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Abstract

Simplified representations of multivariate laws, and in particular those allowing one to
decrease the dimension while preserving structural information, are of paramount impor-
tance in statistical analysis. This paper concerns the theoretical premises of simplification.
We introduce a framework that allows us to specify definitions of structure for multi-
variate laws. Conceiving definitions as partitions of the probability laws on a Euclidean
space, we show how they can be generated via partial orders, or binary operations and
noise classes. Moreover, the framework allows us to identify simplified representations
that are guaranteed to be exhaustive with respect to such definitions, and might live in
lower dimension.
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On Multivariate Structures and Exhaustive

Reductions

Francesca Chiaromonte (chiaro@iiasa.ac.at)

Introduction

A k-variate law is a complex object whose structure embodies both marginal and joint
features. Dimension does not affect the analysis of marginal features, but as k increases
it becomes progressively harder to conceive and articulate the joint ones 1. Furthermore,
any dimension exceeding 3 prevents a direct visualization of data drawn from the law,
impairing the graphical preliminary exploration that ought to precede any model-based
analysis.
As very high-dimensional data sets become more frequent in several fields of applica-

tion, the above considerations motivate the quest for simplified representations of multi-
variate laws, especially ones that induce a drop in dimension. Since these representations
are aimed at capturing structural traits, their degree of informativeness with respect to
the structure becomes an issue. In particular, one might want to develop simplified rep-
resentations that are exhaustive, i.e. that entirely preserve structural information.
At the population level, many of the graphical exploration procedures developed in

the last decades can be interpreted as low-dimensional projective representations of the
law from which the data are drawn. They can be simple –views– or multiple –tours,
and their projection subspaces are usually selected targeting some quantitative proxy
for the structure. To mention some examples, Principal Components Analysis targets
variability, while several versions of Projection Pursuit target indexes expressing departure
from normality (“non-linear” structure of the law). Grand Tours target geometric features
that, loosely speaking, are retained in low dimension with high probability (consequently,
the subspaces are selected at random). Some recent and very sophisticated computer
tools combine those proxies and allow the user to perform multiple tours which are partly
random, partly guided by indexes, and partly guided by the user himself (see A. Buja,
D. Cook, D.F. Swayne, 1996 –and references therein).
Articulating and multiplying proxies, as well as augmenting the size (taking longer

tours), clearly increase the information content of the representation with respect to the
structure. On the other hand, informativeness and exhaustiveness of a view or tour re-
main imponderable unless one grounds such representations theoretically by means of a
suitable definition of structure, and a reduction scheme to go with it. An example of this
approach is Factor Analysis: Structure is defined as linear interdependence, i.e. pair-wise
correlations among coordinate components. The reduction scheme is given by an additive
decomposition model separating a latent factor, which exhaustively embodies correlations,

1Regarding interdependence among coordinate components, one key to its articulation is conditional
independence (see A.P. Dawid, 1979). A very interesting representation of interdependencies through
conditional independence graphs is given by J. Whittaker, 1990.
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from a noise that does not contribute to them. Thus, the noise can be neglected and the
analysis restricted to the smallest subspace supporting the latent factor 2.
Our focus in this paper is not on techniques to make inference on simplified represen-

tations (population objects) based on data from a multivariate law, but on the theoretical
premises for simplification. We introduce a framework that allows us to specify definitions
of multivariate structure, and reduction schemes that identify exhaustive simplified rep-
resentations. Such a framework does not rely on strong requirements on the nature of the
law under investigation.
Let L be the collection of all probability laws on IRk . One can think of a definition of

structure for k-variate laws as a partition C of L; laws in a class C are meant to share a
common structure (i.e. to be structurally equivalent). Conceiving definitions of structure
as partitions has an immediate advantage: Once a definition/partition is chosen, any
member of the class C to which a law L belongs can be taken in lieu of L itself in order
to investigate its structure. In other words, laws in C provide alternative representations
of L which exhaustively preserve structural information. Some such laws might allow to
observe the structure more easily or clearly. In particular, some such laws might live in
algebraic dimension smaller than k, even though the original L does not.
In Section 1, we show how a definition/partition can be generated via an appropriate

partial order. We also introduce and characterize the basic components of our framework:
origins, the reduction operator, invariances, invariant marginalizations and kernels. In
Section 2, we see how a definition/partition can be generated via an appropriate binary
operation and noise class, and further characterize the basic components. Section 3 con-
tains an example of a definition based on a binary operation and a noise class; namely
convolution and white noises. Some final remarks are given in Section 4.

1 Generating partitions via partial orders

A partition of L can be generated via an appropriate partial order. Let � be a partial
order on L; that is, a relation such that

• P (1): ∀L ∈ L, L � L (reflexivity)

• P (2): if L1 � L2 and L2 � L3, then L1 � L3 (transitivity)

• P (3) if L1 � L2 and L2 � L1, then L1 = L2 (antisymmetry).

A chain of � is defined as a subset of L restricted to which � becomes a complete order;
that is, a subset containing only comparable elements. Amaximal chain C of � is defined
as a chain which is not a proper subset of any other chain; that is, a subset obtained by
grouping together all elements comparable to each other. We indicate the collection of
maximal chains with C. Clearly C is a cover of L: ∪CC = L.
A lower bound of D ⊆ L with respect to � is defined as Lo(D) ∈ L such that

∀L ∈ D, Lo(D) � L. For a generic D, a lower bound need not exist, nor belong to D
itself, nor be unique. In the case in which a lower bound exists and belongs to the set, it
is necessarily unique, and one refers to it as the smallest element of D. Indicating with
Co the sub-collection of maximal chains admitting a lower bound, we have:

2In regression settings; that is, when the interest is focused on the dependence of one (or a set of)
response(s) on a set of predictors, projective representations that entirely preserve information relative to
the response can be identified using conditional independence. This is the object of a theory of sufficient
dimension reduction which has grown through the contributions of several authors during the last decade.
See for example R.D. Cook, 1998, F. Chiaromonte, R.D. Cook, 1997, Ker Chau Li, 1991, and references
therein.
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Proposition 1.1 For any C ∈ Co, Lo(C) ∈ C and it is unique.

Proof: Suppose ∃Lo(C). Since a maximal chain groups all comparable elements, Lo(C) �
L for L ∈ C automatically implies Lo(C) ∈ C; any lower bound of C must be contained in
it. Now, take two lower bounds Lo,1(C), Lo,2(C). By the above reasoning, they are both
in C. Thus, one has both Lo,1(C) � Lo,2(C) and Lo,2(C) � Lo,1(C), which in turn implies
Lo,1(C) = Lo,2(C) by P (3). 2

A minimal element of � is defined as Lo ∈ L such that L � Lo implies L = Lo. We
indicate with Lo the subset of minimal elements. As suggested by the intuition, minimal
elements are all and only smallest elements of maximal chains which are bounded below:

Proposition 1.2 Lo = {Lo(C) , C ∈ Co}.

Proof: Suppose ∃Lo(C) and let L � Lo(C). Since Lo(C) ∈ C and a maximal chain
groups all comparable elements, L ∈ C. Thus, one has also Lo(C) � L, and L = Lo(C)
by P (3). It follows that Lo(C) ∈ Lo. Now, take Lo ∈ Lo. Since C is a cover, there is
at least one maximal chain containing it, say Lo ∈ C. Moreover, Lo being a minimal
element, any L ∈ C such that L � Lo must be L = Lo. So C is indeed bounded below by
Lo(C) = Lo ∈ C. 2

Notice that Lo ⊆ ∪CoC. We call disjoint (or triangulated) a partial order such that any
two elements having a common predecessor or a common descendant are comparable:

• P (4): if ∃L such that L � L1 and L � L2, or L1 � L and L2 � L, then L1 � L2 or
L2 � L1 (lower and upper triangulation).

It is easy to show that lower and upper triangulation eliminate overlappings among max-
imal chains, and therefore that:

Proposition 1.3 The collection C of maximal chains of a disjoint partial order is a par-
tition of L.

Proof: Take C1, C2 ∈ C, and let L ∈ C1 ∩C2. One has that ∀L1 ∈ C1, L1 � L or L � L1,
and ∀L2 ∈ C2, L2 � L or L � L2. In any of the combinations, using P (2) or P (4) one
obtains L1 � L2 or L2 � L1. Thus, C1 ∪C2 is a chain, which in turn implies C1 = C2, as
both C1 and C2 are maximal. It follows that two distinct maximal chains C1 6= C2 have
C1 ∩C2 = ∅, and hence that the cover C is indeed a partition of L. 2

It is also easy to show that the partition constituted by maximal chains coincides with the
one induced by the relation

L1 ∼ L2 iff L1 � L2 or L2 � L1

which is indeed an equivalence relation under our assumptions 3.
Since maximal chains do not overlap, the (unique) smallest elements Lo(C) of distinct

C’s ∈ Co are distinct, and Lo = {Lo(C) , C ∈ Co} indexes one-to-one-onto the sub-
collection of maximal chains that are bounded below.
The advantage of specifying a definition/partition through a disjoint partial order

resides exactly in the complete order it induces among laws with the same structure: If

3∼ is reflexive by P (1) and symmetric by construction. Under P (2) and P (4), ∼ is also transitive:
Suppose L1 ∼ L2 and L2 ∼ L3. If L1 � L2 and L2 � L3, or L2 � L1 and L3 � L2, L1 ∼ L3 follows from
P (2). If L2 � L1 and L2 � L3, or L1 � L2 and L3 � L2, L1 ∼ L3 follows from P (4).
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the order corresponds to a simplification criterion, any law smaller (simpler) than L can
be taken in lieu of L itself in order to investigate its structure. Moreover, for each C ∈ Co
there is a natural privileged representative for structural investigation; namely its (unique)
smallest element. This is the simplest version of the structure shared by the laws in C.
Privileged representatives of distinct C’s ∈ Co are distinct, and minimal elements can be
taken as a sub-repertoire of possible structures according the definition/partition specified
through � (the repertoire of all structures that are “bounded below”). Finally, one can
define an operator R : ∪CoC → Lo which associates to each law in ∪CoC the smallest
element of the maximal chain it belongs to:

R[L] = Lo(C) , ∀L ∈ C , ∀C ∈ Co

Upper triangulation guarantees that R[L] is unique for each L ∈ ∪CoC, and lower trian-
gulation guarantees that R[L1] = R[L2] iff L1 and L2 belong to the same C ∈ Co. Notice
that minimal elements are all and only elements that are left unchanged by the operator:
R[L] = L iff L ∈ Lo.
Now, consider a bounded disjoint partial order on L; that is, a disjoint partial order

satisfying

• P (5): ∀C ∈ C, ∃Lo(C).

Since all maximal chains are bounded below (C = Co), each C ∈ C has as privileged
representative its (unique) smallest element. Privileged representatives of distinct C’s
∈ C are distinct, and minimal elements can be taken as a complete repertoire of possible
structures. Moreover, R is defined on the whole L: for any L ∈ L, R[L] can be taken in lieu
of L itself to investigate its structure. Consequently, the analysis can be restricted to the
smallest linear subspace supporting R[L], S(R[L]), without loss of structural information.
If dim(S(R[L])) < k, we refer to this as exhaustive dimension reduction.
When using a bounded and disjoint partial order to generate a definition/partition,

the complete order among laws with the same structure becomes instrumental, as it is
always possible to refer directly to the smallest element. The focus is therefore on the
repertoire of minimal elements, and on the operator associating laws to them. We call the
laws in Lo origins of �, and R : L → Lo reduction operator of �. Since origins are
all and only fixed points of the reduction operator, we also refer to them as irreducible
laws.

1.1 Invariances

We call invariances of � invertible transformations that commute with reduction

T = { invertible T : L → L s.t. RT [L] = TR[L], ∀L ∈ L}

Clearly the identity I ∈ T , and therefore T 6= ∅. Moreover, T is a group with com-
position. In fact, T is closed with respect to composition: ∀T1, T2 ∈ T , ∀L ∈ L,
T1T2R[L] = T1RT2[L] = RT1T2[L]. Thus, it inherits the group structure from the class of
all invertible transformations. It is easy to show that invariances are all and only invertible
transformations that preserve both irreducibility and equivalence:

Proposition 1.4 T ∈ T if and only if Lo ∈ Lo ⇒ T [Lo] ∈ Lo and L1 ∼ L2 ⇒ T [L1] ∼
T [L2].

Proof: Suppose RT [L] = TR[L], ∀L ∈ L. Take Lo ∈ Lo, i.e. such that Lo = R[Lo].
Then T [Lo] = TR[Lo] = RT [Lo], i.e. T [Lo] ∈ Lo. Now take L1 ∼ L2, i.e. such that
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R[L1] = R[L2]. Then TR[L1] = TR[L2] and thus RT [L1] = RT [L2], i.e. T [L1] ∼ T [L2].
For the opposite implication, consider L ∈ L. Since Lo ∈ Lo ⇒ T [Lo] ∈ Lo, one has
TR[L] ∈ Lo. Moreover, since L1 ∼ L2 ⇒ T [L1] ∼ T [L2], L ∼ R[L] implies T [L] ∼ TR[L].
One can conclude that RT [L] = TR[L]. 2

Notice that as T−1 ∈ T , ∀T ∈ T , one also has T [Lo] ∈ Lo ⇒ Lo ∈ Lo and T [L1] ∼
T [L2] ⇒ L1 ∼ L2. Notice also that a T ∈ T does not necessarily preserve the ordering
within each C –except for the “bottom”; that is, transforming an origin into another
origin. Although this is irrelevant here (the ordering within each class is instrumental to
the identification of privileged members and the definition of the reduction operator), any
�-preserving invertible transformation is clearly an invariance according to our definition.
In particular, the class of all �-preserving invertible transformations is a sub-group of T .
Since for an invariance R[L] = T−1TR[L] coincides with T−1RT [L], RT [L] can be

taken in lieu of L to investigate its structure. The advantage is that reduction on the
T -scale might be easier to perform than that on the original one.

1.2 Invariant marginalizations and kernels

Let S ⊆ IRk be a linear subspace, and LS the collection of all probability distributions
supported by S. The marginalization to S, MS : L → LS, is defined as

MS[L](B) =
∫

{x:PSx∈B}
L(dx) , ∀ (meas.) B ⊆ S

(P(·) is the orthogonal projector operator on the argument subspace with respect to the

standard inner product in IRk ). Clearly, the elements of LS are all and only laws which
are left unchanged by MS: MS [L] = L iff L ∈ LS .
After an appropriate isomorphism, the whole framework we have set up for IRk can be

reproduced within S 4. Notation-wise, the various components of the framework within
the subspace will be sub-indexed by S.
Consider an origin Lo ∈ Lo. We call invariant marginalizations of � on Lo the

marginalizations that commute with reduction when restricted to laws equivalent to Lo
(i.e. to the class of which Lo is the privileged member)

M(Lo) = {MS : L → LS s.t. RSMS[L] =

MSR[L] =MS [Lo], ∀L ∼ Lo}

Clearly I ∈ M(Lo) and thereforeM(Lo) 6= ∅. The invariant marginalizations on Lo are
all and only marginalizations that preserve irreducibility of Lo and equivalence to Lo:

Proposition 1.5 Let Lo ∈ Lo. MS ∈ M(Lo) if and only if MS[Lo] ∈ Lo,S and L ∼ Lo
⇒ MS [L] ∼S MS [Lo].

Proof: Suppose RSMS[L] = MS [Lo], ∀L ∼ Lo. Lo = R[Lo] gives MS [Lo] = MSR[Lo] =
RSMS [Lo], that is MS [Lo] ∈ Lo,S . Now take an L ∼ Lo, i.e. such that R[L] = Lo. Then
MSR[L] = MS [Lo] and thus RSMS[L] = MS[Lo], i.e. MS[L] ∼S MS [Lo]. For the opposite

4This statement needs further qualification if the partial order one is using depends on the choice of
coordinate system (i.e. of orthonormal basis for the Euclidean space), or cannot be reproduced in an
arbitrary dimension < k. In particular, for the former case, one would be linked to particular bases for
both IRk and S ↔ IRdim(S). Notice that no problem would arise if, in whatever dimension, rotations (i.e.
changes of orthonormal basis) were invariances, and thus, a fortiori, if they preserved the ordering. Some
details on rotations are given in Section 3.
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implication, consider again L ∼ Lo. One has MS [Lo] ∈ Lo,S. Moreover, L ∼ Lo ⇒ MS [L]
∼S MS[Lo]. It follows that RSMS [L] = MS [Lo]. 2

Once more, a MS ∈M(Lo) is not required to preserve the ordering in the class of Lo, or
any other.
We call kernels of � those origins on which all marginalizations are invariant

K = {Lo ∈ Lo s.t. MS ∈M(Lo) , ∀S ⊆ IR
k}

Whether K 6= ∅, and how to further characterize kernels, will depend on the partial order
under consideration.
If R[L] ∈ K, there are two immediate advantages. First, since RSMS[L] = MSR[L],

∀S ⊆ IRk , any marginal of R[L] can be investigated by reducing within S the marginal of
L to S. Second, the meaning of exhaustive dimension reduction is stronger. In fact, not
only one can restrict the analysis to S(R[L]) without loss of structural information, but

R[L] =MS(R[L])R[L] = RS(R[L])MS(R[L])[L]

so that reducing within S(R[L]) the marginal of L to S(R[L]) is exactly equivalent to
reducing L in IRk . If indeed dim(S(R[L]))< k, the reduction in lower dimension might be
easier to perform.

2 Generating partial orders via binary operations and noise

classes

Under proper assumptions, a bounded and disjoint partial order can be generated via a
binary operation and a noise class. Let ◦ : L × L → L be a binary operation such
that:

• OP (1): ∀L1, L2, L3 ∈ L, L1 ◦ (L2 ◦L3) = (L1 ◦ L2) ◦ L3 (associativity)

• OP (2): ∃ (unique) 0 ∈ L such that ∀L ∈ L, L ◦ 0 = 0 ◦ L = L

• OP (3): ∀L ∈ L, L1 ◦ L = L2 ◦ L or L ◦ L1 = L ◦ L2 implies L1 = L2 (cancelability)
5.

Also, let E ⊆ L be a class which, relative to ◦, satisfies:

• ER(1): 0 ∈ E

• ER(2): ∀ε1, ε2 ∈ E , ε1 ◦ ε2 ∈ E (closure)

• ER(3): ∀L ∈ L, ∀ε ∈ E \ {0}, 0 6= L ◦ ε 6

5L1 = L2 always implies L1 ◦ L = L2 ◦ L and L ◦ L1 = L ◦ L2; one could label L (right and left)
discriminant element with respect to ◦ if one of the latter is enough to imply the former. If all ∈ L are
discriminant elements, then ◦ is called cancelable. Clearly 0, as well as any element of L endowed with
a (right and left) inverse with respect to ◦, is a discriminant element. Cancelability is not as strong as
requiring the existence of an inverse for all elements, though. As an example, consider IN with +: no
element except 0 has an inverse, and yet every n ∈ IN is such that n1 + n = n2 + n or n+ n1 = n+ n2 is
enough to conclude n1 = n2.

6That is, no element of E, except 0, admits a (left) inverse with respect to ◦.
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• ER(4): ∀ε1, ε2 ∈ E , ∃ε̃, ε̌ ∈ E such that ε2 = ε1 ◦ ε̃ or ε1 = ε2 ◦ ε̃ and ε2 = ε̌ ◦ ε1 or
ε1 = ε̌ ◦ ε2 (triangulations) 7

• ER(5): ∀L ∈ L, ∃ε ∈ E such that (1) L = L̃ ◦ ε for some L̃ ∈ L, and (2) ∀Ľ ∈ L, ∀ε̌
∈ E \ {0}, L 6= Ľ ◦ (ε̌ ◦ ε).

Notice that ER(3) is a special case of ER(5). In terms of the partial order we are about
to introduce, ER(5) requires existence of a largest element for each set

E(L) = {ε ∈ E s.t. L = L̃ ◦ ε for some L̃ ∈ L}

which, as we will see, is a means to impose boundedness. Define

L1 � L2 iff ∃ε ∈ E such that L2 = L1 ◦ ε

With the above assumptions, � is a bounded disjoint partial order on L:

Proposition 2.1 Under OP (1), OP (2), OP (3) and ER(1), ER(2), ER(3), ER(4), �
satisfies P (1), P (2), P (3), P (4). If in addition ER(5) holds, � satisfies also P (5).

Proof: P (1) holds by OP (2) and ER(1): ∀L ∈ L, L = L ◦ 0, and 0 ∈ E .
P (2) becomes: If ∃ε1, ε2 ∈ E such that L2 = L1 ◦ ε1 and L3 = L2 ◦ ε2, then ∃ε ∈ E

such that L3 = L1 ◦ ε. In fact L3 = L2 ◦ ε2 = (L1 ◦ ε1) ◦ ε2 = L1 ◦ (ε1 ◦ ε2) by OP (1), with
ε1 ◦ ε2 ∈ E by ER(2).
P (3) becomes: If ∃ε1, ε2 ∈ E such that L2 = L1 ◦ ε1 and L1 = L2 ◦ ε2, then L1 = L2.

In fact L1 ◦ 0 = L1 by OP (2), which is = L2 ◦ ε2 = (L1 ◦ ε1) ◦ ε2 = L1 ◦ (ε1 ◦ ε2) by OP (1),
which implies 0 = ε1 ◦ ε2 by OP (3). This in turn implies ε2 = 0 by ER(3), and therefore
L1 = L2 by OP (2).
P (4) becomes: If ∃L and ε1, ε2 ∈ E such that L1 = L◦ε1 and L2 = L◦ε2, or L = L1◦ε1

and L = L2 ◦ ε2, then ∃ε ∈ E such that L2 = L1 ◦ ε or L1 = L2 ◦ ε. Suppose one had
L1 = L ◦ ε1 and L2 = L ◦ ε2, and for instance (ER(4)) ε2 = ε1 ◦ ε̃. Then L2 = L ◦ ε2
= L ◦ (ε1 ◦ ε̃) = (L ◦ ε1) ◦ ε̃ by OP (1), which is = L1 ◦ ε̃ (analogously, ε1 = ε2 ◦ ε̃ would
lead to L1 = L2 ◦ ε̃). On the other hand, suppose L = L1 ◦ ε1 and L = L2 ◦ ε2, and for
instance (ER(4) again) ε1 = ε̌ ◦ ε2. Then L2 ◦ ε2 = L1 ◦ ε1 = L1 ◦ (ε̌ ◦ ε2) = (L1 ◦ ε̌) ◦ ε2
by OP (1), which implies L2 = L1 ◦ ε̌ by OP (3) (analogously, ε2 = ε̌ ◦ ε1 would lead to
L1 = L2 ◦ ε̌).
Finally, P (5) holds under ER(5): Take any maximal chain C ∈ C, fix an L ∈ C, and let

L̃ be the corresponding law as from ER(5.1). Clearly L̃ ∈ C, so any Ľ ∈ C is comparable
to it; that is, ∃ε̌ ∈ E such that L̃ = Ľ ◦ ε̌ or Ľ = L̃ ◦ ε̌. If the former were the case, one
would have L = (Ľ◦ ε̌) ◦ ε = Ľ◦ (ε̌◦ ε) by ER(5.1) and OP (2), which contradicts ER(5.2)
unless ε̌ = 0 (i.e. Ľ = L̃ itself. It follows that L̃ ∈ C bounds C from below 8. 2

In summary, under proper assumptions the couple (◦, E) can be used to generate an
appropriate partial order �, and hence a definition/partition C. The operation can be
interpreted as a superposition mechanism, and the noises as no-structure laws. Because
of ER(4), the noise class is one of the equivalence classes: E ∈ C. As a consequence, it is
completely ordered by �. One has

ε1 � ε2 ↔ ε2 = ε1 ◦ ε

7Notice ER(4) is implied by ER(4.a): ∀ε1, ε2 ∈ E, ∃ε ∈ E such that ε2 = ε1 ◦ ε or ε1 = ε2 ◦ ε, and
ER(4.b): ∀ε1, ε2 ∈ E, ε1 ◦ ε2 = ε2 ◦ ε1 (commutativity within E).

8L̃ is indeed the (unique) smallest element of the maximal chain. Notice this makes all the L̃’s associated
by ER(5.1) to the various laws in C coincide with Lo(C).
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Moreover, because of ER(1) and ER(3), the origin of the noise class is the null element of
the binary operation: Lo(E) = 0. In parallel to the ordering in E , the ordering within each
equivalence class corresponds to containing larger or smaller noise terms. For L1, L2 ∈ C
one has

L1 � L2 ↔ L2 = L1 ◦ ε

↔ L1 = Lo(C) ◦ ε1 , L2 = Lo(C) ◦ ε2

with ε1 � ε2

The origin Lo(C) of each class is the one and only member containing 0-noise; that is, the
one and only element of the class in which no noise is superimposed to the structure to
be observed. Thus, using R[L] in lieu of L to investigate its structure acquires a precise
simplification and clarification meaning: we are eliminating from the analysis as large a
noise as possible, to remain with the skeleton structure of L. Notice that here, as in Factor
Analysis, we have a decomposition model which separates a term exhaustively embodying
the structure from a noise that does not contribute to it, and can therefore be neglected.
One advantage of specifying a partial order, and hence a definition/partition, through

appropriate binary operation and noise class, is the interpretations it provides for origins
and reduction operator. A second advantage is the possibility of further characterizing
invariances, invariant marginalizations, origins and kernels via sufficient conditions.

2.1 Some sufficient conditions

Let us start with sufficient conditions for preserving equivalence. Consider a trans-
formation T : L → L.

Proposition 2.2 If ∃UT : L → L such that (1) ε ∈ E ⇒ UT [ε] ∈ E, and (2) ∀Lo ∈ Lo,
∀ε ∈ E, T [Lo ◦ ε] = T [Lo] ◦ UT [ε], then L1 ∼ L2 ⇒ T [L1] ∼ T [L2].

Proof: L1 ∼ L2 translates into: ∃ε1, ε2 ∈ E and Lo ∈ Lo such that L1 = L0 ◦ ε1 and
L2 = Lo ◦ ε2. Thus, one has T [L1] = T [Lo ◦ ε1] = T [Lo] ◦ UT [ε1] and T [L2] = T [Lo ◦ ε2]
= T [Lo] ◦UT [ε2] by (2), with UT [ε1], UT [ε1] ∈ E by (1). It follows that T [L1] ∼ T [L2]. 2

For an invertible T which admits such a UT , being an invariance reduces to preserving
irreducibility: T ∈ T if and only if Lo ∈ Lo ⇒ T [Lo] ∈ Lo. It is also easy to show that the
sub-class of invariances identified by this proposition is closed with respect to composition,
and therefore a sub-group of T .
Now, consider a marginalizationMS : L → LS , and indicate with ◦S and ES the binary

operation and error class defined within the subspace S. We have that

Proposition 2.3 Let Lo ∈ Lo. If ∃US : L → LS such that (1) ε ∈ E ⇒ US [ε] ∈ ES , and
(2) ∀ε ∈ E, MS[Lo ◦ ε] =MS [Lo] ◦S US[ε], then L ∼ Lo ⇒ MS[L] ∼S MS[Lo].

Proof: L ∼ Lo translates into: ∃ε ∈ E such that L = Lo◦ε. So one hasMS [L] =MS[Lo◦ε]
=MS [Lo] ◦ US[ε] by (2), with US[ε] ∈ ES by (1). It follows that MS [L] ∼S MS[Lo]. 2

So for an MS admitting such a US invariance on Lo reduces to preserving irreducibility of
Lo itself: MS ∈M(Lo) if and only if MS[Lo] ∈ Lo,S .
Passing to sufficient conditions for irreducibility, let us indicate with Cs(L) ⊆ IRk

the closed support of a law, and consider the further assumption

• OP (4): ∀L1, L2 ∈ L, Cs(L1 ◦ L2) ⊇ Cs(Li), i = 1, 2
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Proposition 2.4 Let L ∈ L. Under OP (4), if Cs(L) 6⊇
⋂

ε∈E\{0}Cs(ε), then L ∈ Lo.

Proof: L not being an origin translates into: ∃L̃ ∈ L \ {L} and ε̃ ∈ E \ {0} such that
L = L̃ ◦ ε̃. But then Cs(L) = Cs(L̃ ◦ ε̃) ⊇ Cs(ε̃) ⊇

⋂

ε∈E\{0}Cs(ε) by OP (4). Hence,
Cs(L) 6⊇

⋂

ε∈E\{0}Cs(ε) implies L ∈ Lo. 2

In particular, under OP (4), Cs(L) ⊂
⋂

ε∈E\{0}Cs(ε) implies L ∈ Lo. Recall that the
sub-class of origins identified by this proposition can be interpreted as a sub-repertoire of
possible structures.
Last, regarding kernels we have that:

Proposition 2.5 Let Lo ∈ Lo. Under OP (4), if for any subspace S ⊆ IRk

(1) ∃US : L → LS such that (1.1) ε ∈ E ⇒ US [ε] ∈ ES, and (1.2) ∀ε ∈ E, MS[Lo ◦ ε] =
MS [Lo] ◦S US [ε]
(2) Cs(MS[Lo]) 6⊇

⋂

ε∈ES\{0}
Cs(ε)

then Lo ∈ K.

Proof: By Proposition 2.3, (1) guarantees that MS preserves equivalence to Lo for any
S. Furthermore, by Proposition 2.4, (2) guarantees that MS[Lo] ∈ Lo,S . Hence, Lo ∈ K.
2

3 Convolution and white noises; a first example

Take the binary operation to be convolution: ◦ = ∗. Clearly, ∗ satisfies OP (1), OP (2)
and OP (3). The null element of ∗ is δ0k ; the point-mass at 0k ∈ IR

k . Take as noise class
the white noises of IRk

E =W = {N(0k, βIk), β ∈ IR
1

+}

It is immediate to show that W satisfies ER(1), ER(2), ER(3) and ER(4) 9. Hence,
(∗,W) allow us to define a disjoint partial order on L

L1 � L2 iff ∃β ∈ IR
1

+ such that L2 = L1 ∗N(0k, βIk)

and thereby a definition/partition C, corresponding to the equivalence relation

L1 ∼ L2 iff ∃β ∈ IR
1

+ such that

L2 = L1 ∗N(0k, βIk) or

L1 = L2 ∗N(0k, βIk)

The complete order withinW ∈ C, and any other class, corresponds to the complete order
in the one-dimensional parameterization of white noises (β ∈ IR1+).
Notice that L2 = L1 ∗N(0k, βIk) can be rewritten in terms of characteristic functions

as φL2(u) = φL1(u) e
−β
2
‖u‖2. For any L ∈ L, let

B(L) = {β ∈ IR1+ s.t. φL(u) e
β
2
‖u‖2 is a ch. fct. on IRk}

This set is in one-to-one correspondence, via characteristic functions, with the predecessors
of L. It is certainly non-empty, as it must contain 0. Moreover, B(L) is a convex, closed

9In particular, it is enough to observe one of the triangulations, as the other will follow immediately
from the fact that ∗ is commutative on the whole L, and therefore a fortiori on W.
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and bounded subset of IR1+. Let β1, β2 ∈ B(L), 0 ≤ β1 ≤ β2, and λ ∈ [0, 1]. Define
βλ = λβ1 + (1− λ)β2, and consider

φL(u) e
βλ
2
‖u‖2 =

[

φL(u) e
β2
2
‖u‖2
] [

e−
(β2−βλ)

2
‖u‖2
]

The first factor is a characteristic function, as β2 ∈ B(L). The second factor is the
characteristic function of a N(0k, (β2 − βλ)Ik)), as (β2 − βλ) ≥ 0. Thus, the product is a
characteristic function, and βλ ∈ B(L). Next, consider a converging sequence βn ∈ B(L),

n = 1, 2 . . ., βn → β ≥ 0. For any u ∈ IR
k , e

(·)
2
‖u‖2 is continuous, so

φL(u) e
β
2
‖u‖2 = lim

n→∞
φL(u) e

βn
2
‖u‖2

which is a limit of characteristic functions, as βn ∈ B(L), n = 1, 2 . . .. Furthermore, it is

continuous in u = 0k, as both φL(·) and e
β
2
‖(·)‖2 are. Thus, it is itself a characteristic

function, and β ∈ B(L). Last, fix an amount of mass strictly smaller than 1, for example .5.
There exists a finite radius 0 ≤ ρ < +∞ such that the closed ball Cρ = {x ∈ IR

k s.t. ‖x‖ ≤
ρ} has L(Cρ) > .5. Correspondingly, there exists a finite variance 0 ≤ β̄ < +∞ such that
∀β̃ ∈ IR1+ \ {0}, ∀x ∈ IR

k one has

N(0k, (β̄ + β̃)Ik)(Cρ − x) ≤ N(0k, (β̄ + β̃)Ik)(Cρ) < .5

It follows that ∀L̃ ∈ L, ∀β̃ ∈ IR1+ \ {0} one has

(L̃ ∗N(0k, (β̄ + β̃)Ik))(Cρ) =
∫

IRk N(0k, (β̄ + β̃)Ik)(Cρ − x)L̃(dx) < .5

and therefore that

∀L̃ ∈ L, ∀β̃ ∈ IR1+ \ {0} , L 6= L̃ ∗N(0k, (β̄ + β̃)Ik)

so any β ∈ B(L) must be β ≤ β̄ < +∞. In summary, we can write B(L) = [0, βo(L)] with
βo(L) ≤ β̄ < +∞.
It is immediate to see that origins are all and only those laws for which B(L) is trivial:

Lo = {L ∈ L s.t. βo(L) = 0}

and that the reduction operator associates to L the law identified by the characteristic
function

φR[L](u) = φL(u) e
βo(L)
2
‖u‖2

Notice that closure and boundedness guarantee that B(L) has a (unique) largest element,
βo(L), for any L ∈ L. This corresponds exactly to ER(5): Our disjoint partial order is
bounded. It follows that origins represent a complete repertoire of structures, and R is
defined on the whole L.
If L admits finite second order moments, the smallest supporting linear subspace is

given by
S(L) = Sp(Cov(L))⊕ Sp(E(L))

where ⊕ is the direct sum between subspaces, and Sp(· · ·) the span of the argument
vectors –or column vectors of the argument matrix (see for example M.L. Eaton, 1983 and
F. Chiaromonte, 1997). We clearly have

E(R[L]) = E(L) , Cov(R[L]) = Cov(L)− βo(L)Ik
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Rewriting Cov(L) = Γ(L)′Di(ηi(L))Γ(L), where ηi(L), i = 1, . . .k are the eigenvalues in
non-increasing order, Di(ηi(L)) is diagonal, and Γ(L) is the rotation to a spectral basis of
Cov(L) 10, we have

Cov(R[L]) = Γ(L)′Di(ηi(L)− βo(L))Γ(L)

with the same rotation, and eigenvalues all decreased by βo(L). Non-negative definiteness
of covariance operators requires then βo(L) ≤ ηk(L), the smallest eigenvalue of Cov(L).
Moreover, indicating with ν(L) the multiplicity of the smallest eigenvalue, with Γi(L), i =
1, . . .k the eigenvectors, and with In(·) the indicator function of the argument condition,
one has (F. Chiaromonte, 1997)

S(R[L]) = Sp(Γ1(L), . . . ,Γν(L)−1(L))

⊕ In(βo(L) < ηk(L)) Sp(Γν(L), . . . ,Γk)

⊕ Sp(E(L))

Convolution also satisfies OP (4), and
⋂

ω∈W\{δ0k}

Cs(ω) = IRk

Thus, due to Proposition 2.4, all laws whose closed support does not cover the entire IRk

are irreducible. Those include: Laws with “thick” holes with respect to the Lebesgue
measure on IRk , i.e. for which ∃ (measurable) B with Leb(B) > 0, but L(B) = 0; laws
entirely supported by affine subspaces of IRk , i.e. whose affine support is As(L) ⊂ IRk ;
laws whose closed support Cs(L) (whether full-dimensional or not) is bounded, etc. There
are irreducible laws such that Cs(Lo) = IR

k , though. For example, laws with a density
with respect to the Lebesgue measure on IRk , whose tails vanish faster than that of any
non-degenerate N(0k, βIk) in at least some directions (F. Chiaromonte, 1996).
Let Γ ∈ G be a rotation of IRk , v ∈ IRk , γ ∈ IR1 , and define an affine rotation

Gv,γ,Γ : L → L as

Gv,γ,Γ[L](B) =
∫

{x:v+γΓx∈B}
L(dx) , ∀ (meas.) B ⊆ IRk

It is easy to show that W is closed under, and only under, centered affine rotations; that
is

ω ∈ W ⇒ U [ω] ∈ W iff ∃γ ∈ IR1+,Γ ∈ G such that

U = G0k,γ,Γ

(see for example M.L. Eaton, 1983). Consequently, Proposition 2.2 can be rephrased as:
A sufficient condition for T to give L1 ∼ L2 ⇒ T [L1] ∼ T [L2], is that ∃γT ∈ IR1 and
ΓT ∈ G such that ∀Lo ∈ Lo, ∀ω ∈ W one has

T [Lo ∗ ω] = T [Lo] ∗G0k,γT ,ΓT [ω]

This actually reduces to ∃γT ∈ IR1 such that ∀Lo ∈ Lo, ∀β ∈ IR1+ one has

T [Lo ∗N(0k, βIk)] = T [Lo] ∗N(0k, γ
2
TβIk)

Moreover, affine rotations distribute on ∗: ∀L1, L2 ∈ L one has

Gv,γ,Γ[L1 ∗ L2] = Gv,γ,Γ[L1] ∗G0k,γ,Γ[L2]

It follows that all affine rotations preserve equivalence. For any invertible Gv,γ,Γ[·], i.e.
whenever γ 6= 0 11, one also has Lo ∈ Lo ⇒ Gv,γ,Γ[Lo] ∈ Lo. In fact, since the norm is

10The rotation that diagonalizes Cov(L), or equivalently the spectral basis, will not be unique if some
of the eigenvalues have multiplicity larger than 1.
11Any Γ ∈ G is invertible.
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unaffected by rotations, and Γ′Γ = Ik

φGv,γ,Γ[L](u) e
β
2
‖u‖2 = e

i(γΓu)′( 1
γ
Γv)
φL(γΓu)

e
β

2γ2
‖γΓu‖2

= e
it′( 1

γ
Γv)
φL(t) e

β

2γ2
‖t‖2

setting t = γΓu. Hence, βo(Gv,γ,Γ[L]) = γ
2βo(L); irreducibility of L implies irreducibility

of Gv,γ,Γ[L] (and vice-versa). Thus, all invertible affine rotations are invariances
12.

When restricting to a subspace S via marginalization

WS = {N(0k, βPS), β ∈ IR
1

+} = {MS[ω], ω ∈ W}

Moreover, also marginalizations distribute on ∗: ∀ L1, L2 ∈ L one has

MS[L1 ∗ L2] =MS [L1] ∗MS [L2]

Due to Proposition 2.3, it follows that all marginalizations preserve equivalence to any
given Lo ∈ Lo. Hence, M(Lo) contains all and only the marginalizations preserving
irreducibility of Lo itself. Equivalently,M(Lo) contains all and only the marginalizations
such that ∀L ∼ Lo, βo,S(MS[L]) = βo(L).
We also have that all marginalizations are invariant on laws with bounded closed sup-

port. In fact, if Cs(Lo) is bounded, under any marginalization Cs(MS[Lo]) = PSCs(Lo)
is bounded, too, and therefore MS[Lo] ∈ Lo,S by OP (4) within S. Thus, if Cs(Lo) is
bounded M(Lo) contains all marginalizations. Consequently (Proposition 2.5), Lo ∈ K:
All laws with bounded closed support are kernels.

Let us now see how the above setting could be put to work in practice. Suppose
the law under investigation admits finite first and second order moments, and consider
GL = G−Γ(L)E(L),1,Γ(L), where Γ(L) ∈ G is a rotation diagonalizing Cov(L). Since this is
an invariance, we can transform toGL[L] before attempting the reduction. The transformed
law has

E(GL[L]) = 0k , Cov(GL[L]) = Di(ηi(L))

Correspondingly, the origin has

E(RGL[L]) = 0k , Cov(RGL[L]) = Di(ηi(L)− βo(L))

Hence, indicating with {e1, . . . , ek} the standard orthonormal basis of IRk , we can write

S(RGL[L]) = Sp(e1, . . . , eν(L)−1)

⊕ In(βo(L) < ηk(L)) Sp(eν(L), . . . , ek)

This is a coordinate subspace: If βo(L) < ηk(L), it coincides with IR
k (no dimension

reduction is achieved). On the other hand, if βo(L) = ηk(L) the last ν(L) coordinates are
eliminated.
Suppose one is further willing to assume that for the law under investigation Cs(R[L])

is bounded. Clearly Cs(RGL[L]) = Cs(GLR[L]) is bounded, too. Thus, RGL[L] (as well

12Invertible affine rotations are also the only affine invariances: Let Av,γ,A indicate a generic invertible
affine transformation, and suppose L2 = L1∗ω. Distributivity still applies, so thatAv,γ,A[L2] = Av,γ,A[L1]∗
A0k,γ,A[ω]. But then, since W is closed only under centered affine rotations, Av,γ,A[L1] ∼ Av,γ,A[L2]
requires A ∈ G.
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as R[L]) is a kernel, and we can marginalize to the relevant coordinate subspace; that is,
pass to MS(RGL[L])

GL[L] before attempting the reduction.
In order to perform the above transformation and marginalization, we need to know

E(L), Γ(L), ν(L) and In(βo(L) < η(L)), or better, make inference on them based on data
from L. Regarding E(L), and less trivially Γ(L) and ν(L), several methods exist in the
literature (see M.L. Eaton, D. Tyler, 1994, and E. Bura, 1997). Regarding In(βo(L) <
η(L)), under the assumption that Cs(R[L]) is bounded, we can again use the fact that
RGL[L] is a kernel. As we remarked before, this gives βo,S(MSGL[L]) = βo(GL) for any
choice of subspace S. Also, βo(GL[L]) = βo(L). Indicating with t the line given by Sp(ek),
we have then βo,t(MtGL[L]) = βo(L), and var(MtGL[L]) = ηk(L) by construction. Down
to one dimension, βo,t(MtGL[L]) = var(MtGL[L]) if and only ifMtGL[L] is normal. Thus,
assessing whether βo(L) = ηk(L) (or conversely, strictly smaller), reduces to a normality
check in one dimension (F. Chiaromonte, 1997).
In order to fully exploit the simplification potential of our framework, after trans-

forming and marginalizing, one has to actually reduce MS(RGL[L])GL[L]. Notice this cor-

responds to a de-convolution problem 13 which has to be tackled in dimension possibly
smaller than the original k. Notice also that if a drop in dimension indeed occured, the
variability coefficient of the white noise to be de-convoluted from MS(RGL[L])GL[L] is

βo,S(RGL[L])(MS(RGL[L])GL[L]) = βo(L) = ηk(L)

and can therefore be evaluated using an estimate of the smallest eigenvalue of Cov(L).

4 Final remarks

The convolution/white noises case constituted the obvious first step in the development
of our framework: It represents a situation in which an independent and spherical normal
error is additively superimposed to the “object of interest” 14. The main aim of this paper
is to show how this is just an instance of a very broad paradigm.
The general framework does not rely on strong assumptions on the nature of the law

under investigation, and allows us to produce a whole range of alternative definitions of
structures, with reduction schemes identifying exhaustive simplified representations.
The definitions are rigorous (as opposed to “intuitive”); correspondingly, the concepts

of simplification and exhaustiveness are unambiguous. Moreover, each definition and re-
duction scheme can be naturally interpreted through the partial order, or binary operation
and noise class, they arise from.
One could envision a situation in which several definitions of structure are “fitted

against” data from a given L, and the corresponding reductions are compared. Some of the
definitions might derive from (partial) orderings and/or superposition mechanisms and
no-structure objects that are of particular relevance for the phenomenon at hand. Some
could be easily mapped into incumbent or new theories on such phenomenon. Also, some
of the definitions might induce larger dimension reductions than others.
Although the framework does not rely on strong assumptions, the analysis is facil-

itated for laws whose reduction can be taken to be a kernel. We have seen this in the
convolution/white noises example, where boundedness of Cs(R[L]) played a central role.
It is important to remark that assumptions on R[L] are inherently unverifiable, as data

13For an introduction to the issue, see A. Friedman, W. Littman, 1994 and G.M. Wing, 1991.
14Convolving two laws corresponds to adding two independent random vectors distributed according to
them.
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are drawn from L and not R[L]; likewise latent factors, R[L] is unobservable. On the other
hand, it is conceivable that for some definitions of structure R[L] ∈ K might be guaranteed
through verifiable conditions on L. Moreover, even when the conditions must be posed
on R[L], they might still be quite reasonable on a large spectrum of practical applications
(this is the case for boundedness of Cs(R[L]), for example).
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