
Constraint Aggregation in Infinite-
Dimensional Spaces and 
Applications [Updated January 
1998]

Kryazhimskiy, A.V. and Ruszczynski, A.

IIASA Interim Report
August 1997

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33896713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Kryazhimskiy, A.V. and Ruszczynski, A. (1997) Constraint Aggregation in Infinite-Dimensional Spaces and Applications 

[Updated January 1998]. IIASA Interim Report. IR-97-051 Copyright © 1997 by the author(s). http://pure.iiasa.ac.at/5243/ 

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


�IIASA
I n te rna t ional Ins t i t ute fo r App l ied Sys tems Ana lys is • A-2361 Laxenburg • Aus t r i a
Tel: +43 2236 807 • Fax: +43 2236 71313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

INTERIM REPORT IR-97-051 / August

Constraint Aggregation

in Infinite-Dimensional Spaces

and Applications

Arkadii V. Kryazhimskii (kryazhim@iiasa.ac.at)

Andrzej Ruszczyński (rusz@iiasa.ac.at)

Approved by

Gordon J. MacDonald (macdon@iiasa.ac.at)

Director, IIASA

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its
National Member Organizations, or other organizations supporting the work.



– ii –

Contents

1 Introduction 1

2 Problem setting. Preliminaries 2

3 Constraint aggregation 4

4 Optimal control of linear systems 7

5 Convex processes 14

6 Games 19

7 Stochastic programming 22

8 Conclusions 25



– iii –

Abstract

An aggregation technique for constraints with values in Hilbert spaces is suggested. The
technique allows to replace the original optimization problem by a sequence of subproblems
having scalar or finite-dimensional constraints. Applications to optimal control, games and
stochastic programming are discussed in detail.

Key Words: Constrained optimization in vector spaces, aggregation, optimal control,
games, stochastic programming.
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Constraint Aggregation

in Infinite-Dimensional Spaces

and Applications

Arkadii V. Kryazhimskii * (kryazhim@iiasa.ac.at)

Andrzej Ruszczyński (rusz@iiasa.ac.at)

1 Introduction

Optimization problems in vector spaces constitute convenient models of various applied
problems in control theory, game theory, stochastic optimization and many other areas.
There are, however, well-known difficulties associated with constraints having values in
infinite-dimensional spaces: constraint qualification conditions are often in conflict with
the desire to have an easy representation of Lagrange multipliers. This occurs, for ex-
ample, in the optimal control theory [4, 7] and in stochastic programming [12, 18, 19, 6].
Numerical solution of such problems (or their finite-dimensional approximations), usu-
ally poses a great challenge, and much efforts are devoted to the ways of dealing with
infinite-dimensional constraints.
Our objective is to show a new possibility to drastically reduce the complexity of such

optimization problems: aggregation of constraints to one or finitely many scalar equations
or inequalities. Together with an abstract theory we shall present some applications of
the new approach to control, games and stochastic programming. All of them, with a
single exception, are concerned with convex optimization problems in Hilbert spaces; in
the exceptional case (a game problem in section 6) we operate in the space dual to the
space of continuous functions. In order to cover both situations with minimum generality
(generality and complexity are not our aims in this paper), we describe the method in the
context of convex optimization in a space that is dual to a separable Banach space.
The idea of aggregation was inspired by the extremal shift control principle used in

differential games [9]. In the context of finite-dimensional optimization it has been devel-
oped in [10, 5]. In [11] a relevant approximate solution method for linear optimal control
was analyzed.
We give the problem setting in the next section, in which we also decribe some useful

schemes of establishing weak∗ convergence of approximate solutions to the solution set.
Section 3 is devoted to the description of the abstract constraint aggregation method, and
to the convergence analysis. The next two sections, 4 and 5, apply the method to optimal
control problems. In section 6 we consider an application to game theory, and section 7
discusses an application to multistage stochastic programming.
Throughout, we write ‖ · ‖ for the norm in a Banach space Ξ and 〈·, ·〉 for the duality

between Ξ and Ξ∗ (〈g, x〉 is the value of the functional x ∈ Ξ∗ at the element g ∈ Ξ).

*This author has been partially supported by the RFFI Grant 97-01-01060.
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In particular, if Ξ is a Hilbert space, 〈·, ·〉 stands for the scalar product in Ξ. The same
notation will be used for the norm and scalar product in a finite-dimensional Euclidean
space.

2 Problem setting. Preliminaries

Let Ξ be a separable Banach space, and let X = Ξ∗ be its dual. Let X be a closed bounded
set in the space X and let f be a convex weakly∗ lower semicontinuous functional on X .
We consider the minimization problem

min f(x), (2.1)

Ax = b, (2.2)

h(s, x) ≤ 0 for µ-a.a. s ∈ S (2.3)

x ∈ X. (2.4)

Here A is a linear operator from X to some Hilbert space H, and b is a fixed element in
H. We assume that x 7→ ‖Ax − b‖2 is weakly∗ lower semicontinuous. The functionals
h(s, ·), s ∈ S, are assumed to be convex and weakly∗ lower semicontinuous on X , and
the parameter set S is a measurable space with a σ-additive measure µ. Furthermore, we
assume that for each x ∈ X the functions s 7→ h(s, x) are µ-measurable, and there exists
a µ-measurable function h : S → R such that |h(s, x)| ≤ h(s) for all x ∈ X , s ∈ S, and

∫

S

(h(s))2 µ(ds) <∞. (2.5)

Finally, we assume that the feasible set of the problem (2.1)–(2.4) is nonempty.
Since the unit ball in X is weakly∗ compact [8, Thm. 6, p. 179], and the set X

is weakly∗ closed, the latter set is weakly∗ compact. Moreover, due to the weak∗ lower
semicontinuity of x 7→ ‖Ax − b‖2 and h(s, ·) ( s ∈ S ), the feasible set of (2.1)–(2.4) is
weakly∗ compact. By assumption, the objective function f is weakly∗ lower semicontinu-
ous. Therefore the problem (2.1)–(2.4) has a nonempty solution set X∗. We denote by f∗

the minimum value: f∗ = f(x), x ∈ X∗.

Remark 2.1. If X is a Hilbert space, we as usual identify Ξ with X = Ξ∗, and the weak∗

topology in X with the weak topology in X . In this case, the assumptions imposed above
are satisfied if the set X is convex, closed and bounded, the linear operator A is bounded,
and the functionals f and h(s, ·) (s ∈ S) are convex and bounded on a neighborhood of
X (in the strong topology).

For simplicity we start our analysis from two cases in which the problem (2.1)–(2.4)
has only equality or inequality constraints, respectively. These are

min f(x), s.t. Ax = b, x ∈ X, (2.6)

and
min f(x), s.t. h(s, x) ≤ 0 µ-a.a. s ∈ S, x ∈ X. (2.7)

Let us first recall some standard definitions. A sequence {xk} ⊂ X is called strongly
convergent to a set Y ⊂ X if

lim
k→∞

inf
y∈Y
‖xk − y‖ = 0,
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and is said to weakly∗ converge to Y if for every finite set of elements g1, . . . , gm ∈ Ξ one
has

inf
y∈Y

max
1≤j≤m

|〈gj, x
k − y〉| → 0 as k →∞.

The convergence analysis of the methods discussed in the paper will be based on the
following simple observations.

Lemma 2.1. If a sequence {xk} ⊂ X satisfies the conditions

lim sup
k→∞

f(xk) ≤ f∗, (2.8)

lim
k→∞

‖Axk − b‖ = 0, (2.9)

then {xk} weakly∗ converges to the solution set X∗ of the problem (2.6).

Proof. We use standard arguments. Suppose the contrary. Then there is a subsequence
{xki} such that for certain g1, . . . , gm ∈ Ξ,

inf
x∈X∗

max
1≤j≤m

| 〈gj, x
ki − x〉 |> ε > 0. (2.10)

Since X is weakly∗ compact in X , with no loss of generality we may assume that {xki}
weakly∗ converges to some x′ ∈ X . Hence (2.8) implies f(x′) ≤ f∗. The weak∗ lower
semicontinuity of x 7→ ‖Ax− b‖2 and (2.9) yield Ax′ = b. Consequently, x′ ∈ X∗. Setting
x = x′ in (2.10), we arrive at a contradiction.

For the problem (2.7) the convergence scheme differs only in the details. For each
x ∈ X and s ∈ S we define

h+(s, x) = max(0, h(s, x)).

Lemma 2.2. If a sequence {xk} ⊂ X satisfies condition (2.8) and

lim
k→∞

∫

S

(h+(s, xk))2 µ(ds) = 0, (2.11)

then {xk} weakly∗ converges to the solution set X∗ of the problem (2.6).

Proof. The proof is almost identical to the proof of Lemma 2.1. Only at the end (instead
of Ax′ = b) we need to show that

h(s, x′) ≤ 0 for µ-almost all s ∈ S.

To this end we notice that the functionals x→ (h+(s, x))2 are weakly∗ lower semicontin-
uous. This combined with (2.11) and (2.5) implies that

∫

S

(h+(s, x′))2 µ(ds) = 0,

which completes the proof.

Combining the proofs of Lemmas 2.1 and 2.2 one easily obtains a formulation for the
problem (2.1)–(2.4) with both equality and inequality constraints.
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Lemma 2.3. Let a sequence {xk} from X satisfy (2.8), (2.9), and (2.11). Then {xk}
weakly∗ converges to the solution set X∗ of the problem (2.1)–(2.4).

We will separate the case where functional f is strongly convex, that is, there exists
κ > 0 such that for all x1, x2 ∈ X and β ∈ [0, 1] one has

f(βx1 + (1− β)x2) ≤ βf(x1) + (1− β)f(x2)− β(1− β)κ‖x1 − x2‖
2. (2.12)

Lemma 2.4. Let f be strongly convex and a sequence {xk} in X satisfy (2.8), (2.9), and
(2.11). Then the solution set X∗ contains only one element, and {xk} strongly converges
to X∗.

Proof. The strong convexity of f obviously implies that X∗ is a singleton: X∗ = {x∗}.
Let us show that {xk} strongly converges to x∗. Suppose the contrary, i.e., that there is
a subsequence {xki} such that

‖xki − x∗‖ > ε > 0. (2.13)

With no loss of generality, we may assume that {xki} weakly∗ converges in X to some
x′ ∈ X . By (2.8), (2.9), and (2.11), x′ is feasible in the problem (2.1)–(2.4) and f(x′ =
f∗. Therefore, x′ = x∗. The next argument is close to [22]. Obviously, the sequence
{(xki + x∗)/2} weakly∗ converges to x∗. Due to the weak∗ lower semicontinuity of f ,

f∗ = f(x∗) ≤ lim inf
i→∞

f

(
xki + x∗

2

)
.

On the other hand, by the convexity of f

lim sup
i→∞

f

(
xki + x∗

2

)
≤ lim sup

i→∞

(
1

2
f(xki) +

1

2
f(x∗)

)
= f∗.

Hence

lim
i→∞
f

(
xki + x∗

2

)
= f∗.

By (2.12) with β = 1/2

κ

4
‖xki − x∗‖2 ≤

1

2
f(xki) +

1

2
f(x∗)− f

(
xki + x∗

2

)

and (2.8) yields limi→∞ ‖x
ki −x∗‖2 = 0. A contradiction with (2.13) completes the proof.

3 Constraint aggregation

Here we extend the finite-dimensional constraint aggregation method of [5] to the problem
(2.1)–(2.4). We start from the problem (2.6) with the equality constraint. Let us fix
x0 ∈ X such that f(x0) ≤ f∗ (in particular, x0 may be a minimizer of f over X), and
define a sequence {xk} of approximate solutions to (2.1)–(2.4) by

xk+1 = xk + τk(u
k − xk), (3.1)

where uk is a solution of:

min f(u), (3.2)

〈Axk − b, Au− b〉 ≤ 0, (3.3)

u ∈ X, (3.4)
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and

τk = arg min
0≤τ≤1

∥∥∥(1− τ)Axk + τAuk − b
∥∥∥
2
. (3.5)

Theorem 3.1. The sequence {xk} generated by (3.1)–(3.5) weakly∗ converges to the so-
lution set X∗ of the problem (2.6).

Proof. It is sufficient to verify the properties (2.8), (2.9). One verifies them using the
same arguments as in the proof of Theorem 3.3 in [5]. The first one is obvious, because
the subproblem (3.2)–(3.4) is a relaxation of (2.6), so f(uk) ≤ f∗. By the convexity of f
we have f(xk+1) ≤ (1− τk)f(x

k) + τkf(u
k) ≤ f∗. To prove the second one we use (3.3) to

obtain the key inequality:

‖(1− τ)Axk + τAuk − b‖2

= (1− τ)2‖Axk − b‖2 + 2τ(1− τ)〈Axk − b, Auk − b〉+ τ2‖Auk − b‖2

≤ (1− 2τ)‖Axk − b‖2 + 2KAτ
2, (3.6)

where KA is an upper bound on ‖Ax− b‖
2 in X . Therefore

‖Axk+1 − b‖2 ≤ min
0≤τ≤1

(
(1− 2τ)‖Axk − b‖2 + 2KAτ

2
)

≤

(
1−
‖Axk − b‖2

2KA

)
‖Axk − b‖2.

This proves (2.9).

For the problem (2.7) with inequality constraints we modify the algorithm by replacing
(3.2)–(3.4) with

min f(u), (3.7)∫

S

h+(s, xk)h(s, u) µ(ds) ≤ 0, (3.8)

u ∈ X, (3.9)

and by using the corresponding stepsize rule

τk = arg min
0≤τ≤1

∫

S

(
h+(s, (1− τ)xk + τuk)

)2
µ(ds). (3.10)

Theorem 3.2. The sequence (xk) generated by (3.1), (3.7)–(3.9) and (3.10) weakly con-
verges to the solution set X∗ of the problem (2.7).

Proof. By Lemma 2.2 it is sufficient to verify properties (2.8), (2.11). We follow the proof
of Theorem 5.1 in [5].
For each s ∈ S, by the convexity of h(s, ·),

h(s, (1− τ)xk + τuk) ≤ (1− τ)h(s, xk) + τh(s, uk)

≤ (1− τ)h+(s, xk) + τh(s, uk).

In the above inequality, for the parameter values s for which the left hand side is positive,
the right hand side has a larger absolute value. Therefore

∫

S

(
h+(s, (1− τ)xk + τuk)

)2
µ(ds)

≤

∫

S

(
(1− τ)h+(s, xk) + τh(s, uk)

)2
µ(ds)

≤ (1− τ)2
∫

S

(
h+(s, xk)

)2
µ(ds) + τ2

∫

S

(
h(s, uk)

)2
µ(ds),
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where in the last inequality we used (3.8). The rest is similar to the proof of Theorem 3.1.

Finally, for the problem (2.1)–(2.4) with both equality and inequality constraints, the
algorithm combines (3.2)–(3.4) and (3.7)–(3.9). The subproblem takes on the form

min f(u), (3.11)

〈Axk − b, Au− b〉 ≤ 0, (3.12)∫

S

h+(s, xk)h(s, u) µ(ds) ≤ 0, (3.13)

u ∈ X, (3.14)

and the stepsize rule is modified accordingly:

τk = arg min
0≤τ≤1

[
γ
∥∥∥(1− τ)Axk+ τAuk− b

∥∥∥
2
+

∫

S

(
h+(s, (1− τ)xk+ τuk)

)2
µ(ds)

]
, (3.15)

where the scaling factor γ > 0.

Theorem 3.3. The sequence {xk} generated by (3.1), (3.11)–(3.14) and (3.15) weakly∗

converges to the solution set X∗ of the problem (2.1)–(2.4).

The proof is identical.
Let us point out a modification of the constraint aggregation method, in which the

inequality (3.13) is replaced by a more general constraint. Namely, consider the auxiliary
problem

min f(u), (3.16)

〈Axk − b, Au− b〉 ≤ 0, (3.17)

gk(u) ≤ 0, (3.18)

x ∈ X. (3.19)

Here gk(·) is a scalar function on X such that for every u ∈ X
∫

S

h+(s, xk)h(s, u)µ(ds) ≤ gk(u), (3.20)

and for every u feasible in the original problem (2.1)–(2.4) inequality (3.18) is satisfied.

Theorem 3.4. Let the sequence {xk} be generated by (3.16)–(3.19) and (3.15). Then
{xk} weakly∗ converges to the solution set X∗ of the problem (2.1)–(2.4).

The proof is identical.

Remark 3.1. It also clear from the analysis that the aggregate inequality constraints
(3.12) can be replaced by equations. It is also possible to aggregate constraints in sub-
groups, analogously to the two groups (3.12) and (3.14) in the last case. The stepsize
rule has to be then modified in a corresponding way, similarly to (3.15). The detailed
description of these technical details and the convergence proof will be omitted, because
they are obvious at this stage.

Remark 3.2. By virtue of Lemma 2.4 in all the above results the convergence of {xk} to
X∗ is strong if the functional f is strongly convex.
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4 Optimal control of linear systems

In this section we employ the constraint aggregation technique to solve a problem of
optimal control for a linear system, under mixed constraints on state and control variables.
The problem formulation is as follows:

min f(y, v), (4.1)

ẏ(t) = Cy(t) +Dv(t) for a.a. t ∈ [0, 1], (4.2)

y(0) = y0, (4.3)

(y(t), v(t)) ∈M for a.a. t ∈ [0, 1]. (4.4)

Here

f(y, v) =

∫ 1

0

ϕ(t, y(t), v(t))dt, (4.5)

C and D are n × n and n × m matrices, respectively, y0 ∈ R
n, and M is a convex

compactum in Rn× Rn. The constraint (4.4) (which does not carry information on the
classes of functions y and v) is formally understood as

(y, v) ∈ Ω

with

Ω = {(y, v) ∈ A([0, 1],Rn)× L∞([0, 1],Rm) : (y(t), v(t)) ∈M for a.a t ∈ [0, 1]}, (4.6)

where A([0, 1],Rn) is the set of all absolutely continuous functions from [0, 1] to Rn. The
function ϕ in (4.5) is continuous, and for each t ∈ [0, 1] the function (y, v) 7→ ϕ(t, y, v) is
convex. We assume the admissible set of problem (4.1)–(4.4) to be nonempty.

Remark 4.1. The solution method described below works in a more general setting. The
system equation (4.2) may be nonstationary and nonhomogeneous, that is, C and D may
be bounded measurable matrix functions of time t, and the right hand side of (4.2) may
contain an additional measurable time-dependent term. Also the set M in (4.6) may be
a bounded measurable map with compact and convex values. Finally, the function ϕ in
(4.5) may be only bounded and measurable in t. Wishing to avoid unnecessary technical
details, we concentrate on the simplest case (4.1)–(4.4).

We shall reduce the optimal control problem (4.1)–(4.4) to a convex optimization
problem (2.6) with linear constraints. Define the spaces: X = L2([0, 1],Rn)×L2([0, 1],Rm),
and H = L2([0, 1],Rn). Thus, we treat arguments (y, v) of problem (4.1)–(4.4) as elements
of the Hilbert space X . Let us rewrite the equation (4.2) in an integral form:

y(θ) = y0 +

∫ θ

0
(Cy(t) +Dv(t)) dt, θ ∈ [0, 1].

In a more general notation it reads

A(y, v) = b.

Here A is a linear bounded operator from X to H given by

A(y, v)(θ) = y(θ)−

∫ θ

0
(Cy(t) +Dv(t)) dt θ ∈ [0, 1], (4.7)
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and
b(θ) = y0, θ ∈ [0, 1]. (4.8)

The set (4.6) is naturally transformed into

X = {(y, v) ∈ X : (y(t), v(t)) ∈M for a.a t ∈ [0, 1]}. (4.9)

Obviously, X is closed, convex and bounded in X . Thus the optimization problem (2.6)
where the operator A, element b and set X are given by (4.7), (4.8) and (4.9) satisfies all
the assumptions of section 3, and can be solved with the constraint aggregation method
described in Theorem 3.1.
The next reduction theorem is evident.

Theorem 4.1. Let the operator A : X 7→ H, the element b ∈ H and the set X ⊂ X
be defined by (4.7), (4.8) and (4.9). Then the optimal control problem (4.1)–(4.4) is
equivalent to the convex optimization problem (2.6) in the following sense:
(i) each solution x∗ = (y∗, v∗) of the problem (4.1)–(4.4) solves the problem (2.6),
(ii) if x∗ = (y∗, v∗) solves the problem (2.6), then there exists a solution x∗∗ = (y∗∗, v∗∗)
of the problem (4.1)–(4.4) such that v∗∗ = v∗ and y∗∗(t) = y∗(t) for a.a. t ∈ [0, 1].

In the remaining part of this section the convex optimization problem (2.6) is under-
stood as described in Theorem 4.1. Its solution set will be denoted by X∗; for the solution
set of the optimal control problem (4.1)–(4.4) we will use the notation Ω∗.
To solve the problem (2.6) we employ the constraint aggregation method (3.1)–(3.5)

(see Theorem 3.1).
We shall specify uk in (3.2)–(3.4) in terms of a certain optimal control problem. We

start with a specification of the term 〈Axk − b, Au− b〉 in the aggregate constraint (3.3).
Let xk = (yk, vk), and for θ ∈ [0, 1]

rk(θ) = A(yk, vk)(θ)− b(θ) = yk(θ) − y0 −

∫ θ

0
(Cyk(t) +Dvk(t)) dt. (4.10)

Referring to (4.7), for u = (z, w) ∈ X we have

〈A(yk, vk)− b, A(z, w)〉 =

∫ 1

0

〈
rk(θ), z(θ)−

∫ θ

0
(Cz(t) +Dw(t)) dt

〉
dθ

=

∫ 1

0
〈rk(θ), z(θ)〉 dθ−

∫ 1

0

∫ 1

t

〈rk(θ), Cz(t) +Dw(t)〉 dθdt

=

∫ 1

0

(
〈rk(t), z(t)〉 −

〈∫ 1

t

rk(θ) dθ, Cz(t) +Dw(t)
〉)
dt.

Introducing

qkC(t) = r
k(t)− CT

∫ 1

t

rk(θ) dθ, (4.11)

qkD(t) = −D
T

∫ 1

t

rk(θ) dθ, (4.12)

where T denotes the transposition, we obtain

〈A(yk, vk)− b, A(z, w)〉=

∫ 1

0

(
〈qkC(t), z(t)〉+ 〈q

k
D(t), w(t)〉

)
dt. (4.13)
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Let us define for θ ∈ [0, 1]

η(θ) =

∫ θ

0

(
〈qkC(t), z(t)〉+ 〈q

k
D(t), w(t)〉

)
dt,

and let

ηk1 = 〈A(y
k, vk)− b, b〉 =

〈∫ 1

0
rk(θ) dθ, y0

〉
. (4.14)

We arrive at the following specification of (3.2), (3.4): uk = (zk, wk) is an optimal
control in the problem

min f(z, w) (4.15)

η̇(t) =
(
qkC(t)

)T
z(t) +

(
qkD(t)

)T
w(t) a.a. t ∈ [0, 1], (4.16)

η(0) = 0, η(1) = ηk1 , (4.17)

(z, w) ∈ X , (z(t), w(t)) ∈M a.a. t ∈ [0, 1]. (4.18)

To sum up, we describe the constraint aggregation algorithm as follows.

Step 0. Fix (y0, v0) ∈ X such that f(y0, v0) ≤ f∗ (in particular, (y0, v0) may be a mini-
mizer of f over X).

Step k.

(i) Given the kth approximate solution (yk, vk) ∈ X , build functions rk (4.10), qkC
(4.11), qkD (4.12) and calculate the bound η1 (4.14).

(ii) Find measurable functions (zk, wk) which constitute the optimal controls in the
problem (4.15)–(4.18).

(iii) Calculate the function ρk ∈ L([0, 1],Rn) given by

ρk(θ) = A(zk, wk)(θ)− b(θ) = zk(θ)− y0 −

∫ θ

0
(Czk(t) +Dwk(t)) dt, (4.19)

and the stepsize

τk = arg min
0≤τ≤1

∥∥∥(1− τ)rk + τρk
∥∥∥
2
.

Note that rk ⊥ ρk by (4.13) and (4.17).
(iv) Form the (k + 1)th approximate solution

(yk+1, vk+1) = (yk, vk) + τk((z
k, wk)− (yk, vk)).

Let us call the above algorithm the constraint aggregation algorithm for problem (4.1)–
(4.4) .
The following convergence theorem is a direct consequence of Theorem 3.1.

Theorem 4.2. The sequence {(yk, vk)} generated by the constraint aggregation algorithm
for problem (4.1)–(4.4)
(i) weakly converges in X = L2([0, 1],Rn) × L2([0, 1],Rm) to the solution set Ω∗ of this
problem; and

(ii) strongly converges in X to Ω∗ if the functional f is strongly convex.
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Remark 4.2. Obviously f is strongly convex if (y, v) 7→ ϕ(t, y, s) is uniformly strongly
convex, i.e. there exists κ > 0 such that for all t ∈ [0, 1], (y1, v1), (y2, v2) ∈ R

n×Rm, and
β ∈ [0, 1], the following inequality holds

ϕ(t, βy1 + (1− β)y2, βv1 + (1− β)v2) ≤ βϕ(t, y1, v1) + (1− β))ϕ(t, y2, v2)−

β(1− β)κ‖(y1 − y2, v1 − v2)‖
2.

A typical example is ϕ(t, y, v) = ϕ0(t, y, v) + d1‖y‖
2 + d2‖v‖

2 where d1, d2 > 0, ϕ0 is
continuous, and ϕ0(t, ·, ·) is convex for each t ∈ [0, 1].

Proof of Theorem 4.2. We have already shown that the sequence {xk} = {(yk, vk)} is
constructed via a specification of the constraint aggregation method (3.1), (3.2)–(3.4) of
section 3. Therefore, by Theorem 3.1, this sequence weakly converges to the solution set
X∗ of the problem (2.6), and, by Remark 3.2, strongly converges to X∗, if the functional
f is strongly convex. Since the problem (2.6) is equvalent to (4.1)–(4.4), as stated in
Theorem 4.1, the proof is complete.

Let us consider stronger types of convergence of sequences of form {ȳk, vk}, which
require a uniform convergence of {ȳk}. Let us introduce space Y = C([0, 1],Rn) ×
L2([0, 1],Rm). We shall say that a sequence {ȳk, vk} Y-strongly converges to Ω∗ if the
sequence of Y-distances from (ȳk, vk) to Ω∗ converges to zero, and Y-weakly converges to
Ω∗ if for every finite collection g1, ..., gm from L

2([0, 1],Rm) one has

inf
(y,v)∈Ω∗

{
‖yk − y‖c + max

1≤j≤m
| 〈gj, v

k − v〉 |
}
→ 0,

where ‖ · ‖c stands for the norm in C([0, 1],R
n). These types of convergence hold for the

functions ȳk defined as the solutions to the Cauchy problems

ẏ(t) = Cy(t) +Dvk(t) a.a. t ∈ [0, 1], y(0) = y0. (4.20)

Adding the computation of ȳk to Step k of the above algorithm we define the modified
constraint aggregation algorithm for the problem (4.1)–(4.4).

Remark 4.3. Note that for the sequence {(yk, ȳk, vk)} formed by this algorithm for the
problem (4.1)–(4.4), the sequence {(ȳk, vk)} is a sequence of control processes [14], i.e., for
each k the function ȳk is the trajectory of the system (4.2) corresponding to the control
vk.

To formulate the result, we need the next definition. A functional f will be called
uniformly strongly convex in control if there exists κ > 0 such that for all y ∈ C([0, 1],Rn),
v1, v2 ∈ L

2([0, 1],Rm) and β ∈ [0, 1], the following inequality holds

f(y, βv1 + (1− β)v2) ≤ βf(y, v1) + (1− β)f(y, v2)− β(1− β)κ‖v1 − v2‖
2
2

where ‖ · ‖2 is the norm in L
2([0, 1],Rm).

Remark 4.4. Obviously f is uniformly strongly convex in control if v 7→ ϕ(t, y, v) is
uniformly strongly convex, i.e. there exists a κ > 0 such that for all t ∈ [0, 1], y ∈ Rn,
v1, v2 ∈ R

m and β ∈ [0, 1], it holds that

ϕ(t, y, βv1+ (1− β)v2) ≤ βϕ(t, y, v1) + (1− β)ϕ(t, y, v2)− β(1− β)κ‖v1 − v2‖
2.

A typical example is ϕ(t, y, v) = ϕ0(t, y, v) + d0‖v‖
2 where d0 > 0, ϕ0 is continuous, and

ϕ0(t, ·, ·) is convex for each t ∈ [0, 1].
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Theorem 4.3. Let the sequence {(yk, ȳk, vk)} be formed by the modified constraint aggre-
gation algorithm for the problem (4.1)–(4.4) Then the corresponding sequence of control
processes {(ȳk, vk)}
(i) Y-weakly converges to the solution set Ω∗ of this problem; and
(ii) Y-strongly converges to Ω∗ if the functional f is uniformly strongly convex in control.

Proof. Let us prove (i) by contradiction. Suppose that {(ȳk, vk)} is not Y-weakly conver-
gent to Ω∗. Then there is a subsequence {(yki , ȳki , vki)} such that for certain g1, . . . , gm ∈
L2([0, 1],Rm),

inf
(y,v)∈Ω∗

{
‖ȳki − y‖c + max

1≤j≤m
| 〈gj, v

ki − v〉 |
}
> ε > 0. (4.21)

Since the set X given by (4.9) (closed and bounded in X ) is weakly compact in X and the
sequence {ȳk} is contained in a compact set in C([0, 1],Rm) (of equicontinuous functions),
with no loss of generality we may assume that

yki → y∗ weakly in L2([0, 1],Rn), (4.22)

vki → v∗ weakly in L2([0, 1],Rm), (4.23)

ȳki → ȳ∗ in C([0, 1],Rn). (4.24)

Relations (4.23), (4.24) and assumption (4.21) imply that

(ȳ∗, v∗) 6∈ Ω
∗. (4.25)

By Theorem 4.2, {yk, vk} converges to X∗ weakly in X , which together with (4.22), (4.23)
yields

(y∗, v∗) ∈ X
∗. (4.26)

This implies in particular that the equality constraint A(y∗, v∗) = b in problem (2.6) is
satisfied. Referring to the definitions (4.7), (4.8) of the operator A and the element b, we
specify:

y∗(θ)−

∫ θ

0
(Cy∗(t) +Dv∗(t)) dt = y0 a.a θ ∈ [0, 1].

Hence
y∗(θ) = y∗∗(θ) a.a θ ∈ [0, 1], (4.27)

where y∗∗ is the solution to the Cauchy problem

ẏ(t) = Cy(t) +Dv∗(t) a.a. t ∈ [0, 1], y(0) = y0.

On the other hand, the weak convergence (4.23) and the fact that ȳk are solutions to the
Cauchy problems (4.20) imply that ȳki → y∗∗ in C([0, 1],R

n). Consequently, ȳ∗ = y∗∗ and,
by (4.27), ȳ∗(θ) = y∗(θ) for a.a. θ ∈ [0, 1]. These facts together with (4.26) imply by
Theorem 4.1 that (ȳ∗, v∗) ∈ Ω

∗, which contradicts (4.25).
Let us now prove (ii). Suppose this is not true, i.e., there is a subsequence {ȳki , vki}

such that
inf

(y,v)∈Ω∗

{
‖ȳki − y‖c + ‖v

ki − v‖
}
> ε > 0. (4.28)

As above, with no loss of generality we assume that the relations (4.22), (4.23), (4.24)
take place. Thus (ȳ∗, v∗) ∈ Ω

∗. To complete the proof by contradiction with (4.28) it is
sufficient to show that

vki → v∗ strongly in L2([0, 1],Rm). (4.29)
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Relations (4.24), (4.23), the weak lower semicontinuity of f : X 7→ R and the fact that
(ȳ∗, v∗) ∈ Ω

∗ yield that
f(ȳki , vki)→ f(ȳ∗, v∗) = f

∗.

The continuity of ϕ and the convergence (4.24) imply

| f(ȳki , vki)− f(ȳ∗, v
ki) |→ 0

Hence
f(ȳ∗, v

ki)→ f(ȳ∗, v∗).

The last relation, by virtue of the strong convexity of the functional v 7→ f(ȳ∗, v), guar-
antees the convergence (4.29), which contradicts (4.28).

Let us end this section with some observations concerning the auxiliary problem (4.15)–
(4.18) that needs to be solved at each iteration of the method. Both direction vectors, zk

and wk, which correspond to the state trajectory and the control function in the original
problem, are control functions in the auxiliary problem. Therefore the constraints (4.18)
in the auxiliary problem apply only to the controls. Moreover, the state equation (4.16)
is one-dimensional, and particularly simple, because the ‘aggregate state’ does not appear
at the right hand side. We shall show how these features can be exploited in solving
(4.15)–(4.18).
Using the standard terminology of control theory (see [14]), we call pairs (y, z) ∈ Ω

satisfying (4.2) and (4.3) control processes. Notation intM will stand for the interior of
M .

Lemma 4.1. Assume that there exists a control process (ỹ, ṽ) such that (ỹ(t), ṽ(t)) ∈ intM
for all t ∈ [0, 1]. Furthermore, let the function (y, v) 7→ ϕ(t, y, v) be strictly convex for
every t ∈ [0, 1]. Then
(i) For every t ∈ [0, 1] and every λ ∈ R, there is a unique minimizer (zk(λ, t), wk(λ, t))
in the problem

min
(z,w)∈M

[
ϕ(t, z, w) + λ

(
(qkC(t))

T z + (qkD(t))
Tw
) ]
, (4.30)

and the map (λ, t) 7→ (zk(λ, t), wk(λ, t)) is continuous;
(ii) There exists λk such that

∫ 1

0

((
qkC(t)

)T
zk(λk, t) +

(
qkD(t)

)T
wk(λk, t)

)
dt = ηk1 ; (4.31)

(iii) uk = (zk(λk, ·), wk(λk, ·)) solves the problem (5.19)–(5.24).

Proof. Assertion (i) follows from the strict convexity of ϕ(t, ·, ·). To prove (ii) suppose
that (4.31) is not satisfied for λk = 0, for example,

∫ 1

0

((
qkC(t)

)T
zk(0, t) +

(
qkD(t)

)T
wk(0, t)

)
dt > ηk1 (4.32)

(the opposite inequality is treated similarly). For the control process (ỹ, ṽ) we have
〈A(yk, vk)− b, A(ỹ, ṽ)〉 = ηk1 , or, equivalently (see (4.13)),

∫ 1

0

((
qkC(t)

)T
ỹ(t) +

(
qkD(t)

)T
ṽ(t)

)
dt = ηk1 . (4.33)
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Define zkε (t) = ỹ(t) − ε(z
k(0, t)− ỹ(t)) and, similarly, wkε (t)) = ṽ(t) − ε(w

k(0, t)− ṽ(t)),
where ε > 0. Since (ỹ(t), ṽ(t)) ∈ intM for all t ∈ [0, 1], we have (zkε (t), w

k
ε(t)) ∈M for all

t ∈ [0, 1], if ε > 0 is sufficiently small. In view of (4.32) and (4.33),
∫ 1

0

((
qkC(t)

)T
zkε (t) +

(
qkD(t)

)T
wkε (t)

)
dt < ηk1 .

Therefore, the minimum value in the problem

min
(z,w)∈Ω

∫ 1

0

((
qkC(t)

)T
z(t) +

(
qkD(t)

)T
w(t)

)
dt,

is smaller than ηk1 − δ with some positive δ. Hence, the minimum value in the perturbed
problem

min
(z,w)∈Ω

[
αf(z, w) +

∫ 1

0

((
qkC(t)

)T
z(t) +

(
qkD(t)

)T
w(t)

)
dt

]
,

is smaller than ηk1 − δ/2, provided α > 0 is sufficiently small. In the latter problem,
(zk(1/α, ·), wk(1/α, ·)) is obviously a minimizer. Setting α so small that α‖f(z, w)‖ < δ/2
for all (z, w) ∈ Ω, we get

∫ 1

0

((
qkC(t)

)T
zk(1/α, t) +

(
qkD(t)

)T
wk(1/α, t)

)
dt < ηk1 . (4.34)

Since the map (λ, t) 7→ (zk(λ, t), wk(λ, t)) is continuous, (4.34) and (4.32) yield (4.31) for
some λk ∈ (0, 1/α).
The equality (4.31) shows that (zk(λk, ·), wk(λk, ·)) is feasible in the problem (5.19)–

(5.24). For every (z, w) feasible in this problem we have

f(zk(λk, ·), wk(λk, ·)) + λkηk1

= f(zk(λk, ·), wk(λk, ·)) + λk
∫ 1

0

((
qkC(t)

)T
zk(λk, t) +

(
qkD(t)

)T
wk(λk, t)

)
dt

≤ f(z, w) + λk
∫ 1

0

((
qkC(t)

)T
z(t) +

(
qkD(t)

)T
w(t)

)
dt = f(z, w) + λkηk1 ,

hence, f(zk(λk, ·), wk(λk, ·)) ≤ f(z, w). This proves that (zk(λk, ·), wk(λk, ·)) solves the
problem (5.19)–(5.24).

Remark 4.5. Lemma 4.1 shows that if the solutions (zk(λ, t), wk(λ, t)) of the finite-
dimensional problems (4.30) are given explicitly, then the major operation in the constraint
aggregation algorithm (Step k, (ii)) is reduced to an one-dimensional algebraic equation
(4.31). For example, for a linear-quadratic integrand

ϕ(t, y, v) = cTy + α‖y‖2 + dTv + β‖v‖2

(α > 0, β > 0) and with box constraints

M = {(y, v) ∈ Rn ×Rm : y−i ≤ yi ≤ y
+
i (i = 1, . . . , n), v

−
j ≤ vj ≤ v

+
j (j = 1, . . . , m)},

we have

zk(λ, t) =
[
− (c+ λqkC(t))/(2α)

]y+
y−

and

wk(λ, t) =
[
− (d+ λqkD(t))/(2β)

]v+
v−
,

where [ · ]ul denotes the orthogonal projection on the box [l, u]. These formulae can be
substituted into the algebraic equation (4.31).
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5 Convex processes

In this section, we solve a more complicated problem of optimal control employing the
constraint aggregation method specialized for both equality and inequality constraints.
Instead of a linear control system (4.1)–(4.4), we treat a more general convex process
described by a differential inclusion with a convex graph (see [2]). The problem formulation
is as follows:

min f(y) (5.1)

ẏ(t) ∈ F (y(t)) a.a. t ∈ [0, 1], (5.2)

y(0) = y0, (5.3)

y ∈ Ω. (5.4)

Here F is a (set-valued) map from Rn into the set of all nonempty convex compacta in
R
n, y0 ∈ R

n,

Ω = {x ∈ A([0, 1],Rn) : (x(t), ẋ(t)) ∈M for a.a t ∈ [0, 1]}, (5.5)

and

f(x) =

∫ 1

0
ϕ(t, x(t), ẋ(t)) dt. (5.6)

In (5.5)M is a convex compactum in Rn×Rn. The function ϕ in (5.6) is continuous, and
for each t ∈ [0, 1] the function (y, v) 7→ ϕ(t, y, v) is convex.
Let us return to the set-valued map F . Let M0 = {y ∈ R

n : (y, v) ∈ M}. We
assume that the set-valued map y 7→ F (y) has a convex graph on M0, i.e. for every
y1, y2 ∈M0, every v1 ∈ F (y1), v2 ∈ F (y2) and every β ∈ [0, 1], one has βv1 + (1− β)v2 ∈
F (βx1 + (1− β)x2).

Remark 5.1. Let F be determined through the velocity sets of the linear control system
(4.2), i.e. F (x) = {Cx + Dv : v ∈ V } where V is a convex compactum in Rm. Then F
has a convex graph on M0.

Remark 5.2. The fact that F has a convex graph onM0 implies that F is continuous on
M0.

We assume that the feasible set of problem (5.1)–(5.4) is nonempty.

Remark 5.3. The solution method described below works in a more general situation
where F and M are nonstationary, measurably dependent on time. We however focus on
the simplest case.

We first reduce problem (5.1)–(5.4) to a convex optimization problem of the form
(2.1)–(2.4) with equality and inequality constraints. Let us rewrite (5.2) in an integral
form:

y(θ) = y0 +

∫ θ

0
v(t) dt, θ ∈ [0, 1], (5.7)

where
v(t) ∈ F (y(t)) for a.a. t ∈ [0, 1].

The latter is equivalent to the system of inequalities

〈s, v(t)〉 ≤ ρ(s, F (y(t))) for s ∈ Σn−1, and a.a. t ∈ [0, 1]. (5.8)



–15 –

Here Σn−1 is the unit sphere in Rn, Σn−1 = {s ∈ Rn : ‖s‖ = 1}, and ρ(·, B) is the support
function of the set B defined on Σn−1 by

ρ(s, B) = sup{〈s, v〉 : v ∈ B}

(see [16]). For reasons that will become clear later, it is convenient to consider on Σn−1 a
measure ν proportional to the Lebesgue measure and such that ν(Σn−1) = 1.

Remark 5.4. The fact that F has a convex graph easily implies that for every s ∈ Σn−1

the function y 7→ ρ(s, F (y)) is concave on M0.

Remark 5.5. It follows from the continuity of F on M0 (Remark 5.2) that the function
t 7→ ρ(s, F (y(t))) is continuous for every y ∈ C([0, 1],Rn) taking values in M0.

Since s 7→ ρ(s, F (y)) is continuous, (5.8) is equivalent to

(s, v(t)) ≤ ρ(s, F (y(t))) for a.a. (s, t) ∈ Σn−1 × [0, 1], (5.9)

where a.a. is understood with respect to the product of the measure ν on Σn−1 and
the Lebesgue measure on [0, 1]. Let us define X = L2([0, 1],Rn) × L2([0, 1],Rn), and
H = L2([0, 1],Rn). Treating the functions y and v as elements of X , we may rewrite (5.7),
(5.9) as

A(y, v) = b,

h(s, t, y, v)≤ 0 for a.a. (s, t) ∈ S = Σn−1 × [0, 1].

Here A is a linear bounded operator from X to H given by

A(y, v)(θ) = y(θ)−

∫ θ

0
v(t) dt, θ ∈ [0, 1], (5.10)

b(θ) = y0, θ ∈ [0, 1], (5.11)

and
h(s, t, y, v) = 〈s, v(t)〉 − ρ(s, F (y(t))). (5.12)

The set (5.5) is naturally transformed into

X = {(y, v) ∈ X : (y(t), v(t)) ∈M for a.a t ∈ [0, 1]}. (5.13)

Obviously, X is closed, convex, and bounded in X . Let us show that the functions (y, v) 7→
h(s, t, y, v), (s, t) ∈ Σn−1 × [0, 1], which are defined by (5.12), satisfy the conditions of
section 3 with S = Σn−1 × [0, 1] and with the measure µ on S being the product of the
measure ν on Σn−1 and the Lebesgue measure on [0, 1]. By Remark 5.4 these functions are
convex on X . By the continuity of the map F on M0 (Remark 5.2) this map is bounded
on M0. Hence the family ρ(·, F (y)), y ∈ M0, is equicontinuous. This and the continuity
of ρ(s, F (·)) following from Remark 5.2 imply that the function (s, y) 7→ ρ(s, F (y)) is
continuous on Σn−1×M0. Therefore, for each (y, v) ∈ X the function (s, t) 7→ ρ(s, F (y(t)))
is bounded and measurable. We conclude that for each (y, v) ∈ X the function (s, t) 7→
h(s, t, y, v) together with (s, t) 7→ h+(s, t, y, v) = max{h(s, t, y, v), 0}, belong to the space
L2S = L

2(S, µ,R), and h(s, t) = sup{| h(s, t, y, s) |: (y, s) ∈ X} lies in L2S , too.
Thus, the optimization problem (2.1)–(2.4) where the operator A, element b, functions

h and setX are given by (5.10), (5.11), (5.12), (5.13) satisfies all the assumptions of section
3, and can be solved with the constraint aggregation method described in Theorem 3.3.
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Theorem 5.1. Let the operator A : X 7→ H, element b ∈ H, function h and set X ∈ X
be defined by (5.10), (5.11), (5.12) and (5.13). The optimal control problem (5.1)–(5.4)
is equivalent to the convex optimization problem (2.1)–(2.4) in the following sense:
(i) each solution x∗ = (y∗, v∗) of problem (5.1)–(5.4) solves problem (2.1)–(2.4),
(ii) if x∗ = (y∗, v∗) solves problem (2.1)–(2.4), then there exists a solution x∗∗ = (y∗∗, v∗∗)
of problem (5.1)–(5.4) such that v∗∗ = v∗ and y∗∗(t) = y∗(t) for a.a. t ∈ [0, 1].

The theorem is obvious.
In the rest of this section the convex optimization problem (2.1)–(2.4) is understood as

described in Theorem 5.1. Its solution set will be denoted by X∗; for the solution set of the
initial problem (5.1)–(5.4) we shall use the notation Ω∗. For solving problem (2.1)–(2.4)
we employ the constraint aggregation method (3.1), (3.11)–(3.14) and (3.15) of section 2
(see Theorem 3.3). We shall first specify uk in (3.11)–(3.14). Let xk = (yk, vk). The term
(Axk − b, Au− b) in (3.12), where u = (z, w) ∈ X , has the form

〈A(yk, vk)− b, A(z, w)〉=

∫ 1

0

(
〈rk(t), z(t)〉+ 〈qk(t), w(t)〉

)
dt, (5.14)

where

rk(θ) = A(yk, vk)(θ) = yk(θ)−

∫ θ

0
vk(t) dt, (5.15)

qk(t) = −

∫ 1

t

rk(θ) dθ. (5.16)

We obtain this arguing like in the previous section (with C = 0 and D equal to the identity
matrix).
The integral in the constraint (3.13) has the form

∫

Σn−1×[0,1]
h+(s, t, yk, vk)h(s, t, z, w) ν(ds) dt

=

∫ 1

0

∫

Σn−1
hk(s, t)

(
〈s, w(t)〉 − ρ(s, F (z(t)))

)
ν(ds) dt (5.17)

where
hk(s, t) = h+(s, t, yk, vk) = max{0, 〈s, vk(t)〉 − ρ(s, F (yk(t)))}. (5.18)

We arrive at the following specification of (3.11), (3.14): uk = (zk, wk) is an optimal
control in the problem

min

∫ 1

0
ϕ(t, z(t), w(t)) dt (5.19)

η̇(t) =
(
rk(t)

)T
z(t) +

(
qk(t)

)T
w(t) a.a. t ∈ [0, 1], (5.20)

η(0) = 0, η(1) = ηk1 =
〈∫ 1

0
rk(θ) dθ, y0

〉
, (5.21)

ξ̇(t) = −

∫

Σn−1
hk(s, t)ρ(s, F (z(t))− w(t)) ν(ds) a.a. t ∈ [0, 1], (5.22)

ξ(0) = 0, ξ(1) ≤ 0, (5.23)

(z(t), w(t)) ∈M a.a. t ∈ [0, 1]. (5.24)

The constraint aggregation algorithm (3.1), (3.11)–(3.14). (3.15) can be summarized as
follows.



–17 –

Step 0. Fix (y0, v0) ∈ X such that
∫ 1
0 ϕ(t, y(t), v(t)) dt ≤ f

∗ (in particular, (y0, v0) may
be the minimizer of the objective functional in X).

Step k.

(i) Given the kth approximate solution (yk, vk) ∈ X , build functions rk (5.15), qk

(5.16), hk (5.18).
(ii) Find measurable functions (zk, wk) which constitute the optimal controls of the
problem (5.19), (5.24).

(iii) Calculate the stepsize τk by minimizing with respect to τ ∈ [0, 1] the expression

∫ 1

0

∫

Σn−1

(
max{0, 〈s, (1−τ)vk(t)+τwk(t)〉−ρ(s, F ((1−τ)yk(t)+τzk(t)))

)2
ν(ds) dt.

(iv) Form the (k + 1)st approximate solution

(yk+1, vk+1) = (yk, vk) + τk((z
k, wk)− (yk, vk)).

Let us call the above algorithm the constraint aggregation algorithm for problem (5.1)–
(5.4) .

Theorem 5.2. The sequence {(yk, vk)} formed by the constraint aggregation algorithm
for problem (5.1)–(5.4)
(i) weakly converges in X = L2([0, 1],Rn) × L2([0, 1],Rm) to the solution set Ω∗ of this
problem; and

(ii) strongly converges in X to Ω∗ if the functional f is strongly convex.

The proof of Theorem 5.2 is identical to that of Theorem 4.2. Here, instead of Theorem
3.1, we refer to Theorem 3.3 and use the reduction Theorem 5.1.
There are intriguing connections of the method just described with Steiner selections

of convex maps. We shall use them to develop a modified constraint aggregation method
for convex processes.
Recall that the Steiner point of a convex compact set B ⊂ Rn is defined as

St(B) = n

∫

Σn−1
sρ(s, B) ν(ds),

where ν is a uniform measure on Σn−1 satisfying ν(Σn−1) = 1, and ρ(·, B) is the support
function of B (see [21] and [20, §3.4]).
Let us define the mappings:

F k(t) = F (yk(t)), F k+(t) = conv
{
F k(t) ∪ {vk(t)}

}
.

It is evident that

hk(s, t) = max{0, 〈s, vk(t)〉 − ρ(s, F (yk(t)))} = ρ(s, F k+(t))− ρ(s, F
k(t)).

Therefore the first component of the inner integral at the right side of (5.17) can be
transformed as follows:

∫

Σn−1
hk(s, t)〈s, w(t)〉 ν(ds)

=
〈
w(t),

∫

Σn−1
s
(
ρ(s, F k+(t))− ρ(s, F

k(t))
)
ν(ds)

〉

=
1

n

〈
w(t), St(F k+(t))− St(F

k(t))
〉
. (5.25)
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Consider the second component of the inner integral in the right hand side of (5.17). We
have

∫

Σn−1
hk(s, t)ρ(s, F (z(t)) ν(ds)

=

∫

Σn−1

(
ρ(s, F k+(t))− ρ(s, F

k(t))
)
ρ(s, F (z(t)) ν(ds)

=

∫

Σn−1
max

p∈F (z(t))

〈(
ρ(s, F k+(t))− ρ(s, F

k(t))
)
s, p
〉
ν(ds)

≥ max
p∈F (z(t))

∫

Σn−1

〈(
ρ(s, F k+(t))− ρ(s, F

k(t))
)
s, p
〉
ν(ds)

= max
p∈F (z(t))

1

n
〈St(F k+(t))− St(F

k(t)), p〉

=
1

n
ρ(St(F k+(t))− St(F

k(t)), F (z(t))).

In view of (5.25), the expression (5.17) can be estimated as follows:

∫

Σn−1×[0,1]
h+(s, t, yk, vk)h(s, t, z, w) ν(ds) dt

≤
1

n

∫ 1

0

〈w(t), St(F k+(t))− St(F
k(t))〉 dt−

1

n

∫ 1

0

ρ
(
St(F k+(t))− St(F

k(t)), F (z(t))
)
dt

= −
1

n

∫ 1

0

ρ
(
St(F k+(t))− St(F

k(t)), F (z(t))− w(t)
)
dt = gk(z, w).

We see that the estimate (3.20) holds. Furtheremore, for every u = (z, w) feasible in the
problem (5.1)–(5.4) we have w(t) ∈ F (z(t)) for a.a. t ∈ [0, 1]. Consequently, ρ(s, F (z(t))−
w(t)) ≥ 0 for all s ∈ Σn−1 and a.a. t ∈ [0, 1], and we get gk(z, w) ≤ 0 (see (3.18)). With
a view to Theorems 5.1 and 3.4, we arrive at the following modification of the constraint
aggregation algorithm (5.19)–(5.24): uk = (zk, wk) is an optimal control in the problem

min

∫ 1

0
ϕ(t, z(t), w(t)) dt,

η̇(t) =
(
rk(t)

)T
z(t) +

(
qk(t)

)T
w(t) a.a. t ∈ [0, 1],

η(0) = 0, η(1) = ηk1 =
〈∫ 1

0
rk(θ) dθ, y0

〉
,

ξ̇(t) = −
1

n
ρ
(
St(F k+(t))− St(F

k(t)), F (z(t))− w(t)
)
,

ξ(0) = 0, ξ(1) ≤ 0,

(z(t), w(t)) ∈M a.a. t ∈ [0, 1].

Let us call the above algorithm the Steiner constraint aggregation algorithm for problem
(5.19)–(5.24).
The reduction Theorem 5.1 and Theorem 3.4 yield the following result.

Theorem 5.3. The sequence {(yk, vk)} generated by the Steiner constraint aggregation
algorithm for problem (5.1)–(5.4)
(i) weakly converges in X to the solution set Ω∗ of this problem; and
(ii) strongly converges to Ω∗ if f is strongly convex.
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Consider stronger types of convergence of sequences {(ȳk, vk)}, which require uni-
form convergence of {ȳk}. Like in the previous section, we introduce the space Y =
C([0, 1],Rn) × L2([0, 1],Rn) and define Y-strong and Y-weak convergence of a sequence
{(ȳk, vk)} to the solution set Ω∗. These types of convergence hold for the functions ȳk

given by

ȳk(θ) = y0 +

∫ 1

0
vk(t) dt, θ ∈ [0, 1]. (5.26)

Adding the operation (5.26) to Step k of the constraint aggregation algorithmwe define
the modified constraint aggregation algorithm for problem (5.1)–(5.4).

Remark 5.6. Note that for the sequence {(yk, ȳk, vk)} formed by this algorithm, the
components ȳk are trajectories of the system (5.2).

The functional f given by (5.6) will be called uniformly strongly convex with respect to
state velocity if there exists κ > 0 such that for all y, v1, v2 ∈ L

2([0, 1],Rn), and β ∈ [0, 1],
the following inequality holds

F (y, βv1 + (1− β)v2) ≤ βF (y, v1) + (1− β)F (y, v2)− β(1− β)κ‖v1 − v2‖
2
2

where

F (y, v) =

∫ 1

0
ϕ(t, y(t), v(t)) dt,

and ‖ · ‖2 is the norm in L
2([0, 1],Rm).

Remark 5.7. Obviously f is uniformly strongly convex with respect to state velocity if
v 7→ ϕ(t, y, v) is uniformly strongly convex (see Remark 4.4).

Theorem 5.4. Let the sequence {(yk, ȳk, vk)} be formed by the modified constraint aggre-
gation algorithm for the problem (5.1)–(5.4) Then the sequence {(ȳk, vk)}
(i) Y-weakly converges to the solution set Ω∗ of this problem; and
(ii) Y-strongly converges to Ω∗ if the functional f is uniformly strongly convex with respect
to state velocity.

The proof is similar to that of Theorem 4.3. An identical modification and result are
possible also for the Steiner constraint aggregation method.

6 Games

Let us now consider a zero-sum game defined as follows. There are compact sets S ⊂ Rn

and T ⊂ Rm, which we shall call sets of pure strategies of players A and B, respectively.
The payoff function r : S×T → R assigns to each pair of pure strategies (s, t) the amount
that A has to pay B. We assume that r is continuous.
A mixed strategy of A is a probability measure µ on S; similarly, a mixed strategy of

B is a probability measure ν on T (see [1, §3.1.6]). The set of all probability measures on
S, or T , will be denoted Π(S) and Π(T ), respectively. For each pair of mixed strategies
(µ, ν) ∈ Π(S)× Π(T ) the expected payoff is given by

R(µ, ν) =

∫

S×T

r(s, t) µ(ds) ν(dt). (6.1)

It is well-defined, because r is continuous.
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The problem is to find a saddle point of the game, that is, a pair of measures (µ∗, ν∗) ∈
Π(S)× Π(T ) such that

R(µ∗, ν) ≤ R(µ∗, ν∗) ≤ R(µ, ν∗) for all (µ, ν) ∈ Π(S)×Π(T ). (6.2)

Such a saddle point exists [1, §7.7.2].
A symmetric game [13] is a game in which m = n, S = T , and the function r is

skew-symmetric in the following sense:

r(s, t) = −r(t, s), for all (s, t) ∈ S × S.

In a symmetric game, for each µ ∈ Π(S) we have R(µ, µ) = 0. In particular, this must
hold for µ∗ and for ν∗. Setting µ = ν∗ and ν = µ∗ in (6.2) we see that R(µ∗, ν∗) = 0 and
that it is sufficient to look for symmetric saddle points of form (µ∗, µ∗). This simplifies
(6.2) to the system of inequalities

R(µ∗, ν) ≤ 0, for all ν ∈ Π(S). (6.3)

Remark 6.1. Every zero-sum game with a payoff function r : S×T → R can be reduced
to a symmetric game on (S × T )× (S × T ), by defining a skew-symmetric payoff function

w((s1, t1), (s2, t2)) = r(s1, t2)− r(s2, t1).

It is clear that every symmetric saddle point of this game corresponds to a saddle point
in (6.2), and vice versa. Therefore we shall concentrate on symmetric games, to simplify
the notation.

Let us reduce a symmetric game to a problem with inequality constraints of form (2.7).
Define X = rca(S)—the linear space of all regular countably additive functions on the σ-
algebra B of all Borel sets in S. We treat X as the space dual to the space Ξ of continuous
functions g : S → R with the norm ‖g‖ = maxs∈S |g(s)|.
We define f ≡ 0 and X = Π(S); the latter set is convex and weakly∗ compact in X

(Prohorov’s theorem, see [3]).
Finally, we define the functional h : S ×X → R by

h(t, µ) =

∫

S

r(s, t) µ(ds). (6.4)

It is linear with respect to µ and bounded, because r is continuous. Let us observe that
the inequalities (6.3) can be equivalently expressed as

h(t, µ∗) ≤ 0 for all t ∈ S. (6.5)

Due to the continuity of h(·, µ), the quantifier ‘for all’ can be replaced by ‘for almost all
with respect to the Lebesgue measure on S’. Moreover, the linear functionals h(t, ·), t ∈ S,
given by (6.4), are weakly∗ continuous.
With these definitions all assumptions of Section 3 are satisfied, and the problem of

finding a saddle point of a symmetric game becomes an instance of the general formulation
(2.7). Let us specify for it the method with constraint aggregation (3.1), (3.7)–(3.9) and
(3.10). Denoting by µk the current iterate (which corresponds to xk in section 3), we obtain
from (6.4) the following specification of the left hand side of the aggregate constraint (3.8):

∫

S

h+(t, µk)h(t, u) dt=

∫

S×S

r(s, t)h+(t, µk) u(ds) dt.
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We arrive at the following subproblem: uk is a solution of the system

∫

S×S

r(s, t)h+(t, µk) u(ds) dt≤ 0, (6.6)

u ∈ Π(S). (6.7)

The next iterate µk+1 is defined by

µk+1 = (1− τk)µ
k + τku

k, (6.8)

where

τk = arg min
τ∈[0,1]

∫

S

(
max

(
0, (1− τ)

∫

S

r(s, t)µk(ds) + τ

∫

S

r(s, t)uk(ds)
))2
dt. (6.9)

The next theorem is a simple consequence of Theorem 3.2.

Theorem 6.1. Let the game have a skew-symmetric and continuous payoff function r :
S × S → R, where S is a compact set in Rn. Then for every µ0 ∈ Π(S) the sequence of
probability measures {µk} defined by (6.6)–(6.9) weakly converges to the set of probability
measures µ∗ such that (µ∗, µ∗) is a saddle point of the game.

Let us analyse in more detail the subproblem (6.6)–(6.7). Observe that due to the
absence of any objective function (f ≡ 0), there is much freedom in specifying uk. We
shall show that some solutions to (6.6)–(6.7) can be defined in a closed form.

One-step lookahead correction

Let us define αk =
∫
S
h+(t, µk) dt. If µk is not a solution of the game, i.e., if it does not

satisfy (6.5), we have αk > 0. Thus we can define

uk(ds) = α−1k h
+(s, µk)ds, (6.10)

that is, uk is a probability measure with the density h+(·, µk)/αk.
Since r is skew-symmetric, in (6.6) we have

∫

S×S

r(s, t)h+(t, µk) uk(ds) dt = α−1k

∫

S×S

r(s, t)h+(t, µk)h+(s, µk) ds dt

= α−1k

∫

s≥t

(
(r(s, t) + r(t, s)

)
h+(t, µk)h+(s, µk) ds dt = 0.

Consequently, the measure (6.10) is a solution of (6.6)–(6.7). We shall call it a one-step
lookahead correction, because uk is a good B’s response to the strategy µk employed by A:

R(µk, uk) =

∫

S×S

r(s, t) µk(ds) uk(dt) =

∫

S

h(t, µk) uk(dt)

= α−1k

∫

S

(
h+(t, µk)

)2
dt > 0.

The step (6.8) can be thus interpreted as combining µk with a strategy uk that beats µk.
It bears some similarity with the method of fictious play of [15], but our correction is a
mixed strategy rather than pure, and we employ the minimizing stepsize (6.9) instead of
τk = 1/(k+ 1).
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More generally, we may interpret the aggregate constraint (6.6) as the requirement that uk

be a sufficient response to the one-step lookahead strategy having the density α−1k h
+(·, µk).

Indeed, subject to a normalizing constant, inequality (6.6) requires that the payoff of the
game be non-positive. This allows us to consider other candidates for uk.

Two-step lookahead correction

Let us define for s ∈ S

λk(s) =

∫

S

r(s, t)h+(t, µk) dt, λk−(s) = max(0,−λ
k(s)).

If µk is not a solution, then, similarly to the one-step case, αk =
∫
S
h+(t, µk) dt > 0.

Suppose that λk(s) ≥ 0 for all s ∈ S. Then for all u ∈ Π(S) we have

0 ≤

∫

S

λk(s)u(ds) =

∫

S×S

r(s, t)h+(t, µk) dt u(ds).

This means that the strategy ν(dt) = α−1k h
+(t, µk)dt provides a nonegative payoff for B,

irrespective of A’s strategy, that is, ν is a solution of the game.
If this is not the case, we must have γk =

∫
S
λk−(s) ds > 0. Consequently, we may

define the probability measure

uk(ds) = γ−1k λ
k
−(s)ds (6.11)

to guarantee that (6.6) is satisfied as a strict inequality

∫

S×S

r(s, t)h+(t, µk) uk(ds) dt =

∫

S

λk(s) uk(ds) = −γ−1k

∫

S

(
λk−(s)

)2
ds < 0.

Let us observe that the measure (6.11) is a good response of Player A to the strategy
(6.10) applied by B. Therefore we shall call it a two-step lookahead correction.

7 Stochastic programming

Let (Ω,F ,P) be a probability space, and let {Ft}, t = 1, . . . , T be a filtration in F . A
sequence of random variables

x = (x1, . . . , xT ),

where xt : Ω→ R
nt, nt > 0, will be called a policy. We consider only policies that have a

bounded variance and we define the decision space

X = L2(Ω,Rn1)× · · · × L2(Ω,RnT ). (7.1)

It is a Hilbert space with the scalar product

〈x, y〉
X
=

T∑

t=1

E 〈xt , yt〉.

A policy is nonanticipative, if each xt is Ft-measurable, t = 1, . . . , T (x is adapted to
{Ft}). It is evident that the set of all nonanticipative policies is a closed linear subspace
of X ; it will be denotedM.
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Let G be a map from Ω to the set of all subsets of Rn (identified with Rn1×· · ·×RnT ),
where n =

∑T
t=1 nt. We assume that G is measurable, and that with probability one its

value G(ω) is a nonempty convex compactum in Rn. A policy x is called feasible, if

x(ω) ∈ G(ω) with probability 1. (7.2)

The set of all feasible policies will be denoted X . It is convex, closed and bounded in X .
Finally, we have a functional f : X → R, defined as

f(x) = E ϕ(x(ω), ω), (7.3)

where ϕ : Rn × Ω → R. We assume that ϕ(·, ω) is convex for P-almost all ω ∈ Ω, and
ϕ(z, ·) is measurable for all z ∈ Rn. Furthermore, we assume that there exists ε > 0 such
that for all x such that infy∈X ‖x− y‖X < ε one has

|ϕ(x(ω), ω)| ≤ ϕ(ω), with probability 1,

and E ϕ < ∞. Then the functional (7.3) is convex and bounded in the ε-neighborhood
of X . We see that all assumptions of Section 3 are satisfied.
The multistage stochastic programming problem is to minimize (7.3) in the set of poli-

cies that are nonanticipative and feasible. Its optimal value, as before, will be denoted by
f∗.
Following [17, 24] let us equivalently represent the nonanticipativity condition x ∈M

in a form of a linear constraint. Let Et denote the operation of conditional expectation with
respect to the σ-subfield Ft, t = 1, . . . , T . Directly from the definition of the conditional
expectation, the nonanticipativity condition is equivalent to the equations xt = IEt xt a.s.,
for t = 1, . . . , T . This allows to formulate the multistage stochastic programming problem
as a special case of (2.6):

min E ϕ(x(ω), ω), (7.4)

xt − Etxt = 0, t = 1, . . . , T, (7.5)

x(ω) ∈ G(ω), a.s. (7.6)

Let us construct the aggregate constraint of form (3.3). Consider the linear operator
A : X → X given by

Ax = (A1x1, . . . , ATxT ),

where the linear operators At : L
2(Ω,Rnt)→ L2(Ω,Rnt) are defined as follows:

Atxt = xt − Etxt, t = 1, . . . , T.

Since 〈Ax, x − Ax〉
X
= 0, it is clear that I − A is the orthogonal projection on M, and

A—on the orthogonal complementM⊥. Therefore

〈Axk, Au〉
X
= 〈Axk, u〉

X
=

T∑

t=1

E 〈Atx
k
t , ut〉.

Let us define rkt = Atx
k
t = x

k
t − Etx

k
t . The subproblem (3.2)–(3.4) takes on the form:

minE ϕ(u(ω), ω), (7.7)

E

T∑

t=1

〈rkt , ut〉 = 0, (7.8)

u(ω) ∈ G(ω), a.s. (7.9)
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The next solution is defined by (3.1) and (3.5). Setting ρk = Auk, that is,

ρkt = u
k
t − Etu

k
t , t = 1, . . . , T,

we see from (7.8) that ρk ⊥ rk. Therefore the expression that is minimized in (3.5) can
be transformed into

‖(1− τ)Axk + τAuk‖2
X
= ‖(1− τ)rk + τρk‖2

X
= (1− τ)2‖rk‖2

X
+ τ2‖ρk‖2

X
,

which yields the minimizing stepsize

τk = ‖rk‖2
X

(
‖rk‖2

X
+ ‖ρk‖2

X

)−1

=
( T∑

t=1

E ‖rkt (ω)‖
2
)( T∑

t=1

E ‖rkt (ω)‖
2 +

T∑

t=1

E ‖ρkt (ω)‖
2
)−1
. (7.10)

The next theorem is a direct consequence of Theorem 3.1.

Theorem 7.1. Let x0 ∈ X, f(x0) ≤ f∗, and let the sequence {xk} be defined by (3.1),
where uk is a solution (7.7)–(7.9) and τk is given by (7.10). Then {x

k} is weakly convergent
to the set of solutions of the problem (7.4)–(7.6).

The main advantage of the constraint aggregation is the possibility to reduce a large
(potentially infinite) number of constraints (7.5) to a scalar constraint (7.8), which may
prove advantageous computationally. But there is also a theoretical advantage: the possi-
bility to substantially weaken constraint qualification conditions.
Let us at first mention that the classical constraint qualification for problems of form

(7.4)–(7.6) requires that the set {Ax : x ∈ X} contains a neighborhood of zero in X (see,
e.g., [7, Thm. 5, §1.1]). This is impossible if X is defined by the scenario constraints (7.2)
with G(ω) 6= Rn and X is given by (7.1). Using the spaces L∞(Ω,Rnt) is a remedy, but it
leads to difficulties resulting from the structure of the dual space (L∞)∗ (see [18, 19]).
Aggregation allows to avoid all these complications, and much weaker conditions are

sufficient for the application of Kuhn-Tucker conditions to the auxiliary problems (7.7)–
(7.9).

Lemma 7.1. Assume that there exisits a nonanticipative policy x̃ such that x̃(ω) ∈ intG(ω)
with probability 1. Then for each k ≥ 0 there exists λk ∈ R, such that

(i) uk(ω) ∈ Arg min
v∈G(ω)

[
ϕ(v, ω) + λk〈rk(ω), v〉

]
a.s.;

(ii) λk maximizes in R the dual functional

g(λ) = IE min
v∈G(ω)

[
ϕ(v, ω) + λ〈rk(ω), v〉

]
.

Proof. We starrt with the observation that there exists a strictly positive random variable
ε : Ω → R+ such that x̃(ω) + ε(ω)Bn ⊂ G(ω) with probability one, where Bn is the unit
ball in Rn. Moreover, since x̃ ∈M and rk ∈M⊥, we have

E 〈rk(ω), x̃(ω)〉 = 0.

Since y(ω) = x̃(ω)± ε(ω)rk(ω)/‖rk(ω)‖ ∈ G(ω) a.s., and

〈rk, y〉
X
= E 〈rk(ω), y(ω)〉= ±E

{
ε(ω)‖rk(ω)‖

}
,
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the origin is in the interior of the (convex) set {〈rk, u〉
X
: u(ω) ∈ G(ω), a.s.}, that is, the

constraint qualification for (7.7)–(7.9) holds. Thus, the necessary and sufficient conditions
in the Kuhn-Tucker form (see, e.g., [7, Thm. 5, §1.1]) are satisfied for this problem: there
exists λk such that

uk ∈ Argmin
u∈X

[
f(u) + λk〈rk, u〉

X

]
,

and λk maximizes on R the dual functional

g(λ) = min
u∈X

[
f(u) + λ〈rk, u〉

X

]
.

All minimizers u in the last problem are measurable selections of the multifunction ω 7→

Argminv∈G(ω)

[
ϕ(v, ω) + λ〈rk(ω), v〉

]
(see, e.g., [7, §8.3, Prop. 2]).

Remark 7.1. It is a matter of obvious modifications to develop an approach that employs
aggregation of nonanticipativity constraints in groups, for example corresponding to time
stages t = 1, . . . , T . This would mean aggregating the constraints (7.5) to T equations

E 〈rkt , ut〉 = 0, t = 1, . . . , T.

The analysis is similar.

8 Conclusions

The idea of constraint aggregation allows to replace a convex optimization problem with
infinitely-dimensional constraints by a sequence of simpler problems having finite-dimensional
constraints. Solutions to these problems are used to construct a sequence which is weakly∗

convergent to a solution of the original problem. The idea is fairly general and applies to
many classes of problems. We have developed some new and simple approaches to such
remote application areas like optimal control, games and stochastic programming.
In the application areas of interest, weak∗ convergence turns out to be either natu-

ral (when we speak of convergence of probability measures in the section on games) or
equivalent to weak convergence (in the sections on optimal control and stochastic pro-
gramming). For control problems strong convergence of trajectories follows, and in all
cases strong convexity guarantees strong convergece to the solution set.
One of the features of the aggregation is the possibility to enjoy some advantages of

the duality theory in convex programming—in particular decomposition—although the
existence of Lagrange multipliers in the original problem is not guaranteed. In some cases
the auxiliary problems can be solved in a closed form, which substantially simplifies the
entire algorithm.
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