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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 29

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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No. 8 Ferrìere R, Fox GA:
Chaos and Evolution.
Trends in Ecology and Evolution (1995) 10, 480–485.

No. 9 Ferrière R, Michod RE:
The Evolution of Cooperation in Spatially Heterogeneous Populations.
IIASA Working Paper WP-96-029.
American Naturalist (1996) 147, 692–717.



No. 10 Van Dooren TJM, Metz JAJ:
Delayed Maturation in Temporally Structured Populations with Non-
Equilibrium Dynamics.
IIASA Working Paper WP-96-070.
Journal of Evolutionary Biology (1998) 11, 41–62.

No. 11 Geritz SAH, Metz JAJ, Kisdi E, Meszéna G:
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Abstract

Consider a large population of individuals which can be in one of two distinct roles. The
role of an individual is switched every now and then, and interactions occur between
randomly paired individuals in different roles. These interactions are represented by a
bimatrix game and individuals are modelled as boundedly rational expected utility maxi-
mizers who choose their actions according to a myopic best response rule. The resulting
dynamics of the population state is given by a system of differential equations and dif-
ferential inclusions. If the bimatrix game is zero-sum, the population state converges to
a fixed point set corresponding to the set of Nash equilibria of this game. Moreover, if
the zero-sum game has a unique Nash equilibrium, the global attractor of the population
state is a unique and explicitly computable fixed point, even if the set of fixed points is a
continuum (which is the case, if the unique Nash equilibrium is completely mixed). This
global attractor does neither depend on the rates of role switching and strategy reviewing,
nor on the relative size of the two subpopulations of individuals in different roles.
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Best Response Adaptation for Role Games

Ulrich Berger

1 Role Games and Their Dynamics

When dealing with (evolutionary) game dynamics, one normally considers either intra-

group interactions between individuals of the same type – expressed by a symmetric game

as e.g. the well known hawk-dove game (hawk and dove are two different strategies for one

type of players) – or intergroup interactions between members of two distinct populations,

modelled by a bimatrix-game as is e.g. the case for the Battle-of-the-Sexes game (details

can be found in Hofbauer and Sigmund (1988)).

Role games are somehow a mixture of these two cases: In the following sections we con-

sider a large population of individuals who are all of one type, but may be in one of two

distinct roles, called I and II . We assume, that I-players (i.e. individuals currently in role

I) interact only with II-players. As in the asymmetric case, the payoffs – in evolutionary

games usually interpreted as increase in fitness – received from such an interaction by each

of the players are given by a bimatrix game. However, the role of an individual need not

be fixed, but can change several times during lifetime.

This idea of constructing a role game from a bimatrix game already appears (for zero-sum

games) in the classical work of von Neumann and Morgenstern (1944). Selten (1980),

Maynard Smith (1982), and Weibull (1995) (who calls the underlying bimatrix game the

base game and the role game the role-conditioned game) used it in an evolutionary context.

If there are n (pure) actions available in role I , and m actions in role II , a strategy for an

individual must specify, what action to implement if in role I or role II , hence there will

be nm pure strategies. For the case n = m = 2 the replicator dynamics has been analyzed

by Gaunersdorfer, Hofbauer, and Sigmund (1991). This dynamics describes the evolution

of strategy–frequencies across generations by a selection process. In this paper we study

a quite different dynamics, which is based on best response adaptation. Thus we model

a kind of learning process, which takes place within one generation. The basic idea is to

assume, that individuals are playing a certain strategy for some time, but have every now

and then the chance to review their strategy and switch to the current best response to

the average opponent–strategy. This kind of strategy–adaptation may be motivated in

two different ways: either as myopic utility–maximization of boundedly rational agents,
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or as being derived from an “imitate the best” learning rule for individuals with rather

restricted rationality. In the next section we will have a closer look at our model.

2 The Model

Imagine that couples of individuals in different roles are matched randomly at every point

in time. The interactions are assumed to be represented by an n×m bimatrix game with

payoff matrices U I and U II . As mentioned above, the role an individual is in, need not

be fixed. Suppose instead, that every now and then it switches to the other role. Any

individual uses some pure strategy, represented by a pair (i, j), where i ∈ {1, . . . , n} is its

action as a I-player, and j ∈ {1, . . . , m} its II-action. Sometimes the individual has the

chance of reviewing its strategy. An individual in role I will every now and then review the

I-action it is using and change to the present best response against the average action–mix

among the II-players, and vice versa. We have to specify some other assumptions:

1) The share of individuals which are in role I at time t is assumed to be constantly equal

to some fixed number w between 0 and 1.

2) In order to keep w constant, we assume, that the number of II-players, switching in

some small time interval dt, equals the number of I-players switching in dt. The two

groups need not be equally large, and hence the switching rate of an individual depends

on the role it is in. If it is in the smaller group, it has a higher chance of being selected

to switch its role. The individual switching rate of a I-player will thus be (1−w)R, while

the switching rate of a II-player is wR, where R > 0 is some constant depending on the

overall rate of role–switching.

3) The rate at which an individual reviews its currently used action, is supposed to be pro-

portional to its interaction frequency. This seems reasonable, since an individual facing

more encounters in some time interval than another individual, will gather more infor-

mation about the opponents’ action–mix, and will most likely review more often. The

interaction frequency of an individual depends solely on its role: A member of the smaller

group will engage in more encounters than a member of the larger group. The reviewing

rates of a I-player and a II-player thus turn out to be (1−w)r and wr, respectively, where

r again is some positive constant, which we set to 1 without loss of generality.

Now we introduce the following 2(n+m) variables:

zi . . . Proportion of I-players with strategy (i, ∗)
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Zi . . . Proportion of II-players with strategy (i, ∗)

yj . . . Proportion of II-players with strategy (∗, j)

Yj . . . Proportion of I-players with strategy (∗, j)

Here, the ∗ denotes a wildcard for the available actions in the two roles. The total share

of the population having strategy (i, ∗), i.e., playing the pure action i, if in role I , is

then given by wzi + (1 − w)Zi, and (1 − w)yj + wYj is the share of (∗, j)–individuals.

For simplicity, we will identify the pure action i with the i-th unit vector ei in Sn or

Sm, respectively. In the following, bold face letters denote column vectors, for example

z = (zi)i=1,... ,n .

3 A System of Differential Inclusions

and Differential Equations

Let BI(x) be the set of all best responses for a I-player confronted with a II-player–group

with average action–mix x, and BII(x) its analogous counterpart. With these variables our

proposed model yields the following system of differential inclusions in S := (Sn×Sm)
2 :

ż ∈ (1− w)[BI(y)− z+ R(Z− z)]

ẏ ∈ w[BII(z)− y +R(Y − y)] (1)

Ż = −wR(Z− z)

Ẏ = −(1− w)R(Y− y)

The best response correspondences x 7→ BI(x) and x 7→ BII(x) are upper–semicontinuous

with closed and convex values. Hence the existence of at least one solution through each

initial value, which is Lipschitz continuous and defined for all positive times, is guaranteed,

see e.g. Aubin and Cellina (1984). Every such solution can be written as a function

t 7→ (z(t), y(t),Z(t),Y(t)), satisfying

ż(t) = (1−w)[by(t)− z(t) +R(Z(t)− z(t))]

ẏ(t) = w[bz(t)− y(t) +R(Y(t)− y(t))] (2)

Ż(t) = −wR(Z(t)− z(t))

Ẏ(t) = −(1−w)R(Y(t)− y(t)) ,
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for almost all t ≥ 0, where t 7→ by(t) ∈ B
I (y(t)) and t 7→ bz(t) ∈ B

II(z(t)) are measurable

functions.

As can be seen, the equation for ż consists of a “reviewing–term” (1 − w)[by(t) − z(t)]

and a “switching–term” R[Z(t)− z(t)]. The variable Zi however, the share of II-players

playing (i, ∗), is only affected by switching of the roles, since the I-action of a strategy

does not matter, as long as the strategy is used by a II-player. The same is of course true

for ẏ and Ẏ. The only asymmetry is caused by the different rates, at which the groups

adapt, according to their different size.

Looking at the equations for Ż and Ẏ, it is evident, that Z = z, Y = y is a necessary

condition for a fixed point of the system. Then ż ∋ 0, ẏ ∋ 0 holds, if z ∈ BI(y) and

y ∈ BII(z). Thus any fixed point of the system has the form z = Z = z∗, y = Y = y∗,

where (z∗, y∗) is a Nash equilibrium of the underlying game (U I , U II).

4 A Ljapunov Function

A special case is given, if U II = −(U I)′ (the negative transpose of U I), i.e., if the game is

a zero-sum game. For such games we will prove, that the set of Nash equilibria is globally

asymptotically stable under (1). (It is then an easy implication that this result also holds

for games, which are equivalent to a zero-sum game.) In the simplest case n = m = 2, a

game is equivalent to a zero-sum game if and only if it has a cyclic best response structure.

A typical orbit of (z(t), y(t)) and (Z(t),Y(t)) for this case is shown in figure 1.

To prove the stability of the Nash equilibrium set we construct a function V , which acts

as a Ljapunov–function does for differential equations.

So let U II = −(U I)′, take any solution, and consider the following continuous function on

S:

V (t) := (1− w)[max
h
(U Iy(t))h+max

h
(U IIZ(t))h] +w[max

h
(U IY(t))h +max

h
(U IIz(t))h] .

Note, that

V ≥ (1− w)[Z′U Iy + y′U IIZ] +w[z′U IY+Y′U IIz] = 0 ,

since U II = −(U I)′, and equality holds if and only if

Z ∈ BI(y) and y ∈ BII(Z) and z ∈ BI(Y) and Y ∈ BII(z) ,
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1

y1
*

1

(Z1(0),Y1(0))

(z1(0),y1(0))

0 z1
*

Figure 1: Orbits (z1(t), y1(t)) and (Z1(t), Y1(t)) for the case n = m = 2 and cyclic best
response structure. The dots mark equidistant time steps. Here, R = 2 and w = 1

3
.

i.e., if and only if (Z, y) and (z,Y) are Nash equilibria of the zero-sum game. In a zero-

sum game, Nash equilibria are interchangeable, and thus the above condition is equivalent

to the condition that (z, y) and (Z,Y) are Nash equilibria.

We want to show that V is decreasing along any solution of (1) outside the equilibrium

set. Let us first write V = (1−w)(V1+V2)+w(V3+V4), where the functions Vm are given

by V1(t) = maxh(U
Iy(t))h, . . . , V4(t) = maxh(U

IIz(t))h. Note that, along any solution of

(1), Vm(t) is absolutely continuous as the maximum of absolutely continuous functions.

Thus Vm(t) is differentiable almost everywhere (m = 1, 2, 3, 4), and so is V itself. We

know, that this also holds for the functions z(t), y(t),Z(t),Y(t). Let t0 be a point of

differentiability of these four functions as well as the four functions Vm. Now consider e.g.

V1. For any sequence tn → t0, tn 6= t0 there is a sequence of pure actions ein ∈ B
I(y(tn)).

This sequence always has a constant subsequence, since the number of indices is finite.

Assume this is the constant sequence (ei); then we know that ei ∈ B
I(y(t0)). It follows
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that

V̇1(t0) = lim
n→∞

V1(tn)− V1(t0)

tn − t0
=

= lim
n→∞

e′iU
Iy(tn)− e

′
iU
Iy(t0)

tn − t0
=

= e′iU
I lim
n→∞

y(tn)− y(t0)

tn − t0
=

= e′iU
I ẏ(t0) .

If BI(y(t0)) is not a singleton, and there is another subsequence with a different limit

ek ∈ B
I (y(t0)), then the existence of V̇1 implies e

′
kU
I ẏ(t0) = e

′
iU
I ẏ(t0). But what, if for

some index k with ek ∈ B
I(y(t0)) there is no sequence tn → t0 with ek ∈ B

I(y(tn)) for

all n? In this case there is a neighborhood N of t0, such that ek is not a best response to

y(t) for t ∈ N − {t0}. This in turn implies, that

(ei − ek)
′U I ẏ(t0) = 0 ,

since otherwise there are always points tn arbitrarily close to t0, with

(ek − ei)
′U Iy(tn) > (ek − ei)

′U Iy(t0) = 0 ,

contradicting the fact, that ek is not a best response for such tn.

We have proved V̇1(t0) = e
′
iU
I ẏ(t0) for all ei ∈ B

I (y(t0)). Hence also V̇1(t0) =

by(t0)
′U I ẏ(t0). Analogous considerations for V̇2, V̇3, and V̇4 yield

V̇1(t0) = by(t0)
′U Iẏ(t0) ,

V̇2(t0) = bZ(t0)
′U IIŻ(t0) ,

V̇3(t0) = bY(t0)
′U IẎ(t0) ,

V̇4(t0) = bz(t0)
′U II ż(t0) ,

and we can finally calculate

(w(1− w))−1 V̇ = w−1 (V̇1 + V̇2) + (1− w)
−1 (V̇3 + V̇4)

= b′yU
Ibz + b

′
zU
IIby − (b

′
yU
Iy+ b′zU

IIz) +

+R[(by − bY)
′U I(Y− y)] +R[(bz − bZ)

′U II(Z− z)] .

We have b′yU
Ibz + b

′
zU
IIby = 0, as well as

b′yU
Iy = max

h
(U Iy)h ≥ b

′
YU

Iy (3)
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and

b′yU
IY ≤ max

h
(U IY)h = b

′
YU

IY , (4)

yielding (by − bY)
′U I(Y − y) ≤ 0 and analogously (bz − bZ)

′U II(Z− z) ≤ 0 .

We also have

b′yU
Iy+ b′zU

IIz ≥ z′U Iy+ y′U IIz = 0 . (5)

Together these inequalities yield V̇ ≤ 0 for almost all t > 0.

Equality holds in (3), iff BI(Y) ⊂ BI(y) and in (4), iff BI(y) ⊂ BI(Y), from which

BI(y) = BI(Y) follows.

In (5) equality holds, iff z ∈ BI(y) and y ∈ BII(z) , implying that V̇ = 0, iff (z, y) and

(Z,Y) are Nash equilibria of the game (U I , U II).

Thus V is strictly positive except at Nash equilibria, and V is strictly decreasing along

any orbit in S, except along orbits contained in the Nash equilibrium set. It follows that

V is a Ljapunov–function for (2). This proves

Theorem 1 For zero-sum games, the set of fixed points of (1), corresponding to Nash

equilibria of the game, is globally asymptotically stable.

5 The Main Result

We will now go one step further and analyze the behavior of the frequencies

xIij . . . Proportion of I-players with strategy (i, j)

xIIij . . . Proportion of II-players with strategy (i, j)

For these frequencies, we will prove

Theorem 2 For zero-sum games with a unique Nash equilibrium (z∗, y∗), the frequencies

xIij , as well as x
II
ij , converge to z

∗
i y
∗
j for every i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
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Proof: Let us for example have a look at the frequency xIi0j0 . During some small time

increment dt there will be a “switching–caused” flow (1− w)R(xIIi0j0 − x
I
i0j0
)dt into xIi0j0,

and a “reviewing–caused” flow −(1 − w)xIi0j0dt for byi0 = 0 and (1− w)
∑

i6=i0
xIij0dt for

byi0 = 1, changing linearly between these values. The analogous calculations for x
II
i0j0
yield

the system

ẋIij = (1−w)[R(xIIij − x
I
ij) + Yjbyi − x

I
ij]

ẋIIij = w[R(xIij − x
II
ij ) + Zibzj − x

II
ij ] (6)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, with

zi =
∑

k

xIik, Zi =
∑

k

xIIik, yj =
∑

k

xIIkj , Yj =
∑

k

xIkj. (7)

Note, that (6) and (7) imply (2), i.e., (6) is a refinement of (2). In fact, (2) results from (6)

after a suitable projection (the one suggested by (7)), and the fixed point of the original

system (1) gives rise to an invariant linear manifold in the phase space of (6). The constant

solution of (6) is given by

(z(t), y(t),Z(t),Y(t)) = (z∗, y∗, z∗, y∗) for all t ≥ 0.

The fixed point conditions ż = 0 and ẏ = 0 require

by(t) = z(t) = z
∗ and bz(t) = y(t) = y

∗ for t ≥ 0.

Thus, restricted to the invariant manifold of (6) which corresponds to the fixed point of

(1), the system (6) reduces to

ẋIij = (1−w)[R(xIIij − x
I
ij) + z

∗
i y
∗
j − x

I
ij]

ẋIIij = w[R(xIij − x
II
ij ) + z

∗
i y
∗
j − x

II
ij ] (8)

and there it admits a unique fixed point, given by

(xIij, x
II
ij) = (z

∗
i y
∗
j , z
∗
i y
∗
j ). (9)

Restricted to the invariant manifold, this fixed point is a sink, as can be seen from the

Jacobian

J =

[

−(1−w)(1 +R) (1−w)R
wR −w(1 + R)

]

,

of (8), which has eigenvalues

λ1,2 = −
1

2

(

1 + R±
√

(1 +R)2 − 4w(1− w)(1 + 2R)
)

< 0 .
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12

21

22

11

Y1
*

0 1z1
*

1

(xI
11,x

I
12,x

I
21,x

I
22)∈ S4

(z1,Y1)∈ Q

Figure 2: In the n = m = 2 case the state space of (xIij) is the S4. The projection onto
the state space Q of (z1, Y1) is illustrated by the dotted lines. The bold vertical line is the
invariant linear manifold corresponding to the equilibrium (z∗

1
, Y ∗
1
), and the dot on this

line is the unique fixed point which is given by the first component in (9).

Since the invariant manifold is globally attracting by the last theorem, we conclude, that

every solution of (6) converges to the fixed point (9). q.e.d.

Figure 2 illustrates the case n = m = 2 with cyclic best response structure again. The

state space of (xIij)i,j=1,2 is the 3-dimensional simplex S4. The projection given by (7)

yields z1 = x
I
11
+ xI

12
and Y1 = x

I
11
+ xI

21
and the state space of (z1, Y1) is the unit square

Q := S2×S2.

6 Discussion

By theorem 2, the state of the population converges to a strategy mix, where the actions

in the two roles are independent. E.g. for n = m = 2 the attracting equilibrium satisfies

xI11x
I
22 = x

I
12x
I
21 . (10)
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(Analogously for role II .)

In population genetics, (10) appears in the context of the two-locus, two-alleles equation

(see Crow and Kimura (1970)). There, x11, . . . , x22 are the frequencies of the four gametes,

and the set of frequency distributions satisfying (10) is called the Wright manifold. If x

lies on this manifold, then the allele pairs are said to be in linkage equilibrium. Gauners-

dorfer, Hofbauer, and Sigmund (1991) have analyzed the n = m = 2 case under replicator

dynamics. Interestingly, the equilibrium x∗ obeying (10) plays an important role for the

behavior of replicator orbits, but a quite different one as it does for our dynamics. The

equilibrium x∗ on the Wright manifold divides the equilibrium line into two parts. Under

replicator dynamics, if the role game is not equivalent to a zero-sum game, one of these

parts is asymptotically stable, the other part is unstable, and x∗ itself is surrounded by a

continuum of closed orbits, which are contained in the Wright manifold. However, if the

role game is a zero-sum game, then the replicator equation becomes a Hamiltonian dy-

namical system, all orbits cycle around the equilibrium line on closed curves, and the point

x∗ loses its exceptional status, in accordance with the classical, static approach where all

the Nash equilibria of a zero-sum game are regarded as equivalent. As opposed to this,

our results ensure convergence to x∗ even in the case of a zero-sum role game. Thus the

process of best response adaptation we introduced selects a particular equilibrium among

a continuum of equivalent ones.
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