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In this paper we introduce a nonparametric linear programming formulation for the general multigroup classification problem. 
Previous research using linear programming formulations has either been limited to the two-group case, or required complicated 
constraints and many zero-one variables. We develop general properties of our multigroup formulation and illustrate its use with 
several small example problems and previously published real data sets. A comparative analysis on the real data sets shows that our 
formulation may offer an interesting robust alte rnative to parame tric statistical formulations for the multigroup discriminant 
problem. 

R ecently, various mathematical programming (MP)
based approaches have been proposed for solving the 

class ification problem in discriminant analysis (Bajgier and 
Hill 1982; Freed and Glove r 1981a, 1981b; Gehrlein 1986; 
Hand 1981; Smith 1968, 1969; Stam and Joachimsthaler 
1989; Stam and Ragsdale 1992). There is empirical evidence 
that these nonparametric methods may produce more accu
rate classification rules than the traditional statistical methods 
such as Fisher's linear discriminant method (Fisher 1936) 
and Smith 's quadratic discriminant method (Smith 1947), 
which are based on the assumption of multivariate normal
ity, if this assumption is violated to a significant extent. 
However, the experience with MP-based methods is not 
uniformly positive (Nath et al. 1992; Joachimsthaler and 
Stam 1990). A comprehensive overview of empirical stud
ies using MP-based approaches to classification analysis is 
provided by Joachimsthaler and Stam (1990). A good re
view of MP formulations for solving the classification prob
lem can be found in Erenguc and Koehler (1990) and 
Stam ( 1997). 

However, a major drawback of most existing MP formu
lations is that they are limited to the two-group case, and 
their extension from the two-group case to the general 
multigroup case is problematic at best. Gehrlein ( 1986) 
proposes a formu lation for the multigroup case which un
fortunately requires a multitude of binary variables in or
der to identify the optimal division of segments of the 

decision space among the various groups, rendering its 
implementation infeasible in practice for many real-size 
data sets. Freed and Glover (198lb) remark that the min
imize the sum of deviations (MSD) form ulation, which is 
one of the most widely used linear programming (LP) for
mulations for solving the classification problem, can easily 
be generalized to the multigroup classification problem by 
sequentially solving for the optimal separating hyperplanes 
between the pairs of groups. One problem with this ap
proach, however, is that the resulting classification rules 
may not cover each segment of the decision space. More
over, the pairwise estimation of hyperplanes leaves much 
to be desired, because it may lead to suboptimal overall 
classification results. 

Hence, the extension to more than two groups is diffi
cult , if it requires the introduction of a multitude of binary 
variables; it is ad hoc, if the composite classification 
scheme is determined by separate pairwise analyses of the 
groups. In fact, some of the previously proposed MP for
mulations are designed specifically for the two-group case, 
and cannot easily be generalized to more than two groups. 
Our paper provides a formulation which is applicable to 
the general multigroup classification problem, and is simi
lar to the LINMAP approach for problems in multidimen
sional analysis of preferences (Srinivasan and Shocker 
1973). We next introduce the model formulation. 

Subject classificatiow Programming. Linear applications. Statistics; nonparametric. discriminant analysis. 
Area of redew: 0PTl\11L..\TIOS. 
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1. THE BASIC MODEL 

Consider a finite set S = { 1, ... , s} of populations 
(groups) of objects, with each object belonging to one and 
only one of the groups. Samples of size nj, j E S, are 
available from these groups, and the group membership of 
each sample object in the training sample is known. Let 
N = LjES nj be the total sample size, and Pj = {l, ... , n) 
the set of sample objects belonging to group j,j ES. Each 
object i with either unknown or unspecified group mem
bership is characterized by a set of K attributes contained 
in the (K + !)-dimensional column vector X; = (x;0, 

X;i , . .. , X;Kf, where X;o = l. Denote the attribute vector 
for object i with known membership in group j , i.e., i E Pj, 
by xij = (xijO' Xijl' ... 'X;jK)T, where X;jO = 1. 

We will estimate s (K + !)-dimensional row vectors 
O/. j = ( cx10, a

1
,, ••• , °'jK), and determine linear classifica

tion scores Ol.jX; (j = 1, ... , s) for any object i with respect 
to group j, j E S. The classification decision rule is to 
classify an object i into group m provided that 

(1.1) 

Hence, (1.1) assigns an object to the group for which it 
attains the highest classification score. The classification 
rule in ( 1.1) is comparable to the Bayesian approach where 
an object would be assigned to a group based on the high
est posterior probability of group membership for the 
given vector of attributes (Anderson 1984, Johnson and 
Wichern 1988), or to Fisher's (1936) classical approach 
where group membership is determined by distances de
rived from linear classification scores. 

The vectors Ol. j , j E S, will be determined in a way such 
that the decision rule in (I.I) operates "optimally" on the 
sample objects according to a criterion which will be de
fined below, combining measures of the "goodness" and 
"badness" of the fit. Let us use the notation S _ j = S\{j} to 
denote the set of all groups except group j, and represent 
any real-valued scalar y by y = y+ - y - , where y • = 
Max{O; y}, y- = -Min{O; y}. Then, the goodness of fit in 
the training sample for object i E P,, r E S, can be mea
sured by G;j(01.', 01. j ) in (1.2), in which the classification 
score Ol.'X;, of object i with respect to its own group r is 
pairwise compared with classification scores O/.jX;, of this 
object with respect to the remaining groups j E S _,: 

G;j{OI.', Oi. i) = (Oi.'X;, - Ol.jX;,) +, i E P,, j ES_,, r ES. 

(1.2) 

Obviously, we prefer strictly positive values for G;j(OI.', 
Ol. j ), and larger values are better. Likewise, the badness of 
fit for object i E P, with respect to group j can be defined 
as in (1.3): 

(1.3) 

where smaller values of B~(OI.', Ol. j ) are preferred, and ide
ally s;j( OI.', Ol. j ) = 0. The aggregate goodness and badness 

of object i E P, are given by G;(Oi.) and s;(Oi.) in (1.4) and 
( 1.5), respectively: 

G;(Oi.) = G;(Ol. 1, ••• , 01.') 

= 2: G;i(OI.', Oi.j), i E P,, r ES, 
jES -. 

B;(Oi.) =B;(Ol. 1
, ••• , 01.') 

= 2: B;/0i.',0i.j), iEP,,rES. 
jES -. 

(1.4) 

(1.5) 

Thus, the goodness and badness of all objects i in group 
r combined are given by G,(Oi.) and B,(Oi.) in (1.6) and (1.7), 
respectively: 

G,(Oi.) = G,(Ol. 1, • •• , 01. ') = 2: G;(Ol. 1, ••• , 01. ' ) 
iEP, 

= 2: 2: G;/OI.', Ol.j), rES, 
i EP, jES -, 

B,(Oi.) = B,(Ol. 1
, ••• , OI. ') = 2: B;(Ol. 1

, ••• , 01. ') 
iEP, 

= 2: 2: s;j(OI.', Ol.i) , r ES. 
i E P, f ES - , 

(1.6) 

(1.7) 

Finally, measures of total goodness G(Oi.) and total bad
ness B(Oi.) for all groups r ES are given by (1.8) and (1.9): 

G(Oi.) = G (Ol. 1, • • • , 01. ') = 2: G,(Oi.) 
rES 

= 2: 2: 2: a;1(01.', Ol. i), (1.8) 
rES jES - . iEP, 

B(Oi.) = B( OL 1, ••. , OI. ') = 2: B,(Oi.) 
rES 

= 2: 2: 2: B;/ °''· Ol. i) . (1.9) 
rES jES - r iEP, 

The measures of total goodness and badness of fit in 
(1.8) and (1.9) are conceptually similar to the "internal" 
and "external" deviations previously introduced by several 
researchers for the two-group case (Freed and Glover 
1986a, Glover et al. 1988, Glover 1990, Joachimsthaler and 
Stam 1990). 

Clearly, by definition G(Oi.) and B(Oi.) are nonnegative 
for any 0/.. The trivial solution where OI.' = 01.*, for all r E S, 
generates G(01.) = B(01.) = 0 but does not contain any useful 
information in terms of classification power, as any object 
can be classified arbitrarily into any of the s groups. Hence, 
we need to rule out the trivial solution by a proper normal
ization. Also, a solution 0/. for which G(Oi.) - B(Oi.) < 0, i.e., 
a solution for which the total badness exceeds the total 
goodness of the fit, will in general not be satisfactory 
(see, e.g., Glover 1990). It can easily be verified that for 
any 01., G(Oi.) = B(-01.) holds, so it follows that for any 
solution 01. with G(01.) - B(01.) = -q < 0, G(-01.) -
B(-01.) = q > 0. Hence, undesirable solutions with total 
badness exceeding total goodness can easily be ruled out 
in our proposed formulation, by using the normalization 
given in (1.10): 

G(Oi.) - B(Oi.) = q, (l.10) 



where q is any strictly positive constant. Using this condi
tion, we preclude solutions for which G(a) - B(a) < 0 
and the trivial solution a' = a•, for all r E S. From the 
definition of G(a) and B(a), (1.8) and (1.9), and the prop
erty that y = y+ - y-, it follows that the difference be
tween G(a) and B(a) is a linear function in a, i.e., 

G(a) - B(a) = 2: 2: 2: (a' - ai)x;, . 
rES jES-, iEP, 

The normalization in (1.10) will be investigated in more 
detail below. We next state the complete linear program 
LPq, which determines the a-vectors which minimize the 
total badness, subject to the normalization in (1.10). The 
superscript q in LP q refe rs to the right-hand-side value 
used in the normalization constraint. 

Program LPq: Min B(a) 

Subject to: 

G(a) - B(a) = q 

°' unrestricted in sign. 

( l.11) 

(1.10) 

(1.12) 

Due to the relationship between B(a) and G(a) dis
cussed above and propositions to be introduced later, the 
normalization in (1.10) does not preclude any useful clas
sification solution from consideration, and only scales the 
optimal solution through the choice of the constant q (see 
also Proposi tion 6). Program LP q can be restated as 
LPq-A by explicitly introducing a set of variables 13~; and 
y~, representing the badness B~1 ( a', a i) and goodness 
G~;(a', a i) of object i E P, with respect to group j ES _,, 
respectively: 

Program LPq-A: Min 2: 2: 2: 13 ;; ( 1.13) 
rES jES -• iEP. 

Subject to: 

13;; + (a' - a i) x;, - Y;; = 0 , 

fora!! i E P,,j ES . ,, r ES, (1.14) 

2: 2: 2: ( y;; - 13;;) = q , ( 1.15) 
rE5 jES -• iEP, 

13;j, 'Y~j ;3 0, 

for all i E P,, j E 5-,, r ES. (1.16) 

Formulation LP "-A is similar in concept to the Hybrid 
model previously proposed for the two-group case (Glover 
et al. 1988, Glover 1990), with the omission of the minimax 
deviations from their general model framework. The fa
vorable classification results for two groups reported in a 
recent simulation study involving (among others) several 
variants of the Hybrid model (Duarte Silva and Stam 
1994) indicate that our proposed multigroup formulation 
may give good classification results as well. Some impor
tant theoretical properties of our formulation will be de
rived and discussed in the next section. 

From (1.14) it is clear that the°' vectors are determined 
relative to each other. Consequently, one of the °' vectors 
can be set equal to the null vector, without loss of gener
ality (see Proposi tion 7). 

Group I 
j = 1 

Group 2 
j = 2 

Group 3 
j = 3 

GOCHET, STAM, SRINIVASAN AND CHEN I 215 

Table I 
Data for Examples 1 and 3 

Example 1 Example 3 

Object i X;j1 x,Jz X;j1 X;j z 

1 1 2 2 3 
2 2 3 5 6 
3 2 4 3 8 
4 2 1 
1 4 2 4 6 
2 2.5 3 1 3 
3 2.5 4 4 4.5 
1 1 1 2 4 
2 2 2.5 4 5 
3 4 1 

Using w;,; as the dual variable associated with the con
straint for object i E P,, j E S _" r E S, and w as the dual 
variable for the normalization constraint, the dual linear 
program DP"-A of LPq-A can be written as in (1.17)
( 1.20): 

Program DPq·A: Maxqw 

Subject to: 

(1.17) 

L 2: X irkwirj - 2: 2: X;jkwijr 
JES - , iEP, JES -, iEP1 

+ ( L L X;,k 
jES - , iEP, 

L L X ;jk) W 
jES-. iEP1 

= 0, 

k = 0, 1, ... , K, and for all r ES. 

(1.18) 

Q ~Wirf :s::; 1, 

for all i E P" j E S _,, r E S, 

w unrestricted in sign. 

(1.19) 

(1.20) 

From a computational viewpoint, the dual program 
DP "-A is quite attractive, since the simplex method with 
bounded va riables can be used to solve it, and DPq-A 
contains only a relatively small number of proper con
straints. While the primal problem in LPq-A has (s -
l)N + 1 constraints, DPq-A has only s(K + 1) proper 
constraints, the remainder being upper bounds on the 
variables. 

Example 1 is a very simple constructed data set with 
three groups and two (proper) attributes. Table I provides 
the data both for Example 1 and for Example 3, which is a 
special case that will be discussed in Section 2. 

Table II presents optimal vectors ai obtained for Exam
ples 1 and 3 from solving LP q _A with q = 10. It should be 
noted that there may be alternative solutions, especially in 
those examples where complete linear separation of two or 
more groups is possible. 

Example 1. The interpretation of Example 1 is straightfor
ward, as all of the °'; vectors are different. The hyper
planes which pairwise separate groups h and j are 
constructed by setting ahx = a ix, h, j E S. Since the 
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Table II 
Solution Vectors for Examples 1 and 3 

Solution Example 1 Example 3 
Vector 

C'l. j X;j O x,, 1 Xij2 X;jO Xij l x,12 

a' 0 0 0 3.333 0 0 
C'l.2 -3.509 7.018 -3.509 3.333 0 0 
C'l.3 10.526 5.848 -8.187 0 0 0 

Objective 0 13.3333 
Value 

example has only two proper attributes (x 1, x2 ), the hyper
planes are lines in R2• After rescaling, this leads to the 
following separating hyperplanes: 

(1) Line separating groups 1 and 2: 2x 1 - x2 = 1, 
(2) Line separating groups 1 and 3: 5x 1 - 7x2 = -9, 
(3) Line separating groups 2 and 3: x 1 + 4x2 = 12. 

The sample points and lines of separation for Example 1 
are depicted graphically in Figure I. This figure shows that 
the data in this example are perfectly linearly separable, 
since none of the objects is misclassified. However, the 
separating hyperplanes do pass through three of the data 
points, so that the classification of these objects is ambigu
ous. We will discuss the implications of this issue later in 
Section 2.5, and will propose a slightly modified prob lem 
formulation (the e-procedure) which deals with this issue. 

In the next section, we derive a number of properties of 
program LP'I, which will provide further justification for 
the choice of objective function and normalization in thi s 
formulation, and to establish the usefulness of LP 'I for ana
lyzing the multigroup classification problem. A number of 
these properties are generalizations of similar properties 

4.5 -..------------...,...-------~ 

0 

3.5 

Group 1 c Group 2 

2.5 

1.5 
Group 3 

A 

0.5 

0+--..,...---.----,.--.----.----.---..---,----l 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 

Figure 1. Classification scheme for example I. 

previously derived, discussed and analyzed for the two
group case by, among others, Freed and Glover (1986) and 
Koehler (1989a, 1989b, 1990, 1991). 

2. PROPERTIES OF THE BASIC MODEL 

2.1. Sequential Separation 

In this section, we first study the phenomenon that the 
classification vectors for at least two groups coincide. This 
situation may occur frequently in practice. Even though 
the normalization in (1.10) prevents that all o. j vectors are 
identical, it is possible that the o. j vectors in one or more 
subsets of Sare the same. In general , suppose that LPq-A 
generates an optimal solution with a partition S" S2, ••• , 

S0 of S such that for all pairs 111, r ES, (2.1) holds: 

mES 11 and rES1,,hE{l, . .. ,li}¢:>o."'=a'. 

(2.1) 

If every subset S; is a singleton, it follows that Ii = s, so 
that condition (2.1) does not apply and we get a solution of 
LPq-A where all aj are different. If at least one subset, say 
S1,, contains at least two elements, e.g., 111 and r, then am -
a' = 0, and no separation between groups 111 and r is 
possible. A new object with attribute vector X; and amX; = 
o.'x; = maxJE5 {aix;) cannot be classified at this stage. In 
fact, this situation can occur even if perfect linear separa
tion of groups /11 and r is possible, as Example 2 below will 
show. 

In order to overcome this problem, a new linear pro
gram is solved for each subset Si, containing more than 
one group. This LP uses only the sample data of the 
groups belonging to Si.. The (incomplete) classification in
formation from previous iterations is retained, and re
mains part of the final classification scheme. This process 
is continued until all subsets contain exactly one group, 
i.e., until all groups are separated. Such a process must 
necessarily terminate after solving at most s - I LPs, un
less for a subset Si. containing at least two groups the 
conditions of Proposition 2 below hold. In that (unlikely) 
case, groups belonging to Si. cannot (and should not) be 
separated. Successive divisions can be represented by a 
tree structure, as we will show in Example 2. 

Example 2. In Example 2 we solve a constructed five
group class ification problem with two proper attributes. 
The data, optimal a-vectors and successive partitions for 
this example are provided in Table III. The problem and 
the final classification scheme are shown graphically in 
Figure 2. 

We use the sequential separation procedure to deter
mine the optimal classification rules for the five groups. 
Let us denote the a-vector associated with group r com
puted in iteration p by ol". Table III shows that solving the 
full model with all five groups yields an optimal solution 
where a 11 = o. 12 = a 13 = a 14 = or, and o. 15 = (2.907, 
-2.907, -2.907)r, leading to hyperplane (1) in Figure 2, 
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Table III 
Data, Solutions and Successive Divisions for Example 2 (Five Groups) 

Data 
Group j 

Group 1 Group 2 Group 3 Group 4 Group 5 
Object i X;ji X;j2 X1jl X,12 X;ji X;p. xiJl X;j2 X;jt X;j1 

l 0 2.6 0 1 I I I 0 0 0 
2 1 3 0 2 2.4 2 2 0 1 0 
3 I .4 1.8 1 2 3 0.6 2 0.6 0 1 
4 1.4 2.6 2 2 3 1.4 3 0 0.4 0.4 

Successive Divisions and Solutions 
Optimal Solutio n 

Iteration S2 
0:11 0: 12 0: 13 0:15 

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (2.907, -2.907, -2.907) 
s. 

2 0:21 0:22 0:23 0:24 

(0, 0, 0) (0, 0, 0) (0, 2.358, - 2.358) (0, 2.358, - 2.358) 
3 0:31 0:32 o:JJ 0:34 

(0, 0, 0) ( 66.66 7' 0, - 33.333) (0, 0, 0) (13.636, 0, -22.727) 

separating group 5 from the other groups. Hence, the par
tition of S consists of (S1> 5 2), where 5 1 = {I , 2, 3, 4}, and 
5 2 = {5}. A second iteration is required to separate the 
four groups in S 1> resulting in the a-vectors o:21 = o:22 = 

or, and o:23 = o:24 = (0, 2.358, -2.358)r, thus yielding 
clusters 53 = { 1, 2} and 54 = {3, 4} and hyperplane (2) 
which separates S 3 and 5 4 . ln the third iteration it remains 
to solve two more linear programs, one to separate the 
groups ins,, giving o:31 =or. o:32 = (66.667, 0, -33.333f 
and hyperplane (3), and another for 54 , resulting in o:33 = 

or, o:34 = (13.636, 0, -22.727f and hyperplane (4) , which 

3,5 ~------------------, 

0 

Group 1, 2 
0 0 

(2) 2,5 
Group 1 Group 3, 4 

(3) 
t. 

0 

Group 2 
1,5 

t. 

Group 3 
(4) 

x 
0,5 

Other Group 4 

0 x x 
Group 5 

0,5 

·0,5 0,5 1,5 2,5 3,5 

Figure 2. Classification scheme for example 2 (five-group 
problem). 

completes the process of successive partitioning the 
groups. The process of successive divisions can be repre
sented by the tree structure as in Figure 3. 

2.2. Existence of Solutions 

We next study the existence of solutions to LP", and show 
that this formulation guarantees a finite optimal solution, 
unless the left-hand side of the normalization constraint 
(1.10) is identical to zero. Without loss of generality, we 
will refer to the generic formulation LP", rather than to 
the equivalent formulation LP"-A. 

Proposition I. Program LP" has a finite optimal solution 
for any q > 0 if and only if there exists at least one o: for 
which G(o:) - B(a) * 0. 

s = { 1, 2, 3, 4, 5 } 

S5 = { 1} 

Figure 3. Tree st ructure and branching in the presence of 
coinciding a-vectors for example 2. 
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Proof. "=?": It is obvious that a finite optimal solution to 

LP" implies that G(cr) - B(a) = q * 0, since q > 0. 
"¢:": Checking LP•, we obseive that the formulation 

always has a finite optimal solution, if feasible . Arbitrarily 
select a vector er for which G(cr) - B(a) = p > 0. From 
(1.14) and (1.15) it follows that /3~ = Max{O, -(er' -
cr j )x1,} , i E P,, j E S_,, r ES. Hence, er* = p- 1qa and 
13* = p - 'ql3 form a feasible solution to LP • , which com
pletes the proof. 0 

Whenever G(cr) - B(a) = 0 for all er, the linear pro
gram LP• is infeasible and does not provide a solution to 
the discriminant problem. The next proposition shows un
der which data conditions this will happen. 

Proposition 2. G(a) - B(a) = 0, for all a , if and only if 
LieP, x,, = x•, for all r E S. 

Proof. 

G(cr ) - B (a) = 2: 2: 2: (er' - cri) x1, 
rES jES -, iEP, 

2: [ L L o.'x;, rES j ES -, iEP, 

r2:ES [ (s - 1) ,.EIP, cr'x1, - 2: 2: a ix1,J 
jES- , iE P, 

2: [s 2: cr'x1, - 2: 2: a ix1,] = s 2: 2: cr ' x1, 
r E S iEP, jES iE P, rES 1Ef', 

- 2: 2: 2: a ix1, = s 2: 2: cr'x1, - 2: 2: 2: cr'x1i 
rES j ES i EP, rES iE P, rESjESiEP1 

2: cr ' [s 2: x1, - 2: 2: x1i]· 
rES iEP, jES iE P1 

Hence, it follows that G(cr) - B(a) = 0, for all er, if and 
only if 

s 2: X;, - 2: 2: X;j = 0, for r E s' 
iEP, jES iE P1 

which condition can be rewritten as 

1 L xi,= - 2: 2: X;j =x*, rES, 
iE P, S j ES iE P1 

from which the proposition follows. 0 

Since x,rti equals one for all i E P,, r E S, it is obvious 
that 2:,e P X;rti = n1 will be identical across all groups r E S 
if and o~ly if ni = nh, for all j, h E S. Thus, restating 
Proposition 2 in a more concrete way, it shows that LP• 
(q * 0) provides no feasible solution to the discriminant 
problem, if and only if ( 1) all sample sizes 11i are equal, and 
(2) the sum, and hence the mean, for each attribute is the 
same across all groups. It is unlikely that any real data set 
will ever satisfy these conditions. Interestingly, the para
metric Bayesian approach with multivariate normal groups 
(Anderson 1984) and equal covariance matrices for the 
different groups fails to provide a solution under exactly 
the same conditions as those in Proposition 2, provided 

that the prior probability of group membership is esti
mated by the sample size proportions, and the group 
means are estimated by the respective sample means. The 
situation of equal sample means but unequal sample sizes 
is discussed in Propositions 3-6. 

To correct for the different sample sizes, weights could 
be introduced into the normalization restriction (1.10). 
Probably the most justified weighted normalization would 
be the one given in (2.2), where the contributions to G( er) 
- B( er) by obseivations in each group are weighted by the 
group's sample size, 

2: 2: 2: n i(a' - cri) x1, = q . (2.2) 
r E S j ES -, iE P, 

For the case of two groups, this expression simplifies to 
the normalization recently proposed by Glover (1990). 
Proposition 2 continues to hold , provided that L;e p x1, is 
replaced by.!;- L;eP, x1,, i.e. , instead of conditions (l) and 
(2) below Proposition 2, the requirement for this proposi
tion now is that the sample means for each attribute 
should be the same across groups. Thus, LPq will fail to 
yield a feasible solution if and only if the sample means on 
all the attributes are equal, independent of the sample 
sizes. In this paper we do not investigate the use of (2.2) in 
LP" further. 

In Proposition 2 we derived that LP•-A has no feasible 
solution if and only if the training sample means for the 
attributes are identical across all groups and the training 
sample sizes of all groups are identical. Under these data 
conditions, none of the objects will be classified into a 
group. We will next discuss a related special case which 
will rarely occur in practice, but which is nevertheless of 
theoretical interest. Proposition 3 shows that if the sample 
means of each attribute are equal across all groups, but the 
sample sizes are not all identical, then there exists an op
timal solution for which only the constant terms o., 0 can 
possibly be nonzero. 

Proposition 3. If xjk = l/11j x L;ep Xijk = x k> f or all j E S , 
k = 1, .. . , K , and not all sample 'sizes ni are equal, then 
there exists an optimal solwion to LP •-A, say (er*, {3* , 

y*) , such that a;k = 0, k = 1, ... , K , and r E S. 

Proof. See the appendix. 

The result of Proposition 3 is logically consistent , be
cause one cannot expect to construct a meaningful linear 
classification function separating the groups, when the 
sample mean of each attribute is identical across all 
groups. The next proposition shows that it is possible to 
directly detennine an optimal solution to LP•-A if the con
ditions of Proposition 3 hold. Moreover, Proposition 4 
shows in this case there exists a classification scheme which 
depends on the group sample sizes only. Without loss of 
generality, we assume that n 1 ;. n 2 ;. • • ·;. n,, with n 1 > 
n,, i.e., we order the groups according to their size. 
Let m , = sn, - Lies ni. Then Proposition 4 is stated as 
follows: 



Proposition 4. Under the conditions of Proposition 3, an 
optimal solution to LPq-A is given by aj. = 0, k = 1, ... , 
K,j ES; aj0 = O,j = r* + 1, ... , s; aj0 = q/L.;: 1 111;,j = 

1, . .. , r*, where r• is rnch that 

r L j::r+I nj 
Min ---- = Min M, = M* 

r=1 .... . s-1 Li"' ' m; 

holds for r = r*. 

Proof. See the appendix. 

Proposition 4 implies that if the sample mean for each 
proper attribute is the same across all groups, but the 
group sample sizes are not all identical , there exists an 
optimal solution to LPq-A where the estimated coefficients 
of all proper attributes are identical to zero for all groups, 
while the estimated coefficient of the constant term is ei
ther a positive constant equal to aj0 , for j = I, ... , r*, or 
zero, for j = r• + 1, ... , s. In this case any object will be 
classified into the cluster of groups S 1 = {I, . . . , r*}, and 
never into any of the groups in S2 = {r* + 1, ... , s}. 

As remarked above, no immediate separation of objects 
within S 1 is possible. Further application of the sequential 
separation procedure described in Section 2.1 will of 
course eventually lead to the classification of all objects 
into the group with the largest training sample size. How
ever, this phenomenon is not a shortcoming of our 
method. Under the data conditions of Proposition 4, the 
Bayesian approach will also classify all objects into the 
largest group of the training sample, as long as the prior 
group membership probabilities are proportional to the 
sample sizes. In the case of equal priors across groups, the 
posterior probabilities obtained using the Bayesian ap
proach will be identical for each group, in other words, 
none of the objects will be classified into any group. Simi
larly, Proposition 2 states that LP"-A does not classify any 
object into a group if the training sample sizes of all 
groups are identical. 

We can extend Proposition 3 to Proposition 5, the proof 
of which is conceptually similar to that of Proposition 3. 

Proposition 5. Suppose that for some allribute t E { 1, ... , 
K} , x;,, "' O,for all i E P,, r ES. lf .rik = x.,j ES and k = 

1, . . . , K, then there exists an optimal solwio11 to LPq-A, 
say (a* , f3*, y*), such that a;k = 0 and r E S, k = 0, 
1, ... ' t - 1, t + 1, ... ' K. 

Proof. See the appendix. 

Compared with Proposition 3, the only additional re
quirement in Proposition 5 is that there exists an attribute 
t E {O, 1, ... , K} for which the training sample values x;,, 
are all nonnegative. However, Proposition 8 below shows 
that the training sample data can easily be transformed 
such that X;,, ;;, 0 for all i E P,, r ES, and any t E {l, ... , 
K}. Moreover, this nonnegativity restriction is always satis
fied for t = 0, since the constant terms X;,o equal one for 
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each object. Therefore, Proposition 3 is a special case of 
Proposition 5. 

Proposition 5 shows that if the sample mean for each 
proper attribute (i.e., for each k E { 1, ... , K}) is identical 
across groups, but the group sample sizes are not all the 
same, an optimal solution exists in which the estimated 
values of all but one of the attribute coefficients for all 
groups are zero, including the coefficients of the constant 
terms. The nature of the optimal solution a~ (see (A.18) 
in the appendix) implies that in this situation objects will 
always be classified into the group, say w, which has the 
largest coefficient a;rAx = a:,. However, the a~1AX value 
may occur for more than one group, in which case the 
classification rule assigns each observation to the subset 
5MAX of groups with maximal a;,-value . Objects are never 
assigned to groups with smaller a,,-values, so that under 
the-admittedly exceptional-data condition of Proposi
tions 3-5, alternative procedures yielding nonlinear (e.g., 
quadratic) classification rules are required. We relegate 
the extension of our linear method to the nonlinear case to 
future research. 

Example 3 illustrates the special case described in Prop
ositions 3-5. 

Example 3. Example 3 has three groups and two proper 
attributes. The data and optimal solution for this example 
are given in Tables I and II. In the optimal solution for this 
example, both proper attributes x1 and x2 have a zero 
coefficient for all three groups. This implies that the only 
useful information from the sample data, according to the 
LP model , is contained in the number of training sample 
objects from each group. Since ab = a6 = 3.333 and a~ = 

0, all sample objects are classified into the cluster consist
ing of groups I and 2. No object will ever be classified into 
group 3, and the sequential separation procedure is 
needed in order to further distinguish between groups I 
and 2. Since the sample means of both attributes are iden
tical across all groups, but the sample sizes are not (n 1 = 

4, 11 2 = 3, and 11 3 = 2), this result is a direct application of 
Propositions 3 and 4. It is interesting to verify the condi
tions in Proposition 4 which resulted in the initial separa
tion scheme for this example. We use the training sample 
sizes ni to calculate that m 1 = 3, m 2 = 0 and m 3 = -3, so 
that M 1 = 5/3 and M 2 = 4/3. The minimum value M* over 
r E {l, ... , s - l} = { 1, 2} is Ml> and r* = 2, resulting in 
an initial separation of group 3 from groups 1 and 2. 

2.3. Scaling, Linear Transformations, and 
Index of Fit 

The next property shows that the particular choice of the 
positive constant q affects only the scaling of the problem. 

Proposition 6. Let (a*, f3*, y*) be an optimal solution to 
program LPq, with objective function value v?. Then, for 
any t > 0, (a**, /3**, y**) with a•• = tq - 1a* , /3** = 
tq - 1 /3* and y•• = tq- 1y* is an optimal solution to LP', 
with objective fu11ction value tq- 1v?. 
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Proof. Let v: the objective function value for the solution 
(a**, ll**, -y**) to LP'. By the construction of (a**, ll** , 
-y**), it immediately follows that v: = tq - 1v'f. If (a**, 
(l**, -y**) is not optimal in LP', then there exists a solu
tion (a ', (l', -y') with objective value v~ such that v~ < v \ . 
However, consider a solution (a", (l", -y") with a" = 
qt - 1a' , W' = qt- 1(l' and -y" = qt - 1-y', which is feasible in 
LPq with objective function value vi.= qt- 1if2 < qt - 1if1 = 
qt - 1tq-'vi = v'f. This is obviously a contradiction. D 

Given the decision rule in (1.1) to classify an object i 
into group m provided that amx; = MaxiES{aix;} , it is 
clear that the solutions a• and a** as defined in Proposi
tion 6 are equivalent in that the classification results for 
both vectors will be identical, and q merely scales the op
timal solution. It should be noted that if LP q has alterna
tive optimal solutions, then LP' has corresponding 
alternative optimal solutions as well. 

The model described so far assigns one vector a i to 
each group j E S. Checking the structure of LP•, it is 
obvious that there is redundancy in the number of vari
ables in°' = (a1, .. . , a 5

), as G(a) and B(a) are based on 
the pairwise differences berween the a-vectors. The next 
proposition makes this redundancy explicit. 

Proposition 7. Let (a, {3, y) be an optimal solution to 
LPq. For any fixed vector a 0 E RK+t, define 11i = a i + 
a 0,forallj ES. Then (11, /3, y) is also an optimal solution 
to LP•. 

Proof. The pairwise difference ( lJ' - ll i) is equal to ( °' ' -
a 0 

- a i + a 0
) =(a' - a i) , which reduces to the same 

pairwise differences as in the original formulation (1.14). 
Hence, if ( 0<, (l, 'Y) is an optimal solution, ( lJ, (l , 'Y) is an 
optimal solution as well. D 

By taking the vector °' 0 in Proposition 7 equal to - °'' 
for some r E S, it follows that ll' = 0, implying that any 
one of the vectors a i, j E S, can be set identically equal to 
zero without loss to the model. To preserve the symmetry 
of the original model form, however, we do not introduce 
this simplification in our paper. 

An important consideration in the construction of meth
ods for classification and discrimination is whether these 
methods are insensitive to rotation and/or translation of 
the data. To discuss this issue for our approach, we intro
duce some further notation. Let xT, = (1, X;,i, .. . , x;,K) = 

(1, (x:;f), and ai = (ai0, °'i ' ' ... , °'iK) = (ai0, (ai.Rf). 
Proposition 8 shows that the a-vectors of LP q after a lin
ear transformation of the data are themselves a linear 
transformation of the original solution, while the (l- and 
-y-vectors remain unchanged. 

Proposition 8. Let U be a nonsingular K X K matrix, and 
u an arbitrary column vector in RK. ·Suppose that the x;,, 
i E P,, r E S, are the original data and the transfomied 
data are given by x~ = Ux~ + u, i E P,, r E S. Consider 
program LP q-D, the analogue to LP q-A using the trans-

formed data x~R. If (a, /3, y) with °' = (0< 
1
, ••• , 0<

5
) and 

a i = (ai0, (ai·R f) , j E S, solves LPq-A, then (/;, /3, y) 
solves LP•-D, where /; = (t, . . . , /;') , and ?;i = ({i0 , 

(?;i.Rf), with {io = °'io - a i.Ru - 1u and i;i .R = a i.Ru- 1
• 

Proof. The stability theorem of Glover et al. (1988) can be 
applied directly to LPq-A. A less direct proof can be con
structed using duality theory of linear programming. D 

One application of this proposition concerns solving the 
problem of standardized data. Let i ik and sik denote the 
sample mean and standard deviation of attribute k in 
group j. Similarly, let xk and sk be the mean and (pooled) 
standard deviation of attribute k for all sample data. The 
original data can be standardized using the transformation 
in Proposition 8 by taking U = Diag(sk" 1

), i.e., a diagonal 
transformation matrix with the reciprocal of the pooled 
standard deviations on the main diagonal , and u = 
(11 1, ... , uK) , where uk = -x,.s;;- '. According to Proposi
tion 8, these standardized data generate a transformed 
problem with solution (a*, (l* , -y*), where aj0 = °'iO + 
2:[~ 1 i k°'ik• a jk = sk°'ik• ll* = ll and -y• = -y, j ES, k = 
I , ... , K. The coefficients a jk can be used to identify the 
relative importance of the different attributes. As shown 
above, they can be computed directly from the coefficients 
°'ik> without re-solving the original problem. 

A last basic result of our formulation for the general 
multigroup class ification problem concerns the construc
tion of a general index of fit. For given sample sets of 
objects and a set of vectors a i, j E S, such that G(a) 
B(a) > 0, an index of fit C(a) is defined by (2.3) : 

B (a ) 
C (a ) = 1 - G(a). (2.3) 

The main properties of this index are contained in the 
next two propositions. 

Proposition 9. The index of fit Cq( a*) associated with an 
optimal solwion (a*) of LP 'I has th e following propenies: 

(i) 0 < Cq(a*) ""I, with larger values ofCq(a*) indicating 
better classification results for the sample data. 

(ii) Cq(a*) is independent of q and of the data transforma
tion of Proposition 8. 

(iii) The objective function of LP q can be changed to max-
imizing Cq(a) without changing the solwion of LPq. 

Proof. Cq(a *) is strictly greater than zero, because 
Cq(a*) = (G(a*) - B(a*))/G(a*) = q!G(a*) , while q > 
0 and G(a*) > 0. Moreover, Cq(a*) does not exceed 1, 
since G(a*) ;;. G(a*) - B(a*) = q, which completes the 
proof of (i). To prove (ii), we let Bq(a*) and B,(a**) 
denote the objective values (badness) of the optimal solu
tions a• and a•• of LP q and LP', respectively. Then, 
C,(a**) = t/(t + B,(a**)) = tl (t + tq - 1Bq(a*)), from 
Proposition 6, so that C,(a**) = q!(q + Bq(a*)) = 
Cq( a*). The independence of Cq( a*) from the data trans
form ation of Proposition 8 is obvious since an optimal 
solution was constructed in the proposition in which the 



badness vector Jl remained unchanged. Part (iii) follows, 
because minimizing badness B(cx) is equivalent to minimiz
ing q + B(a) , which in turn is equivalent to maximizing 
ql(q + B(a)) = Cq(a). 0 

2.4. Separating Hyperplanes 

For any pair of solution vectors a' and o!, the following 
three cases are possible: 

(i) a' = a 1, 

(ii) a' * ai, but a,k 1, ... , K, and a, 0 * 
a j0, or 

(iii) none of the above. 

Given an object with score x, and considering classifica
tion into either group r or group j , we have the following 
situation: 

ad (i) No classification between groups r and j is pos
sible, and the sequential procedure is to be ap
plied (see Section 2.1). 

ad (ii) No separating hyperplane between groups r and 
j exists. Any object will be classified into group r 
if a,0 > a 10, in group j if a10 > a,0. 

ad (iii) A separating hyperplane does exist, and the clas
sification is as follows: 

if a'x > a ix, then classify into group r, 
if a'x < a ix, then classify into group j , and 
if a'x = a ix, then classify into either group 
r or group j. 

2.5. e-Procedure 

As remarked above, one potential drawback of LP q-A, as 
well as of other previously proposed LP-based formula
tions for the two-group case, is that some objects in the 
training sample may be located exactly on the boundary 
between two groups, so that their classification is ambigu
ous. For instance, three out of nine objects in Example 1 
and six of 244 objects in Example 5 below (see Section 3) 
are located on one or more separating hyperplanes. 

This phenomenon may not pose a problem in practice, 
as long as the size of the training sample is large, the data 
are continuous, and when the classification rules are ap
plied to validation samples. However, due to their ten
dency to select separating hyperplanes which cross through 
some of the objects in the training sample, one should be 
careful in interpreting the classification performance of 
linear programming procedures which ignore this issue
certainly on the training sample, but also on the validation 
sample if the populations have discrete-valued attributes, 
in which case some validation sample objects may be lo
cated exactly on a boundary between two or more groups. 

To avoid as much as possible the case of having obser
vations of the training sample located on the separating 
hyperplanes between groups, it is possible to introduce an 
e-procedure as follows. For e positive and sufficiently 
small, let {3~1 = (O'.rx,,. - a.ixir - e) - and 'Y~J = (a '"xir -
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Table IV 
Results for e-Procedure Applied to the Data of 

Example 1 

a' 
Solution Vector 
(l2 

(0, 0, 0) ( -11.444,8.889, -2.444) ( 5.407,6.407,6.407) 

Pairwise Separating Hyperplanes 

Group I and Group 2 8.889x 1 - 2.444x2 = 11.444 
Group I and Group 3 6.407x 1 - 6.407x2 = -5.407 
Group 2 and Group 3 2.482x1 + 3.963x2 = 16.851 

dx,, - e) +, where i E P,,j ES _, and r ES. Now, the set 
of restrictions in (1.14) is replaced by (2.4): 

for all i E P,, j E S _,, r E S. (2.4) 

Note that if 13~ = y~ = 0, object i E P, will always be 
classified correctly with respect to group j. The remainder 
of LP"-A remains unchanged. One choice might be to 
restrict e to a (small) fraction of the average value of the 
a'x,, - a ix,,, for instance by applying the formula in (2.5): 

e = 
1 I I I (cx'x,, - a 1x,,) , (2.5) 

F(s - 1) Ljes n1 res iEP, JES-. 

where F is a large positive number denoting the fraction 
(e.g. , F = 1,000). Defining T = (s - I) 2:1es n1 for sim
plicity and using (2.4 ), (2.5) can be written as (2.6): 

LL .Z:: (y;1-f3;1)=TFe-Te=q, (2.6) 
rES iEP, JES - . 

ore = q/T(F - 1). Choosing a value of q should be guided 
by the principle of obtaining an optimal a-vector with 
components which are neither too small nor too large. 
Reasonable choices range from q = T to q = l ,OOOT. It is 
possible to refine this e-procedure, e.g., by allowing differ
ent e-variables for each pair of groups. However, we will 
not discuss this extension in the current paper. 

Example 4. Recall that, even though none of the objects 
was misclassified, in Example 1 several of the data points 
were located on the boundary of the classification regions, 
so that the classification of these objects is ambiguous. We 
re-solve this example using the e-procedure. The resulting 
optimal solution and the classification regions are given in 
Table IV and graphically presented in Figure 4. It appears 
that the classification scheme resulting from the 
e-procedure is more attractive than that in the original 
scheme in Example 1, as the group boundaries are now 
located strictly inbetween the objects, without increasing 
the number of misclassified cases. 

3. EVALUATION 

In this section we use two real data sets that have been 
published previously in the literature (Rulon et al. 1967, 
SAS 1988) to compare the classification performance of 
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Figure 4. Classification scheme for example 4 ( E-procedure ). 

our proposed formulation with that of Fisher's linear dis
criminant function (Fisher 1936) and the nonparametric 
nearest neighbor method. Example 5 (Rulon et al. 1967) is 
a fairly large data set with three attributes, three groups and 
244 objects. Example 6 (SAS 1988) is a small five-group 
problem with four attributes and 36 objects. We analyze 
these data sets using both the resubstitution method, 
where the estimated classification rules are used to classify 
each object of the training sample, and the Leave-One-Out 
(LOO) cross-validation method (Lachenbruch 1967). The 
resubstitution method is known to be positively biased and 
to underestimate the true misclassification rates, because 
the very same objects are used to estimate and evalu
ate the classification rules. The LOO method has been 
shown to yield almost unbiased estimates of the misclassi
fication rates (Lachenbruch 1967, Mclachlan 1992). 

3.1. Example 5: Personnel Management Data Set 
(Rulon et al.) 

Rulon et al. (1967) attempt to characterize three groups of 
employees, "passenger agents," "mechanics," and "opera
tions control agents," of a particular airline company. To 
this purpose, 85 passenger agents, 93 mechanics and 66 
operations control agents were asked to fill out an exten
sive questionnaire, which included various questions about 
each employee's preference for certain types of indoor and 
outdoor activities. These answers were then translated into 
three composite scores, measured on a ratio-scale, the first 
one (X1) measuring preference for outdoor activities, the 
second (X2) measuring preference for convivial activities, 
and the third one (X3) measuring preference for conserva
tive activities. For further details about the nature of these 
attributes and the data collection process we refer the 
reader to Rulon et al. (1967). The purpose of the analysis 

was to establish rules which would be useful in making 
personnel assignment decisions, answering such questions 
as which type of job provides the best fit with a given 
employee, based on the employee's questionnaire results. 

Table V gives the classification results of applying our 
proposed nonparametric linear programming formulation, 
with and without the e-procedure, Fisher's parametric lin
ear discriminant function with proportional priors and with 
equal priors, and the nonparametric k-nearest neighbor 
method, with k = 8 and k = 16. The detailed information 
in the first part of Table V refers to the solutions obtained 
by applying the estimated classification rules to the train
ing sample objects (resubstitution) . From the results we 
see that, using the resubstitution method, all six methods 
classify approximately equally well for this data set, with 
misclassification percentages ranging from 23.8 percent for 
the nearest neighbor method with k = 8 to 27.9 percent 
for the nearest neighbor method with k = 16. Fisher's 
linear function and the linear programming methods yield 
almost identical results of between 24.2 and 25 percent 
misclassified. Note that the linear programming method 
with the e-procedure correctly classifies each of the six 
objects from the training sample which were located on the 
boundary of the solution obtained without including 
the E-procedure. 

The last part of Table V presents the classification re
sults when applying the LOO method. Again, Fisher's 
method gives slightly more accurate results than the linear 
programming formulations (25.0 and 25.4 versus 26.6 per
cent misclassified), while the nearest neighbor methods 
perform poorly (29.1 and 30.3 percent misclassified) . 

3.2. Example 6: Remote-Sensing Data on Crops 
(SAS 1988) 

The real data of Example 6 are used in the SAS/Stat User's 
Guide (SAS 1988) to illustrate Fisher's linear discriminant 
analysis. In this example, four measures of remote-sensing 
data are used to classify observations as one of five differ
ent crops: clover, corn, cotton, soybeans and sugar beets. 
The training sample consists of 11, 7, 6, 6, and 6 observa
tions in these groups, respectively, for a total sample size 
of n = 36. Given the small number of training sample 
objects, we limit the nearest neighbor analysis to k = 8. 
Table VI gives the summary classification results using the 
resubstitution analysis and the LOO analysis. 

From Table VI, we see that the misclassification rates 
are high, no matter which linear classification rule is used. 
Misclassification rates of over 50 percent are not as sur
prising in the five-group case as in two-group classification, 
as in our current example there are multiple ways of mis
classifying objects. When re-substituting the training sam
ple, the linear programming approach with E > 0 is the 
most accurate with a misclassification rate of 27.8 percent, 
followed at a distance by the linear programming approach 
with E = 0 ( 43.0 percent), Fisher's method (50 percent), 
and the nearest neighbor method with 53.2 percent mis
classified. Analyzing the data using the LOO method, 
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Table V 
Solution of Example 5 (Rulon et al. 1967), Plus Comparison with Other Methods 

Linear Programming Method (LP •-A) (ReSubstitution) 
e=O Classified into Group: On E = 0.001 Classified into Group: 

1 2 3 Boundary I 2 3 

I~~ 
13 3 

I 
3 

I 
69 13 3 

From Group: 2 63 13 2 From Group: 2 15 65 13 
3 12 50 1 3 3 12 51 

Fisher's Linear Discriminant Function (ReSubstitution) 
Proportional Priors Equal Priors 

Classified into Group: Classified into Group: 
1 2 3 2 3 
68 13 4 70 11 4 

From Group: 2 16 67 10 From Group: 2 16 62 15 
3 3 13 50 3 3 12 51 

k-Nearest Neighbor Method (ReSubstitution) 
k = 8 Classified into Group: k = 16 Classified into Group: 

2 3 1 2 3 

Ii~ 
7 6 68 11 6 

From Group: 2 62 14 From Group: 2 20 56 17 
3 10 52 3 4 10 51 

Summary Classification Results for Example S 

Method 

LP•-A, e = 0 
LP•-A, e = .001 
Fisher's LDF, Proportional Priors 
Fisher's LDF, Equal Priors 
k-Nearest Neighbor, k = 8 
k-Nearest Neighbor, k = 16 

Fisher's method with proportional priors yields the best 
results, with 63.9 percent misclassified , closely followed by 
Fisher's method with equal priors and the linear program
ming approach (66.7 percent). The difference of about 
three percent between the misclassification rates of these 
three methods corresponds with a difference of only one 
misclassified object. As when using resubstitution method, 
the nearest neighbor method gives the poorest classifica
tion results (72.2 percent misclassified). 

Table VI 
Summary Classification Results for 

Example 6 (SAS 1988) 

Method 

LP•-A, e = 0 
LP•-A, E = .001 
Fisher's LDF, 

Proportional Priors 
Fisher's LDF, Equal 

Priors 
k-Nearest 

Neighbor, k = 8 

Percentage Misclassified 
ReSubstitution Leave-One-Out 

Method Method 

43.0 66.7 
27.8 66.7 
50.0 63.9 

50.0 

53.2 

66.7 

72.2 

Percentage Misclassified 
ReSubstitution 

Method 

24.2 
24.2 
24.2 
25.0 
23.8 
27.9 

4. CONCLUSIONS 

Leave-One-Out 
Method 

26.6 
26.6 
25.0 
25.4 
29.1 
30.3 

Our proposed multigroup LP approach for solving classifi
cation problems appears to greatly enhance the types of 
problems that can be analyzed systematically using non
parametric LP-based methods. The example problems and 
the analysis of real data sets presented in this paper clearly 
show that our multigroup LP procedure is indeed capable 
of providing good classification results, which can compete 
with both Fisher's parametric method and the nonpara
metric k-nearest neighbor method. The purpose of our 
paper is to introduce the novel problem formulation and 
study a number of important properties of the formula
tion. Of course, future research should further investigate 
the robustness of the proposed multigroup LP classifica
tion method with respect to various data conditions, much 
like it has already been done-with mixed success-for the 
two-group case. 

APPENDIX 

Proof of Proposition 3. From Propositions 1 and 2 it fol
lows that LP•-A has a finite optimal solution, say (a, J3, "f). 
Consider a;k = 0, k = 1, ... , K and r E S; a;0 = a, 0 + 
L~- 1 5\a,., r ES; /3~/ = ~ L,EP, {3~. for all i E P,,j Es_, 
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and r E S; and y~• = ;/;- 2:,EP, y1, for all i E P,, j E 5-, 
and r ES. We will show that (a*, 13•, -y*) is both feasible 
and optimal for LPq-A 

(1) Feasibility: From the nonnegativity constraints /3',; ;;. 
0, Y1 ;;. 0, i E P,, j E S _,, r E S, of the original problem in 
(1.16), it is obvious that /3~/;;. 0 and y~•;;. 0, i E P,,j E 
S_,, r ES. Checking whether (a*, 13• , -y*) is feasible with 
respect to (1.14), we derive that 

This last expression equals zero, because (a, 13, -y) is a 
feasible (and optimal) solution to LPq-A, so that (l.14) 
implies that /3~1 + o{x" - a1x" - Y,.1 = 0. Hence, (a*, 13• , 
-y*) satisfies the constraint set (l.14) in LP"-A as well. 
Verifying the feasibility of the normalizat ion constraint 
(1.15) with respect to (a*, 13 •, -y*), we see that 

2: 2: 2: (y;/- /3;/ J= 2: 2: 2: ...'.... 2: 
iEP, jES _, rES i E P, j E S -• r E S ll r 1 E P, 

·(y;1-/3:1J = 2: 2: 2: (y;1- f3:1J, 
i E P , jES - , rE S 

which expression indeed equals q, using (1.15). This com
pletes the proof that (a*, 13•, -y *) is a feasible solution to 
LPq-A, and hence to LPq. 

(2) Optimality: We know that (0t, 13, -y) is an optimal 
solution to LPq, with an objective function value of zq = 

L;EP, 2:iE5-, 2:,Es /3~i· The objective function value of (a* , 
13 *, -y*) is given by: 

z• = 2: 2: 2: 13;/ = 2: 2: 2: ...'.... 2: 13;1 
rESjES -. iEP, rES j E S -, iE P , n, t EP, 

= 2: 2: 2: 13;1 = zl/ , 
rES j ES - , i EP, 

which completes the proof. 0 

Proof of Proposition 4. From Proposition 3 it follows that 
we can set a;k = 0, k = 1, . .. , K, and r ES. Thus, LP q-A 
simplifies to the LP-problem in (Al)-(A4): 

Min L L L 13;1, (Al) 
r E S jES -, iEP, 

Subject to: 

/3 ;i + a, o - a jO ;;. 0, i E P,, j E S _,, r E S, 

L (sn; - L n1 )a;o = q , 
iES jES 

/3;1;;.0 , iEP,,jE5-,,rES . 

(A2) 

(A.3) 

(A.4) 

Note that, for an optimal solution to this problem, /3~ = 

Max(O; - a, 0 + ai 0 ) , for all 1 E P,, so that we can set /3,i = 

/3~1 for all h, i E P,. Using this information, and letting m; 
= sn; - 2:iES n1, the above linear program can be simpli
fied to (A5)-(A8): 

Min L L n,/3,1, 
rES jES - , 

Subject to: 

/3,i + a ,o - a 10 ;;. 0, j E S -n r E S, 

L m ;a ;o = q, 
iES 

f3,1 ;;. 0, j E 5-,, r E S. 

(AS) 

(A6) 

(A7) 

(A8) 

Substituting the /3,i in the objective function, this prob
lem can in turn be rewritten as (A.9)-(AlO) : 

Min L L n,[Max(O, a10 - a, 0 )] , 
rES jES -, 

Subject to: 

2: ni;a w = q. 
iES 

(A9) 

(AlO) 

Notice that L;Es m; = 0. It follows that if a;0 , r E S, is 
optimal, the solution a;0 + c, r E S, where c is any 
constant , is also optimal. Hence, we can assume that an 
optimal solution exists such that the a;0 take on 7r + l 
different values, 7r + I ,,;;; s, say v0 , v1, .•• , vu, such that 
0 = vu < v 1 < · · · < v". 

Let Si = {i: a70 = vi ) , Si = {i: i E S\ S) and let ISi 
denote the cardinality of set S. Further, denote the mini
mal objective functio n value of LP q _A by z", for any q > 0. 
Let e be such that 

0 < e < min( V u - V u - 1 , abs( q ) ) , 
2: ;es,,. nz; 

where abs(y) is the absolute value of y, and let 

{ 

• - € 
new - a 10 ' 

U jQ - * a ;o , 

i E Su , 
i E Su , 

iESu,rESu , 
all other (r, j) ES x S. 

Next , consider the program LP", where 11 = q - e L;Es 
m ;, by the choice of e. Note that e < vu - vu-! and 11 > o'. 
It is easy to check that the above solution is feasible for 
LP", and its objective value equals v"'w in (A12): 

v"'w=zq - elSu l L n i . 
jE S. 

From (A.12) it follows immediately that 

(A12) 

(AJ3) 

By the definition of z,, we also have z,, ,,;;; v new, and by 
Proposition 6, z,, = 11 /q zq ,,;;; vncw or, substituting 11 = q -
e L;Es. m;, we have (A.14): 

( l°") new Zq 1 - - € L.J nl ; ~ v . 
q ;es. 

(A.14) 



From (A.13) and (A.14) it follows that L;es. m, > 0, 
and from (A.12) and (A.14) we derive that (A.15) holds, 

zq( 1-! e 2: m, ) .;; zq - eJSrr l 2; ni. 
q iES, jE5, 

As L;es, m, > 0, (A.15) implies (A.16): 

qJS r.I L je.i'. ni 
Zq ~ 

(A.15) 

(A.16) 

Since the solution proposed in Proposition 4 has an ob
jective value zq equal to the lower bound of (A.16), and 
the sets Sr. and Sr. are such that this lower bound itse lf is 
at its minimum, this solution must be optima l. 0 

Proof of Proposition 5. Similar to Proposition 3, it can be 
shown that, if (ex , J3 , y) is an optimal solution to LP "-A, 
then (ex*, J3 *, y *) is also an optimal solution to LP"-A, 
where: 

a ;k= O, rES ; k=O , l , .. . , t-1 , t + l , ... , K , 

i E P,, j E 5-,, r E S. 

i E P,, j ES _,, r ES. 
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