solution of equation (17) will reveal the exact behavior of ψ concerning changes in ρ
and answer the question about the existence of a Lundberg exponent R. However,
so far it remains an open problem to solve (17).

3.4 Further models

There are plenty of possibilities to formulate reasonable dependency structures. We
want to show simulation results for two more models:

Model (a) gives some insight into the impact of long memory: Let us assume
the inter-occurence times Di to be exponentially distributed with intensity α
and the claim sizes be exponentially distributed with intensity λ0, if the previous
event happened ’sufficiently long’ ago (Di+1 ≥ t∗), where the threshold t∗ is a
parameter for dependence and is expressed in multiples of the expected value of the
inter-occurence time. If the event Xi+1 happens for Di+1 < t∗, then its claim size
Yi+1 is simulated by a normal distribution with mean Yi and the variance linearly
decreasing for deacreasing time Di+1 between Yi and Yi+1 is. So if the threshold is
set at t∗ = 0, our model is just the independent double-exponential classical model
of Section 2.1 and its ruin probability can be calculated by (1). The bigger the
threshold is, the longer is the ’memory’ about the last event (so the claim sizes
are dependent, whereas the events happen independently from each other). It is
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Figure 4: Ruin probabilities for Model (a) (N=50000)

important to note that this model leaves the expected value µ for the claim sizes
unchanged (compared to the independent model), so the results really represent
dependence impacts and are not due to other biases. Figure 4 shows a typical
simulation for the t∗-range [0.1β, . . . , 1.5β], where β = 1/α is the expected value
of Di+1. It is clearly visible that longer memory (in the above definition) increases
the ruin probability by several orders of magnitude.

Model (b) again assumes exponentially distributed inter-occurence times Di (inten-
sity α) and the claim sizes Yi to be exponentially distributed, but with the intensity
depending on the time Di+1 since the previous event linearly:

λ(Di+1) = λ0 + (ρ(Di+1 − 1/α)).

So the expected value of a claim size increases with decreasing Di+1 (a model that
might be realistic for some natural catastrophy scenarios, where events blow up
because of their frequency). It can be calculated, that the expected value µ for
the claim sizes is again (this time approximately, however) the same as for the
independent case. Note that ρ is the slope of the intensity line and for ρ = 0
we have again the independent double-exponential model with known solution (1).
The simulation depicted in Figure 5 shows an increase of the ruin probability for
increasing ρ. In addition to that it tells something about the influence of the
Coefficient of Variation of a random variable X: It is defined as
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Figure 5: Model (b) for an exponential and two gamma distributions (N=50000)

CoV(X) =

√
Var(X)

E(X)

and is a measure of how regularly the claims occur. For the exponential distribution
we have CoV = 1 and for equidistant deterministic intervals CoV = 0. So if we model
the inter-occurence times to be gamma-distributed, we have lower values for the CoV
and, as the simulation shows, this considerably decreases the probability of ruin and
furthermore decreases the rate, at which ruin becomes more likely when dependency
comes into the model (the expected values of the installed gamma-distributions have
been normalized to the exponential case to avoid additional biases).

4 Conclusion

It is shown that for various scenarios with dependent damage occurences the ruin
probability is considerably higher than for independent events. Therefore indepen-
dence models may be dramatically misleading; this effect is particularly strong, if
extreme events are involved. However, there are a lot of open questions; the intro-
duced models might be generalized to Markov processes of higher order. Moreover
a model, where clustering of consecutive events only exists above a certain thresh-
old (which could be realized by using upper tail dependent copula functions), looks
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promising for an improvement of the estimation of risk exposure of insurance com-
panies. Facing the fact that possible climate changes may increase the likelihood
of extremal events, it seems inevitable to look more intensively into the intrinsic
behavior and causal structure of natural catastrophies and its implications for the
insurance industry.
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