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Preface

This new research project at IIASA is concerned with modeling technological and organi-
sational change; the broader economic developments that are associated with technological
change, both as cause and effect; the processes by which economic agents – first of all,
business firms – acquire and develop the capabilities to generate, imitate and adopt techno-
logical and organisational innovations; and the aggregate dynamics – at the levels of single
industries and whole economies – engendered by the interactions among agents which are
heterogeneous in their innovative abilities, behavioural rules and expectations. The central
purpose is to develop stronger theory and better modeling techniques. However, the basic
philosophy is that such theoretical and modeling work is most fruitful when attention is
paid to the known empirical details of the phenomena the work aims to address: therefore,
a considerable effort is put into a better understanding of the ‘stylized facts’ concerning
corporate organisation routines and strategy; industrial evolution and the ‘demography’
of firms; patterns of macroeconomic growth and trade.
From a modeling perspective, over the last decade considerable progress has been made

on various techniques of dynamic modeling. Some of this work has employed ordinary
differential and difference equations, and some of it stochastic equations. A number of
efforts have taken advantage of the growing power of simulation techniques. Others have
employed more traditional mathematics. As a result of this theoretical work, the toolkit
for modeling technological and economic dynamics is significantly richer than it was a
decade ago.
During the same period, there have been major advances in the empirical understand-

ing. There are now many more detailed technological histories available. Much more is
known about the similarities and differencers of technical advance in different fields and
industries and there is some understanding of the key variables that lie behind those differ-
ences. A number of studies have provided rich information about how industry structure
co-evolves with technology. In addition to empirical work at the technology or sector level,
the last decade has also seen a great deal of empirical research on productivity growth
and measured technical advance at the level of whole economies. A considerable body
of empirical research now exists on the facts that seem associated with different rates of
productivity growth across the range of nations, with the dynamics of convergence and
divergence in the levels and rates of growth of income in different countries, with the
diverse national institutional arrangements in which technological change is embedded.
As a result of this recent empirical work, the questions that successful theory and useful

modeling techniques ought to address now are much more clearly defined. The theoretical
work described above often has been undertaken in appreciation of certain stylized facts
that needed to be explained. The list of these ‘facts’ is indeed very long, ranging from the
microeconomic evidence concerning for example dynamic increasing returns in learning
activities or the persistence of particular sets of problem-solving routines within business
firms; the industry-level evidence on entry, exit and size-distributions – approximately
log-normal; all the way to the evidence regarding the time-series properties of major
economic aggregates. However, the connection between the theoretical work and the
empirical phenomena has so far not been very close. The philosophy of this project is
that the chances of developing powerful new theory and useful new analytical techniques
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can be greatly enhanced by performing the work in an environment where scholars who
understand the empirical phenomena provide questions and challenges for the theorists
and their work.
In particular, the project is meant to pursue an ‘evolutionary’ interpretation of tech-

nological and economic dynamics modeling, first, the processes by which individual agents
and organisations learn, search, adapt; second, the economic analogues of ‘natural se-
lection’ by which interactive environments – often markets – winnow out a population
whose members have different attributes and behavioural traits; and, third, the collective
emergence of statistical patterns, regularities and higher-level structures as the aggregate
outcomes of the two former processes.
Together with a group of researchers located permanently at IIASA, the project co-

ordinates multiple research efforts undertaken in several institutions around the world,
organises workshops and provides a venue of scientific discussion among scholars working
on evolutionary modeling, computer simulation and non-linear dynamical systems.
The research will focus upon the following three major areas:
1. Learning Processes and Organisational Competence. 2. Technological and Indus-

trial Dynamics 3. Innovation, Competition and Macrodynamics
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Abstract

A reduction paradigm is a theoretical framework which provides a definition of structure
for multivariate laws, and allows to simplify their representation and statistical analysis.
The main idea is to decompose a law as the superposition of a structural term and a noise,
so that the latter can be neglected without loss of information on the structure. When
the structural term is supported by a lower-dimensional affine subspace, an exhaustive
dimension reduction is achieved. We describe the reduction paradigm that results from
selecting white noises, and convolution as superposition mechanism.
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A Reduction Paradigm for Multivariate Laws

Francesca Chiaromonte (chiaromonte@iiasa.ac.at)

Introduction

A k-variate law is a complex object whose structure embodies both marginal and joint
features. All those features can be translated, to some extent, into geometric characteriza-
tions of an iid sample from the law, meant as a cloud of points in IRk . Dimension does not
affect the analysis of marginal features, but as k increases it becomes progressively harder
to conceive and articulate the joint ones. For example, how does one conceive and artic-
ulate the interdependencies among, say, 10 or 100 coordinate components? One is often
forced to neglect high-order interactions, and/or to assume hierarchies among them 1. At
the same time, for k > 3, the data cannot be visualized as a whole; while graphical tools
can still be used to investigate low-dimensional marginals, a direct graphical investigation
of the joint features is impossible.
Producing inferences in high-dimensional settings can then become complicated and

challenging. A large variety of inference methods is available once strong assumptions
on the nature of the law are imposed; that is, once a model for the law is chosen (see,
among others, M.L. Eaton, 1983, R.J. Muirhead, 1982, and G.A.F. Seber, 1984). But the
intuition based on graphical preliminary exploration that should precede the utilization of
model-based methods is impaired by the conceptual and practical difficulties mentioned
above.
These considerations, among others, justify the quest for simplified representations of

multivariate laws, especially ones allowing a reduction in dimension. Simplified represen-
tations are often developed targeting some (more or less restricted) features of interest.
Exhaustiveness becomes then an issue; once a target has been chosen, the information
concerning it ought to be preserved by simplification. More generally, it ought to be clear
in what relation the proposed simplified representation is to the target. If exhaustiveness
is not always guaranteed, it should be possible to state under what assumptions on the
nature of the law it is, and/or to establish to what extent the target is preserved (with or
without assumptions).
These issues are very relevant in practice; the last thirty years have witnessed the de-

velopment of a large number of graphical exploration procedures for high-dimensional data
sets. Think for example of Principal Component Analysis, Factor Analysis (see G.A.F.
Seber, 1984, and references therein), Projection Pursuit (H.J. Friedman and J.W. Tuckey,
1974, H.J. Friedman, 1987, and D. Cook, A. Buja, J. Cabrera and C. Hurley, 1995), or
Grand Tours (D. Asimov, 1985, and A. Buja and D. Asimov, 1986). The theoretical
rationale underlying any of these procedures can be interpreted as a simplified represen-
tation of the multivariate law from which the data are drawn; targets range anywhere

1Conditional independence (see A.P. Dawid, 1979) provides a key to articulate interdependencies; a
very interesting representation of them through conditional independence graphs is given by J. Whittaker,
1990.
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from “variability”, to “linear interdependence structure” (correlation among the coordi-
nate components), to “non-linear structure” (defined as departure from normality), to
“structure” according to some other definition. Correspondingly, many of the critiques to
these procedures can be interpreted in terms of choice of targets, and relations between
simplified representations and targets. As we proceed, it will become clear that the sim-
plified representation underlying Factor Analysis is the closest in spirit to the one we will
propose. In fact, Factor Analysis differs from the other procedures mentioned above by
its reference to a latent factor entirely embodying the correlation target.
Our focus will not be on techniques to make inference on simplified representations

(“population” objects) based on data from a multivariate law, but on the theoretical
premises for these techniques; that is, on how to define targets, and how to develop
simplified representations guaranteed to embody them exhaustively.
In Sections 1 and 2, we introduce the concept of reduction paradigm and provide

definitions and some key results. Section 3 concerns dimension reduction. We conclude
with a brief summary and some remarks on inference in Section 4. More details can be
found in F. Chiaromonte, 1996.

1 The reduction paradigm

Our analysis will be conducted at the level of laws on IRk , and we will not distinguish
among random vectors with the same distribution. The main idea behind a reduction
paradigm is to decompose a law L on IRk into two terms, one of which does not contribute
to the structure (the target) and can therefore be neglected. In other words, the aim is
to represent a law as the superposition of a structural term and a noise, or no-structure
term. Hence, the specification of a reduction paradigm relies upon

• a definition of absence of structure; that is, a choice of noises

• a choice of superposition mechanism

which, conversely, determine a definition of structure. We have selected white noises
Nk(0, βIk), β ∈ IR

1
+, and convolution. Hence, we write

L = Λβ(L) ∗Nk(0, βIk) (1)

or, in terms of characteristic functions

φL(u) = φΛβ(L)
(u) e−

β
2
‖u‖2 , u ∈ IRk (2)

This is by no means the only possibility, but it is in line with much of the statistical tradi-
tion and thus constitutes a very natural first step. In fact, it expresses a situation in which
an independent normal error is additively superimposed to the object of interest. One can
envision reproducing the whole analysis we are about to develop with different noises
and/or superposition mechanisms, though. As far as noises are concerned, one could take,
for example, uniforms on hyper-spheres of radius ρ ∈ IR1+, or normals with independent
components Nk(0,Diag(σi)), σ ∈ IR

k
+. In the first case one maintains the weakly spherical

nature of white noises and loses independence of the coordinate components, while in the
second case one loses weak sphericity and maintains independence. Regarding superposi-
tion, one could explore, for example, multiplicative (instead of additive) schemes.
Before proceeding let us remark that the reduction paradigm we have selected, as well

as any other conceivable one, while certainly constituting a model for decomposing a law,
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does not require strong assumptions on the nature of the law itself. A reduction paradigm
can be applied without fixing at the outset a model for the law; that is, without assuming
at the outset that the law belongs to a given (and possibly finally parameterized) class.
Furthermore, our reduction paradigm corresponds to the inverse problem for heat-type
diffusion of probability measures (for an easy introduction, see G.M. Wing, 1991, and A.
Friedman and W. Littman, 1994). Paradigms resulting from a different choice of noises
would correspond to inverse problems for processes with different kernels.

Indexing the structural term by β serves to stress the fact that the decomposition in (1)
and (2) is not unique, unless it holds only with β = 0, and therefore Λβ(L) = L itself. Let

B(L) =
{

β ∈ IR1+ s.t. φL(·) e
β
2
‖(·)‖2 is a ch. fct.

}

This subset of IR1+ is always non-empty, as it must contain 0, and is easily shown to
be B(L) = [0, βo(L)], where βo(L) = supB(L) = maxB(L). We call the corresponding
structural terms

Λβ(L)↔ φL(·) e
β
2
‖(·)‖2 , β ∈ B(L)

sources, βo(L) reduction coefficient, and

Λo(L)↔ φL(·) e
βo(L)
2
‖(·)‖2

primary source of L. Notice that reduction coefficient and primary source are unique by
construction. If βo(L) = 0, so that the only (and thus primary) source of L is L itself, we
say that the law is irreducible. We call it reducible otherwise.
All sources share the structure of L, and can be equivalently taken as exhaustive

“simplified” representations of the law. The primary source is the one in which no error
is superimposed to the structure; that is, the one in which we have pushed simplification
as far as possible. Hence, we will select Λo(L) as simplified representation of L, and write

L = Λo(L) ∗Nk(0, βo(L)Ik)

Let us fix ideas using the normal case as an example:

L = Nk



µ,
p
∑

j=1

ηjPVj + ηPV





where
∑p
j=1 ηjPVj + ηPV is the spectral decomposition of the covariance with (distinct)

eigenvalues η1, . . . , ηp, η in decreasing order, and corresponding eigenspaces V1, . . . , Vp, V.
It is easy to show that

φL(u) e
β
2
‖u‖2 = exp







iu′µ−
1

2
u′





p
∑

j=1

(ηj − β)PVj + (η − β)PV



u







is a characteristic function if and only if
∑p
j=1(ηj − β)PVj + (η − β)PV is non-negative

definite; that is, if and only if β ≤ η. Hence, βo(L) = η and correspondingly

Λo(L) = Nk



µ,
p
∑

j=1

(ηj − η)PVj




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It is then clear that a normal is irreducible if and only if the smallest eigenvalue of its
covariance is 0; the irreducible k-variate normals are all and only the ones supported by
lower dimensional affine subspaces, and they constitute the primary sources of non-singular
normals.

Primary sources are irreducible by construction. The class of all irreducible laws on
IRk represents the repertoire of possible structures. The following proposition provides a
sufficient condition for irreducibility, thereby characterizing part of such repertoire.

Proposition 1.1 If there exists a measurable set B ⊆ IRk such that Leb(B) > 0, but
L(B) = 0, then L is irreducible.

Proof: Suppose βo(L) > 0. Then, for any choice of v ∈ IR
k , Nk(v, βo(L)Ik) is mutually

absolutely continuous with respect to Leb. So Leb(B) > 0 implies

Nk(v, βo(L)Ik)(B) > 0 , ∀v ∈ IR
k

and thus

L(B) =
∫

IRk
Nk(v, βo(L)Ik)(B) Λo(L)(dv) > 0

contradicting our assumption. We can conclude that βo(L) = 0, and therefore that L is
irreducible. 2

Since we have selected white noises as no-structure terms, reducible laws must be mutu-
ally absolutely continuous with respect to the Lebesgue measure, because they “contain” a
term that is. As a consequence, all laws having “thick” holes with respect to the Lebesgue
measure are irreducible in IRk . In particular, laws whose affine support As(L) has di-
mension < k are irreducible in IRk ; we saw an instance of this with irreducible normals.
So are laws whose closed support Cs(L) is bounded, regardless of whether the latter is
full-dimensional or embedded in a subspace or affine subspace of dimension < k.
Notice that existence of an everywhere positive density is not enough to guarantee

reducibility; again because of our choice of no-structure terms, reducible laws’ densities
must have “thick enough” tails. It is easy to show that a law with an everywhere positive
density whose tails vanish too fast, at least along some directions, will still be irreducible
(see F. Chiaromonte, 1996).

2 Some affine actions, and marginalizations

We will now explore the effects on reduction of some affine actions and of marginalizations.

Proposition 2.1 Let T
v,r,R
[L] be the law of rRX − v, where X ∈ IRk is any random

vector distributed according to L, v ∈ IRk , r ∈ IR1 , and R is a rotation of IRk . Then
βo(Tv,r,R [L]) = βo(L) and Λo(Tv,r,R [L]) = Tv,r,R [Λo(L)].

Proof: For r = 0, the transformation yields a point-mass at −v, and the statement is
trivially true. Otherwise, using characteristic functions, one has

φ
Tv,r,R [L]

(u) = e−iu
′vφL(rR

′u)

= e−iu
′vφ

Λo(L)
(rR′u) e−

βo(L)
2
‖rR′u‖2

= φ
Tv,r,R [Λo(L)]

(u) e−
r2βo(L)
2

‖u‖2
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so βo(Tv,r,R [L]) ≥ r
2βo(L), and Tv,r,R [Λo(L)] is a source of Tv,r,R [L]. But for r 6= 0 our

transformation is invertible: T −1
v,r,R
[·] = T

−v,1/r,R′
[·]. Hence

φL(u) = φ
T
−v,1/r,R′

Tv,r,R [L]
(u)

= φ
T
−v,1/r,R′

[Λo(Tv,r,R [L])]
(u) e−

(1/r)2βo(Tv,r,R [L])

2
‖u‖2

and βo(L) ≥ (1/r)
2βo(Tv,r,R [L]). We can conclude that βo(Tv,r,R [L]) = r

2βo(L), and there-
fore that Tv,r,R [Λo(L)] is indeed the primary source of Tv,r,R [L]. 2

The reduction coefficient is not affected by rotations and translations, and is multiplied
by the square of a rescaling factor. Thus, rescalings, rotations and translations of L result
into corresponding rescalings, rotations and translations of the primary source. In the
following, we will use interchangeably the terms marginalization and projection. Besides
the intuitive correspondence, “invariance” under rotations makes this rigorous; the choice
of orthonormal basis does not matter.

In our discussion so far, we have considered the reduction of a law L on IRk in IRk .
The reference to the space is important; laws on IRk that are entirely concentrated on
some subspace can also be meant as laws on such subspace, and reducing them within
the subspace can produce a different set of sources, a different reduction coefficient and a
different primary source. Laws that are entirely concentrated on a subspace of dimension
< k are irreducible in IRk , but they might still be reducible within the subspace.
The noises within a given subspace S ⊆ IRk are represented by Nk(0, βPS), β ∈ IR

1
+.

Notation-wise, when considering the reduction of a law L̃ (entirely concentrated on S)
within S, we will write βo(L̃, S), Λo(L̃, S), etc.

Proposition 2.2 LetMS [L] be the law of PSX, where X ∈ IR
k is any random vector dis-

tributed according to L, and S ⊆ IRk is a non-degenerate subspace. Then βo(MS
[L], S) ≥

βo(L) and
Λo(MS

[L], S) ∗Nk(0, αPS) =MS
[Λo(L)]

where α = βo(MS [L], S)− βo(L). In particular, if Cs(Λo(L)) is bounded, βo(MS [L], S) =
βo(L) and Λo(MS

[L], S) =M
S
[Λo(L)].

Proof: Using characteristic functions, one has

φ
MS [L]

(u) = φL(PSu)

= φ
Λo(L)
(P
S
u) e−

βo(L)
2
‖P
S
u‖2

= φ
MS [Λo(L)]

(u) e−
βo(L)
2
‖PSu‖

2

so βo(MS
[L], S) ≥ βo(L), and MS

[Λo(L)] is a source of MS
[L] within S. Equating the

right hand side above with the right hand side of

φ
M
S
[L]
(u) = φ

Λo(MS
[L],S)
(u) e−

βo(MS
[L],S)

2
‖P
S
u‖2

we obtain
φ
Λo(MS [L],S)

(u) e−
α
2
‖PSu‖

2
= φ

MS [Λo(L)]
(u)
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where α = βo(MS [L], S)− βo(L); that is

Λo(MS
[L], S) ∗Nk(0, αPS) =MS

[Λo(L)]

Now, assume that Cs(Λo(L)) is bounded. We need to show that this implies α = 0.
Suppose α > 0. Then, because of the normal term

Cs(MS [Λo(L)]) = Cs(Λo(MS [L], S) ∗Nk(0, αPS)) = S

But if Cs(MS [Λo(L)]) is unbounded Cs(Λo(L)) must be unbounded, too, contradict-
ing our assumption. We can conclude that βo(MS [L], S) = βo(L), and therefore that
Λo(MS [L], S) =MS [Λo(L)]. 2

The reduction coefficient (within S) of the marginal of L, must be greater than or equal
to βo(L). Correspondingly, the marginal of Λo(L) is a source (within S) of the marginal
of L, even though not necessarily the primary one. Under the assumption that Cs(Λo(L))
is bounded, the reduction coefficients coincide. Thus, the marginal of Λo(L) is indeed the
primary source (within S) of the marginal of L. In other words, under the boundedness
assumption the reduction coefficient is not affected by marginalizations (projections), and
therefore marginalizations of L result into corresponding marginalizations of the primary
source.

3 The structural subspace, and exhaustive dimension re-

duction

The affine support of Λo(L) represents the smallest affine subspace supporting the structure
of L, as defined by our reduction paradigm. We call the subspace underlying it the
structural subspace of the law

So(L) = As(Tv [Λo(L)])

where v is any element of Cs(Λo(L)), and Tv stands for Tv,1,Ik . Correspondingly, we call

do(L) = dim(So(L))

the structural dimension. Whenever do(L) < k, our (exhaustive) simplified representation
of L implies a drop in dimension.
This allows us to define an exhaustive dimension reduction. Let us see how. Suppose

we know v ∈ Cs(Λo(L)). Then, the exercise of identifying Λo(L) is equivalent to that of
identifying Λo(Tv [L]). In fact, by Proposition 2.1

Λo(L) = T−vTv [Λo(L)] = T−v [Λo(Tv [L])]

Now, suppose So(L) is known, too. Then, we can marginalize Tv [L] to So(L) preserving all
the information relative to the structure, as defined by our reduction paradigm. In fact,
again by Proposition 2.1

So(L) = As(Tv [Λo(L)]) = As(Λo(Tv [L]))

so that indeed Λo(Tv [L]) is supported by the structural subspace
2, and

Λo(Tv [L]) =MSo(L)
[Λo(Tv [L])]

2Notice that, by Proposition 2.1, the structural subspace is invariant under translations of L :
So(T

v
[L]) = So(L). When translating by an element of Cs(Λo(L)) we obtain a law which is actually

supported by the subspace itself, instead of an affine subspace parallel to it.
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But then, by Proposition 2.2

Λo(Tv [L]) = Λo(MSo(L)
Tv [L], So(L)) ∗Nk(0, αPSo(L))

Λo(Tv [L]) is a source forMSo(L)
Tv [L] within So(L). Furthermore, if we can assume Cs(Λo(L)),

and therefore of Cs(Λo(Tv [L])), to be bounded

Λo(Tv [L]) = Λo(MSo(L)
Tv [L], So(L))

that is, Λo(Tv [L]) is the primary source of MSo(L)
Tv [L] within So(L). This gives an even

stronger meaning to the exhaustiveness of our marginalization; not only no structural infor-
mation is lost marginalizing Tv [L], but the exercise of identifying Λo(Tv [L]) (to be performed
in k dimensions) would actually correspond to that of identifying Λo(MSo(L)

Tv [L], So(L))
(to be performed in –possibly– smaller dimension).

The question becomes then how to identify translation term and structural subspace.
Clearly, existence of finite moments of a certain order for L implies that of the corre-
sponding moments for Λo(L). If L admits finite first order moments E(Λo(L)) = E(L),
and one can take as translation term v = E(L) ∈ Cs(Λo(L)). Furthermore, if L admits
finite second order moments, structural subspace and structural dimension can be related
to the spectral decomposition of the covariance. Ind(·) is the indicator function of the
argument condition.

Proposition 3.1 Suppose L admits finite second order moments. Let η(L) be the smallest
eigenvalue of Cov(L), and V (L) the corresponding eigenspace. Then βo(L) ≤ η(L) and

So(L) = V (L)
⊥ ⊕ Ind(η(L)− βo(L) > 0)V (L)

with do(L) = k − Ind(η(L)− βo(L) > 0)dim(V (L)).

Proof: Writing Cov(L) =
∑p
j=1 ηj(L)PVj(L) + η(L)PV (L) one has

Cov(Λo(L)) = Cov(L)− βo(L)Ik

=
p
∑

j=1

(ηj(L)− βo(L))PVj(L) + (η(L)− βo(L))PV (L)

βo(L) ≤ η(L) is implied by non-negative definiteness of Cov(Λo(L)). The expression for
the structural subspace derives from the fact that for any law with finite second order
moments Span(Cov(·)) gives the subspace underlying As(·). A drop in dimension occurs
if and only if βo(L) = η(L), and when it occurs do(L) = k−dim(V (L)), where dim(V (L))
represents the multiplicity of η(L). 2

Given the spectral decomposition of Cov(L), the above proposition provides an upper
bound for the reduction coefficient and a lower bound for the structural subspace; namely,
the smallest eigenvalue of Cov(L) and the orthogonal complement of its eigenspace. The
spectral decomposition of Cov(L) is not enough to identify the structural subspace, though;
we still need to know whether the reduction coefficient is strictly smaller than, or equal
to, the smallest eigenvalue.
Remember that for a normal law βo(L) = η. Thus, under normality the drop in di-

mension always occurs, and one has So(L) = V
⊥ with do(L) = k − dim(V ) ≤ k − 1. It

is important to remark that coincidence of βo(L) with η(L) (and therefore the drop in
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dimension) is not guaranteed in general. Identifying the reduction coefficient with the
smallest eigenvalue of the covariance can actually be very misleading. Take for example
a “noisy” uniform on a hyper-cube L = Un([−θ, θ]k) ∗ Nk(0, τIk), θ, τ ∈ IR

1
+ \ {0}. For

such a law one has βo(L) = τ <
θ2

2 + τ = η(L) and So(L) = IR
k ⊃ {0} = V (L)⊥, as the

multiplicity of θ
2

2 + τ is k.

4 A brief summary with some remarks on inference

The ultimate aim within the framework defined by a reduction paradigm is that of mak-
ing inference about the (unobservable) Λo(L), which constitutes our simplified and yet
exhaustive representation of the original law. As we have seen, if we can assume that L is
normal, βo(L) = η and

Λo(L) = Nk



µ,
p
∑

j=1

(ηj − η)PVj





which is entirely identified through the mean vector and the spectral decomposition of the
covariance. Hence, if the data are consistent with normality, we could estimate the primary
source based on estimates of those. Also, if the data can be transformed to approximate
normality, the primary source could be estimated on the transformed scale. What can we
do when the data contradicts normality on the original scale, and fails to approximate it
also after applying normalizing transformations?
An intermediate aim is constituted by estimating a v ∈ Cs(Λo(L)) and So(L). Besides

the intrinsic interest, if indeed our simplified representation implied a drop in dimension,
having such estimates would allow us to perform an exhaustive dimension reduction.
Given the results in the previous sections, we are clearly at an advantage if we are will-

ing to assume boundedness of Cs(Λo(L)). Since the latter implies existence and finiteness
for all the moments of L, we would have E(L) ∈ Cs(Λo(L)) and (Proposition 3.1)

So(L) = V (L)
⊥ ⊕ Ind(η(L)− βo(L) > 0)V (L)

Furthermore, we could restrict inference on the reduction coefficient to any arbitrarily
small non-degenerate subspace. In fact, by Proposition 2.2

βo(L) = βo(Mt[L], t)

where t is any line in IRk . Thus, we could take Ê(L) as translation term, and produce
an estimate of the structural subspace based on η̂(L), V̂ (L) and β̂o(Mt[L], t). Methods
to estimate E(L), and, less trivially, η(L) and V (L), exist in the literature and are not
affected by how large k is (see M.L. Eaton and D. Tyler, 1994, and E. Bura, 1996).
As a matter of fact, in order to produce an estimate of the structural subspace we

would only have to assess, selecting for example t ⊆ V̂ , whether βo(Mt [L], t) is strictly
smaller than, or coincides with var(Mt [L]) = η(L). This, in turn, is equivalent to assessing
whetherMt[L] is a 1-dimensional normal.
Under the assumption that Cs(Λo(L)) is bounded, we also have that

Λo(L) = T−v [Λo(MSo(L)
Tv [L], So(L))]

Hence, we could center the data cloud translating it by Ê(L), and restrict any further
analysis to the projection of the centered cloud onto Ŝo(L); all the structural features
(except for location, which is captured by Ê(L)) would be preserved. If indeed d̂o(L) =
dim(Ŝo(L)) < k, we would have achieved an exhaustive dimension reduction.
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