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Abstract 

For two populations of players playing repeatedly a same bimatrix game, a dynamics 
associated with the method of analytic centers for linear programming is described. All 
populations' evolutions converge to static equilibria. All evolutions starting in a same 
connected set converge to a same equilibrium. If a starting time is sufficiently large, 
"almost all" evolutions end up at a single equilibrium representing all populations' pure 
strategy groups (phenotypes) with nonzero proportions. The dynamics is interpreted as 
populations' rule to learn best replying. 
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1 Introduction 

Game-evolutionary models of economic and biological macrosystems treat evolution as a 
process of multiple over-time repetition of a static game in large populations of players. 
The evolution is reflected in changes of fractions of players' groups playing same strate- 
gies; these fractions are naturally identified with time varying mixed strategies. Particular 
evolution laws are usually deduced from LLphysical" suppositions, or behavioral assump- 
tions. "Physical" suppositions lie in the basis of a model of Darwinean evolution known 
as the replicator dynamics (see Hofbauer and Sigmund, 1988). Behavioral or learning 
assumptions j ustify game-evolutionary models for economics (see, e.g., Friedman, 1991; 
Samuelson and Zhang, 1992; Fudenberg and Kreps, 1993; Young, 1993; Kaniovski and 
Young, 1995). 

Game dynamics driving the populations to an equilibrium ensure their stable coexis- 
tence in a faraway future. Therefore classification of equilibrium convergent game dynam- 
ics tends to be one of the principal tasks in evolutionary game theory. Another motive for 
treating equilibrium convergent game dynamics comes from the computational area, in 
connection with the problem of updating mixed strategies so as to reach an equilibrium 
starting from a nonequilibrium. Updating procedures were given in, e.g., Brown, 1951, 
Robinson, 1951 (fictitious play), and Garcia and Zangwill, 1981 (path following). 

Generally, a static game admits many equilibria, each of them representing an ad- 
missible coexistence regime (convention) in the community of players. In the standard 
game-theoretical setting all equilibria are equivalent, whereas in real game situations 
particular equilibria (conventions) are usually selected. Thus, a question of equilibrium 
selection mechanisms arises. Such mechanisms were considered in Harsanyi and Selten, 
1988. In Young, 1993, a dynamical equilibrium selection mechanism was proposed; it was 
shown that, under appropriate conditions, trajectories driven by a special game dynamics 
prefer to converge to a single equilibrium. 

The equilibrium selection property seems to be quite rare in the world of game dynam- 
ics. Note that the replicator dynamics (Hofbauer and Sigmund, 1988), as well as some 
generalizations of the fictitious play dynamics (see Fudenberg and Kreps, 1993; Kan- 
iovski and Young, 1995) are generally not equilibrium selection. The goal of the present 
paper is to give an example of an equilibrium convergent and LLalmost" equilibrium se- 
lection bimatrix game dynamics. All models' trajectories converge to equilibria, and, 
under an appropriate choice of parameters, "almost all" trajectories approach a single, 
interior, equilibrium; a corresponding convention represents all players' strategy groups 
with nonzero proportions. 



The suggested model originates from the theory of analytic centers and interior point 
methods for linear programming (see Sonnevend, 1986; Sonnevend, et . al., 1991). Earlier, 
a dynamics of the kind was used in Harsanyi, 1982, for proving the existence of an odd 
number of equilibria. 

The model is outlined in section 2. In section 3 we give a game-evolutionary inter- 
pretation by showing that the model corresponds to a certain learning pattern. Section 
4 contains main definitions and an outline of the results. Section 5 is devoted to general 
convergence properties of the model. In section 6 an equilibrium selection statement is 
proved. The paper adjoins Kryazhimskii and Sonnevend, 1996. 

2 Central path equations 

LVe deal with a bimatrix game determined by m x n payoff matrices A. and Bo (n ,  m > 2). 
Mixed strategies of the first and second players are as usual identified with points of SE 
and Sk, respectively. Here SE = {Z : 21 + . . . + zk = 1, 21,. . . , zk 2 0) ;  zi stands 
for the i th  coordinate of a vector z; finite-dimensional vectors are treated as columns. A 
mixed strategy (Nash) equilibrium, (iO, Go) ,  is defined by 

i0 E Argmax { p ~ o  (xO, 6') : xO E S:), i0 E Argmax {pBo (iO, : xO E SE), 

where 

represent the payoffs to  the first and second players, respectively, at  a mixed strategy pair 
(xO, yo). In what follows, Argmax { r (z)  : z E E) stands for the set of all maximizers 
of a scalar function r ( . )  on a set E ;  if the maximizer is unique, it is denoted argmax 
{ r (z )  : z E E). 

We associate the above game with a family of penalized games parametrized by a 
nonnegative parameter t (time). In the penalized game corresponding to  time t ,  the 
payoffs to the first and second players are given by 

i=l 

where $2 are fixed vectors in Rn, Rm respectively; players' strategy spaces are again Sz 
and S i .  The logarithmic terms penalize the players for the approach to the "boundary" 
of the mixed strategy space S: x Sk (as some pure strategy fractions xy, y,0 go to zero, 
the penalty terms go to  -a). As time t is small, the penalty terms dominate; players' 
major care is keeping all their pure strategy fractions far from zero. As time t is large, the 
matrix payoffs dominate; major care is playing the game. At time t an equilibrium 
(xO(t) ,  yO(t)) in the penalized game is defined by 

0 
( t )  = argmax { p ~ o ( t ,  xO, yO(t)) : xO E int s:), (2.1) 

yO(t) = argmax {pBo(t, xO(t), yo) : yo E int Sk); (2.2) 

here int SE stands for the set of all z E SE such that z; > 0 (i = 1 , .  . . , k) .  Note that due 
to the strict concavity of the maps xO H pAo(t,xO, yO(t)) and yo H pBo(t,xO(t), yo), their 



maximizers on int S: and, respectively, int Si are unique; therefore in (2.1), (2.2) the 
usage of argmax instead of Argmax is correct. 

We are concerned with the question if the equilibria (xO(t) ,  yO(t)) in the penalized 
games converge to those in the initial game as t goes to infinity. The fact that xO(t) ,  
yO(t))  have only nonzero coordinates, that is, (xO(t), yO(t)) never touches the "boundary" 
of the strategy space S: x Si,  allows us to call paths t t-t (xO(t), yO(t)) central (avoiding 
the boundary). 

The existence of an equilibrium (xO(t), yO(t)) in the penalized games is stated in Lemma 
2.2. To prove it we shall use the next simple observation. Below int S ~ ( K )  denotes the 
set of all z E Si such that z; >_ K (i = 1, . . .  ,k). 

Lemma 2.1 Let t, 2 0. There is a K > 0 such that for every t E [O,t,], every x: E int S: 
and every y,O E int S i  it holds that 

argmax {pAo (t, xO, y:) : xO E int S:} E S:(K), 

argmax {pgo (t,  x:, yo) : yo E int Sk} E S ~ ( K )  

This statement follows easily from the fact that p ~ o  (t,  xO, yo) and pgo(t, xO, yo) tend to 
-m as one of the coordinates of xO, respectively, yo goes to zero. 

Lemma 2.2 For every t 2 0 there exists an (xO(t), yO(t))  satisfying (2.1)) (2.2). 

Proof. Consider the maps 

XO( t , . )  : Y O  H XO(t ,yO) = argmax {pA~( t , xO,yO)  : xO E int s:}, 

Y( t ,  .) : xO H y O ( t ,  xO) = argmax {pAo (t, xO, yo) : yo E int Sk} 

on int S i  and int S: respectively. The maps are well defined and continuous. By Lemma 
2.1 XO( t ,  .) and YO(t,  a )  take values, respectively, in S:(K) and S ~ ( K )  for some K > 0. 
Therefore the composite map (xO, yo) H (XO(t ,  YO(t, xO)), YO(t,  XO(t ,  yo))) is continuous 
and carries S ~ ( K )  x S ~ ( K )  into itself. By Brower's theorem it has a fixed point (xO(t) ,  yO(t)) 
in S:(K) x S;(K). By the definition of XO(t ,  .) and YO(t, .) the point (xO(t) ,  yO(t))  satisfies 
(2.2). 

In our analysis we shall use the independent variables x = (x l ,  . . . , x,-1) = (xy, . . . , 
0 0 0 x:-~), Y = ( Y I ,  . . . , yn-1) = (y l ,  . . . , ym-l) replacing x,, y; by 1 - C xi, and, respec- 

tively, 1 - C yj. Thus, from now on we identify mixed strategies of the first and second 
players with elements of Sn-1 and Sm-1, respectively, where Sk = {z : zl + . . . + zk 5 
1, zl , . . . , zk > 0). Using the partitions 

where AoO and Boo are (m - 1) x (n - 1) matrices, bl,  b2 E Rn-l, cl, c2 E Rm-l, dl ,  d2 E R1, 
we represent the payoffs p~o(xO, yo), pgo(xO, yo), respectively, in the form 



The equilibria in the bimatrix game are expressed through 

5 E Argmax {PA(X, y) : x E Sn-I), (2.5) 

y E Argmax {PB(Z, y) : x E Sm-1). (2.6) 

Namely ( i , $ )  E SE x SL is an equilibrium in the bimatrix game i f  and only i f  5; = 5; for 
all i = 1, ..., n - 1 and ijj = yj for all j = 1, ..., m - 1, where (5,  y) satisfies (2.5), (2.6). 
We shall identify every above (5, y) with a corresponding ( i , $ )  and also call it a (Nash) 
equilibrium. 

The payoffs p ~ o  ( t ,  xO, yo), pBo(t, xO, yo) in the penalized games are rewritten into 

where $1, = $1; - $1, (i = 1 , .  . . , n - I.), $2; = $2i -42m (i = 1 , .  . . , m - 1). An equilibrium 
in the penalized game at  time t is expressed through 

Namely, (xO(t), yO(t)) satisfies (2.1), (2.2) if and only if xO(t); = x(t); for all i = 1, ..., n - 1 
and yO(t) j  = ~ ( t ) ~  for all j = 1, ..., m - 1, where (x(t) ,  y( t))  satisfies (2.9), (2.10). We 
identify every above (x(t) ,  y( t))  with a corresponding (xO(t), yO(t)). 

By Lemma 2.2 for every t 2 0 there exists a (x(t) ,  ~ ( t ) )  satisfying (2.9) and (2.10); 
by Lemma 2.1 (x( t ) ,  y( t))  lies in the interior of Sn-1 x Sm-1. This together with the 
strong concavity of the functions maiximized in (2.9) and (2. lo), yield that (x(t) ,  y( t ) )  E 
int SnPl x int Sm-l is an equilibrium in the penalized game at time t ,  that is, satisfies 
(2.9), (2.10), if and only if the derivatives of the above functions at x(t) and, respectively, 
y(t) vanish; more specifically, (x( t ) ,  y( t))  solves the algebraic equation 

where 



e; E Rn-', f j  E Rrnp1, e;,; = 1, e;,k = 0 for k # i ,  f j j  = 1, f j ,k  = 0 for k # j .  We call 
(2.11), (2.12) the central path equations. 

The formal differentiation of the algebraic equations (2.1 I ) ,  (2.12) in t results in the 
differential eauation 

Here 

Diag(c,, ..., ck) stands for the diagonal k x k matrix with el, ...,ck on the diagonal. One 
can treat (2.14) as a dynamical system generating the central paths. Below we will couple 
(2.14) with an initial condition 

thus determining a Cauchy problem. A solution (x(.), y(.)) of this problem will always 
be understood as that defined on [0, m) and satisfying the constraint ( t ,  x ( t ) ,  y( t ))  E 'FI. 
Here and in what follows 'FI is the set of all ( t ,xO, E [0, m) x int Sn-l x int S,-l such 
that the matrice H ( t ,  x,  y) (2.14) is invertible. 

3 A learning interpretation 

In this section, for simplicity we restrict ourselves to the 2 x 2 matrices, 

The central ~ a t h  equations (2.11), (2.12) have the form 

where 

A = a l l  - a12 - a21 + a22, 91 = a21 - a22, (3.4) 

B = b l l - b 1 2 - b 2 1 + b 2 2 ,  h2=bi2-b22 (3.5) 

(see [Vorobyov, p. 1061). 
Imagine two large populations, A and 23, of players. The players from A and 23 are 

equipped with the payoff matrices A. and Bo respectively. Each player adopts one of the 
two admissible strategies, 1 or 2. At every instant t a pair of players from A and 23 is 
picked up at random to play the bimatrix game with the above payoff matrixes. The 
groups of players adopting 1 and 2 in both populations vary over time. Fractions x( t )  
and y(t)  of players' groups in A and 23 adopting strategy 1 at  time t characterize a state 
of the populations. 



We assume that x( t )  and y(t) evolve in accordance with a rule of learning to reply best. 
The avarage payoffs to players of A adopting, respectively, strategies 1 and 2 at time t 
are given by 

Symmetrically, the avarage payoffs to players of 23 adopting, respectively, strategies 1 and 
2 are 

Pl(t) = ~ ( t ) b l l  + (1 - x(t))b21, P2(t) = x(t)b12 + (1 - x(t))b22. 

The best reply strategy s$(t) for the population A at  time t is that of the group of players 
whose avarage payoff is larger, 

W(t )  > ~ 2 ( t )  
sfi(t) = ~ l ( t )  < a2(t)  . 

arbitrary, a l ( t )  = a 2 ( t )  

Let x+( t )  be the fraction of the best repliers in A at time t ,  

x( t ) ,  s$(t) = 1 

s:(t) is arbitrary 

Consider the difference between the maximum and minimum avarage payoffs, 

For the population A a rule to learn best replying is expressed in the following three 
conditions: 

( i )  (learning on payofldiflerences) the greater avarage payoff difference A:(t) occurs at 
time t (the clearer is which strategy is better at time t ) ,  the greater part of the population 
A replies best a t  t ;  

(ii) (learning in time) if the population A registers a same avarage payoff difference 
at different times (A$(t l) = A$(t2), tl < t2) ,  then at  a greater time ( t2) a greater part 
of the population replies best; 

( i i i )  (ability to complete learning) if times corresponding to  a same avarage payoff 
difference go to infinity, the fractions of the best repliers at  these times approach 1. 

We formalize ( i )  - (iii) by setting 

here wd(., .) : ( t ,  A )  H wA(t, A )  is a continuous function from [O, m) x [O, m) to ( 0 , l )  
increasing in both arguments and such that limt,, wd(t, A )  = 1 for every A > 0. Let 
us call wd(., .) a learning junction for the population A. Introducing a similar learning 
junction for the population 23, wo(., a )  : ( t ,  A )  H wa(t, A) ,  and putting 

we define a learning rule for the population 23. Namely, for the fraction y+(t)  of the best 
repliers in the population 23, we set 



Now we shall show that the central path equations (3.2), (3.3) are equivalent to the 
learning dynamics (3.8), (3.9) for particular learning functions wd(-, .) and wa(., a ) .  We 
set 

1 1 

Let wd(., .)) bc continuously differentiable, and (awd(t, A) /aA)A=o > 0. Then .rd(., .) is 
continuous on [0, m )  x [0, m), with 

(here we have used Lopital's rule) and 

For a fixed t (3.13) determines a linear differential equation for A H .rd(t, A). The first 
term on its right hand side is nonnegative (by the assumption on wd(-, .)). This, together 
with the positiveness of the initial condition (3.12), imply that .rd(t, A )  is positive for all 
t ,  A 2 0. Besides, from (3.11) and the assumption that limt+m wd(t, A)  = 1, we have 
that 

lim .rd(t, A) = m 
t--roo 

for all A 2 0. 
The above properties of rd(., .) (3.11) have been deduced from the assumptions upon 

the learning function wd(., .). Inversely, starting from a .rd(., .) having the above prop- 
erties, one can arrive at a learning function wd(., .) satisfying (3.11). Let us perform a 
particular exercise of the kind. Assume that 

where T(.) : [0, m) H [O, m )  is an increasing function such that 

lim ~ ( t )  = m. 
t+m 

Then (3.11) defines the value wd(t, A )  of a learning function to be a positive solution of 
the quadratic equation 

explicitly, 



where 

$ ~ ( t ,  A )  = $1 + Ar( t ) .  

An elementary analysis shows that wd(., -) defined by (3.14), (3.15) satisfies the assump- 
tions characterizing a learning function for the population A. 

Consider a simplest case, r ( t )  = t. The corresponding learning function wd(-, .) is de- 
fined by (3.14), (3.15). Take a t ,  for which the best reply strategy, s i ( t ) ,  of the population 
A is 1. By (3.8) we have 

As noticed above, (3.11) holds. For A = a l ( t )  - az( t )  it turns into 

Noticing that by (3.6), (3.4) 

we easily obtain that x = x(t)  and y = y(t) satisfy the central path equation (3.2). 
Similarly, this equation is verified for the two complementary cases, sfl(t) = 2 and s i ( t )  
arbitrary. Identical arguments show that x = x(t)  and y = y(t) satisfy another central 
path equation, (3.4); the latter follows from the learning rule (3.9) for the population 
B ,  where the learning function wa(., .) is defined symmetrically to (3.14), (3.15) (with 
r ( t )  = t ) .  

Remark 3.1 The equivalency between the learning and central path dynamics holds also 
for learning functions more general than those specified above (that is, corresponding to 
r ( t )  = t ) .  This equivalency requires however more general central path equations. Let us 
outline three steps of generalization. 

Define, first, the learning functions wd(-, .), wa(., .) by (3.14), (3.15), with an arbitrary 
T(.) increasing and satisfying limt,, r ( t )  = co. Then the learning dynamics (3.8), (3.9) 
is equivalent to the central path dynamics (3.2) (3.3) with t replaced by r ( t ) ;  we have 
time rescaling. 

If, more generally, we define the learning functions wd(., .), wa(., .) through (3.14), 
(3.15) with different r ( . ) ,  r(.) = rd(.) and r(.) = rB(.), the learning dynamics (3.8), (3.9) 
appears to be equivalent to the central path dynamics with different time scales; namely, 
in (3.2) and (3.3) we have, respectively, rd(') and ra(.) instead of t. 

Let, finally, the learning dynamics (3.8), (3.9) correspond to arbitrary learning func- 
tions wd(-, a ) ,  wg(., .). Then for x = x(t) ,  y = y(t) we have the central path equalities 
(3.2), (3.3), where t is replaced, respectively, by rd ( t ,  A i ( t ) )  and rB(t, Ag(t)); the function 
rd(., 0 )  is defined by (3.11), and rB(., .) is defined by an identical formula, with obvious 
changes. 

Similar equivalencies between the learning and central path dynamics can also be 
established for the general n x rn case. 

4 Definitions. Outline of results 

Let Z( t  I G I ,  G2) be the set of all pairs (x, y) E x S,-1 satisfying the central path 
equations (2.1 l ) ,  (2.12) ( t  2 0). We noticed in section 2 that this set is nonempty. (Due 



to the polynomial character of the equation (2.6) Z(t  I GI ,  7/12) is, generically, finite; see 
Harsanyi, 1982). 

Central paths will be understood as smooth single-valued branches of the multi-valued 
map t H Z(t 1 7/12). Namely, we define a central path starting from (xO, yo) E int Sn-l x 
int Sm-l at time to to be a solution of the Cauchy problem (2.13), (2.16). A central path 
starting in Z0 c int Sn-] x int Sm-] at time to will be undestood as that starting at to 
from some (so, yo) E ZO. We shall call Z0 c int Sn-l x int Sm-] a set of uniqueness for 
initial time to (to 2 0) if for every (so,  yo) E Z0 there exists a unique central path starting 
from (xO, yo) E Z0 at to. 

Note that H-I(.) is Lipschitz on every closed subset of 'Ft (see section 2). Taking this 
into account we easily arrive at the following. 

Lemma 4.1 Let Z0 E int Sn-1 x int Sm-1 and for  every (xO, yo) E Z0 there exists a 
solution of the Cauchy problem (2.13)) (2.1 6). Then 

(a) Z0 is a set of uniqueness fo r  initial time to, 
(b) for  every t > to the central path (x(.), ~ ( 4 ) )  starting from (so,  yo) E Z0 at to satisfies 

(x(t) ,  y(t)) E Z(t 1 $,, 42) where $1, 42 are such that (so,  is the single solution of 

(2.1 I), (2.12) with t = to ($1 and $2 obviously exist), 
(c) the function associating with every ( t ,  xO, Y O )  E [to, a) x Z0 the value (x(t) ,  ~ ( t ) )  

of the central path (x(.), y(-)) starting from (so, yo) E Z0 at to is continuous. 

Remark 4.1 Noticing that H( t ,  x, y )  is invertible for t close to zero and (x, y) lying in 
a neighborhood of an interior point of Sn-l x Sm-], one can easily prove the following 
local uniqueness statement. For every (xO, yo) E int Sn-1 x int Sm-1 there exists an t > 0 
such that for all t E [0, t) the set Z[t I xO, yo] contains a single element (x(t) ,  y(t)). The 
function (x(.), y(.)) is a single solution of the Cauchy problem (2.13), (2.16) with to = 0. 

In what follows, N denotes the set of all equilibria in the initial bimatrix game, that is, 
pairs (2, y)  satisfying (2.5), (2.6). We shall be concerned with the selection of equilibria 
through central paths. The equilibrium selection property will be understood as an at- 
tribute of sets Z0 starting the central paths. Namely, a set Z0 C int Sn-] x int Sm-1 will 
be said to select an equilibrium ( 2 ,  y )  E N at initial time to if Z0 is a set of unique- 
ness for to, and for every central path (x(.), y(.)) starting in Z0 at to it holds that 
limt+m(x(t), y(t)) = (2, y). 

In section 5 we show that, under some natural nondegeneracy conditions, a connected 
set of uniqueness selects an equilibrium (Theorem 5.3); we also give a regularity condition 
ensuring that the whole state space int Sn-l x int selects an equilibrium for any 
initial to (the global equilibrium selection property). In section 6 we specify the first result 
for the case where A and B are square and nondegenerate and the interior of Sn-] x Sm-] 
contains a single equilibrium (s l y ) .  Namely, we show that a set selecting (2,y) lies 
arbitrarily close to the interior of Sn-l x Smdl if the initial time to is sufficiently large. 
Thus, the central paths converge to (sly) from "almost all" points provided a starting 
time is sufficiently large; the latter condition, in terms of the learning model outlined 
in section 3, implies that at the start of the evolution the populations have learned well 
enough. 



5 General select ion properties 

Our preliminary goal is to show that, as t goes to infinity, Z( t  ( converges to 
N. We shall exploit the next lemma known in the theory of analytic centers for linear 
programming. 

Lemma 5.1 (Sonnevend, 1986) Let b E Rk, c E R1, F be a k x 1 matrix, 

and 

Then 
p - cTx(r) < (k + 1)r. 

Below I . I stands for the Euclidean norm. 

Corollary 5.1 For every (x,, y,) E Z(t 1 $1, $2) we have 

Proof. Let cT = yrA + gr and 

T 5 ,  = argmax {c x : x E Sn-l) 

By Lemma 5.1 we have 
T cT2, 2 max c x - -. 

z E S n - I  t 

Due to the form of pA(t, x, y) and pA(x, y) (see (2.7), (2.3)), it holds that 

T / cTx, - c x, 15 rnax I h l I ~ l  5 I $ l I ( n - l )  
zESn-1  t t 

Hence, referring to the form of pA(x, y), (2.3), we obtain (5.1). Similarly, using (2.4), 
(2.8), we arrive at (5.2). 

Let d(w, Y)  and d(X, Y)  stand, respectively, for the distance of an element w to a set 
Y, and the semidistance from a set X to Y in Rk,  

d(w, Y)  = inf 1 w - y I ,  d(X, Y) = supd(x, Y). 
YEY z E X  

Theorem 5.1 Let Q be a bounded set in Rn-' x Rm-'. Then 

lim sup d(Z(t  1 &), N) = 0. 
t-+m ( d ~ , d z ) ~ Q  



Proof. Assume that, to the contrary, 

for some ti + a, ($I,;, $2,;) E Q. Then there are (x,;, y,;) E Z(ti  ( G2,;) such that 

Therefore, as one can easily show by contradiction, there exist xi E Sn-1, y; E S,-1 and 
S > 0 such that either 

PA(x*;, Y*;) < pA(xi1 Y*;) - 6, 

For large i this is not possible due to Corollary 5.1. 0. 

Now we shall prove that the payoffs currently gained on each central path started in 
a connected set of uniqueness converge to a single equilibrium value (see below Theorem 
5.2). The proof is conditioned by the requirement that a domain, within which the central 
paths evolve, intersects a finite set of equilibria. 

We shall use the following definition. Given a set of uniqueness, ZO, for an initial time 
to, we shall say that a set D c Sn-l x contains the central paths starting in Z0 at  to 
if (x( t) ,  y(t) E D holds for each central path (x(.), y(.)) starting in Z0 at  to. We denote by 
p(x, y) the pair of the payoffs at (x,  y) E Sn-l x in the initial bimatrix game, p(x, y) 
= (pA(x, y), pB(x, y)). Given a set D E x S,-l, we shall write V(D) for the collection 
of the payoffs at the equilibra contained in Dl V(D) = {p(x, y ) : (x,  y) E N n D).  We 
put V = V(Sn-1 x S,J. 

Lemina 5.2 There exists a function T( - )  : (0, a) H (0, a) such that for every t > 0 and 
every (2,  y) E SnP1 x the inequality 

implies either 

 PA(^, Y )  < max PA(X,  Y)  - ~ ( t ) ,  
xES,-1 

or 

pB(zl Y) < max pB(zl Y )  - ~ ( t ) .  
YES,-1 

Proof. If there is no such T(.) ,  then there exist an t > 0 and a sequence (zi, y,) E 
SnP1 x SmP1 for which the inequality 

implies either 

pA(2il Y;) - max PA (x, y;) + 0, 
xES, - I  

or 

pB(Zi,yi) - max pB(%i,y) + 0. 
YES,-1 

For a condensation point (x,  y )  of the sequence (xi, y;) we have 



PA(?, Y )  = max  PA^, Y ) ,  
x€Sn-1 

P B ( ~ , Y )  = max P B ( ~ , Y ) .  
YES",-1 

The last two equalities show that (Z,  y) E N, and consequently, p(2, y) E V. The latter 
contradicts to (5.3). 0 .  

Lemma 5.2 leads to the following intermediate convergence result. 

Lemma 5.3 Let Z0 be a set of uniqueness for initial time to, D c x be closed, 
contain all central paths starting in Z0 at to, and V(D) be finite. Then for every central 
path (x(.) ,  y(.)) starting in Z0 at to there exists a v E V(D) such that 

lim p(x(t), y(t)) = v. 
t--00 

Proof. Let W be the set of all limits lim;,,p(x(t;), y(t,)) with t i  + m. By Theorem 
5.1 W c V. Due to the closedness of the set D, we have W c D. Therefore, W c V(D).  
It remains to show that W is one-element. Assume, to the contrary, that W contains two 
different elements, w l  and w2. We have 

w1 = lim p(x(t;), y(ti)) t i  -+ m ,  
ti-00 

~2 = (!p, P(x(JO, Y (ti)) t + m .  

With no loss of generality, assume ti < Ji < ti+,. Set 

Since V(D) is finite, u > 0. For large i, 

I ~2 - lim  ti), ~ ( f i ) )  I <  u/4; 
(1-00 

consequently, due to the continuity of p(.) and (x(.), y(.)) (see Lemma 4.1, (c)), we have 

for some T; E ( t i ,  J;). Then obviously 

On the other hand, for a convergent subsequence p(x(qJ) ,  y(.riJ)) we have 

which contradicts to (5.5). 

The proof of our first principle result (Theorem 5.2) will use Lemma 5.3 and Lemma 
5.5 given below. The latter is, in turn, preceded by technical Lemma 5.4 (in a sense 
complementary to Lemma 5.2). 



L e m m a  5.4 There exists an increasing function a ( . )  : (0, oo) H (0, oo) such that a(S)  = 
0 and for every S > 0, (2,  y) E x S,-l the inequalities 

imply that 

Lemma follows easily from Lemma 5.2. 

L e m m a  5.5 Let the conditions of Lemma 5.3 be satisfied, and a(-) be defined like in 
Lemma 5.4. Then 

(a) for every t 2 to there is a v(t) E V such that 

(b) it holds that 
lim v(t)  = lim p(x(t) ,  y( t ) ) .  
t+m t+m 

Proo f .  Statement (a) follows from Lemmas 5.1 and 5.4. The  inequality (5.6) implies that 

The  latter together with Lemma 5.3 prove (b). 

T h e o r e m  5.2 Let Z0 be a connected set of uniqueness for initial time to, D c x 
SmP1 be closed, contain all central paths starting in Z0 at  to, and V(D)  be finite. Then 
there exists a u E V(D)  such that for all central paths (x( . ) ,y ( - ) )  starting in Z0 at to it 
holds that 

lim p(x(t),  y( t ) )  = v. 
t+m (5.7) 

Proo f .  Assume the contrary. In view of Lemma 5.3, we conclude that there are two 
central paths, (x l ( . ) ,  yl(.)) and (xl ( a ) ,  yl(.)),  starting at  to, respectively, from certain 
(x:, Y:) E Z0 and (x;, y:) E ZO, which converge to different points, 

w1 # w2. (5.10) 

Let X H (xO(X),yO(X)) : [O, 11 H Z0 be a continuous function such that (xO(0),yO(O)) = 
(xy, yy) and (xO( l ) ,  yO( l ) )  = (x;, y;). Since Z0 is connected, such a function exists. So far 



as (xO(X), yO(X)) lies in the interior of S,-l x Sm-l for all X E [0, 11, there exists a K > 0 
such that 

I $l(tO, (xO(X), Y O ( X ) )  I <  Ii', I $2(t0, (xO(X), Y0(A)) I< Ii' 
for all X E [O,l]. Consequently, there is a tl > to such that the right hand side of (5.6), 
with (xO, yo) = (xO(X), yO(X)) for an arbitrary X E [0, 11, is smaller than u/4; here Y is 
defined by (5.4). By Lemma 5.5 we conclude that for every X E [0, 11.1 and every t > tl 
there is a v(t, A) E V such that 

and 
lim p ( x ( ~ ,  A), Y(T, A)) = lim V(T ,  A); 

7-00 7-00 
(5.12) 

here (x(., A ) ,  y(., A ) )  is the central path starting at to from xO(X), yO(X)). Take a t > t l .  
Due to the continuity of the function X H (x(t, A ) ,  y(t, A ) )  (ensured by Lemma 4.1, (c)), 
there exists an 6 > O such that for every X E [O,1] and all p E [O,1] from B(X, E ) ,  the open 
€-neighborhood of A ,  it holds that 

The latter implies that 

I ~ ( t ,  P) - ~ ( t ,  I <  3 ~ 1 4 ,  

which is equivalent to 
v(t, P) = v(t, 4 

(see (5.4)). Building a finite family of neighborhoods B(Xj, E ) ,  X j  E [O,1] , j = 1, ..., k, 
which covers [ O , l ] ,  

u:.~(B(X~, 6))  = [O,:I.], 

we easily deduce that 
v(t,X) = v(t,O) 

for all X E [0, :l]. In particular, we have 

Now we take into account the arbitrariness of t ,  and referring to (5.12) obtain that 

lim p(x(t, I ) ,  ~ ( t ,  1)) = lim p(x(t, 01, Y(t, 0)). 
t-cx, t-cu 

The latter, in view of (5.8), (5.9), is equivalent to w1 = w2, which contradicts to (5.10). 
The contradiction completes the proof. 

Our general equilibrium selection theorem is justified by Theorem 5.2. 

Theorem 5.3 Let Z0 be a connected set of uniqueness for initial time to, D c x 
SmP1 be closed, contain the central paths starting in Z0 at to, and for every diflerent 
(x l ,  YI), (x2, y2) E N n D it holds that p(xl, yl) # p(x2, y2). Then 

(a) Z0 selects at time to a certain ( 2 ,  y) E N n D ,  that is, for all central paths (x(.), y(.)) 
starting in Z0 at to it holds that 

l im(x(t) ,  ~ ( t ) )  = ( 2 ,  Y) ;  
t-cu 

(5.13) 

(b) if N n Z0 is nonempty, then N n Z0 = ( ( 5 ,  y)) 



Proof. By Theorem 5.2 there exists a v E V such that for every (xO, yo) E Z0 the central 
path (x(.), y(.)) starting at to from (xO, yo) satisfies the equality (5.7). By assumption there 
is a single ( 2 ,  y) E N such that p(x, y) = v. Assume that (5.13) is violated. Referring to 
Theorem 5.1, we conclude that for certain (xO, yo) E Z0 and ti t m it holds that 

By assumption p ( i ,$ )  # v. We obtained a contradiction with (5.7). Conjecture (a) is 
proved. Prove (b). Assume that (b) is untrue, that is, there is a (i, 6) E N n Z0 different 
from (2,y).  Let (x( . ) ,y( - ) )  be the central path starting at to from ( i , i j ) .  Necessarily 
(x(t), y(t))  = (i, 6 ) .  Hence 

which contradicts to (5.7). 

In the remaining part of this section we consider a regular case characterized by the 
folowing 

Condition 5.1 ( Regularity ). For all t 2 0 and all (x ,y )  E int Sn-1 x int Sm-1 the 
matrix H( t ,  y, z )  is invertible; equivalently, 'FI = [0, m )  x int Sn-1 x int SmP1. 

Corollary 5.2 Let Condition 5.1 be satisfied. Then int Sn-l x int Sm-l is a set of 
uniqueness for every initial time to 2 0. 

Proof. Take an arbitrary (xO, yo) E int Sn-l x int Sm-l. By Lemma 4.1 it is sufficient to 
state that there is a single solution of the Cauchy problem (2.13), (2.16). Since H-' (.) is 
Lipschitz in a neighborhood of (xO, yo), there is an interval, on which a solution is defined, 
and at each interval of solution existence a solution is unique. Let [to, t,) (t, 5 m )  be 
a maixium interval where a solution of (2.13), (2.16) is defined. Denote this solution by 
(x(.), y(.)). We must show that t, = m. Assume, to the contrary, that 2, < m. So far as 
(x( t ) ,  y ( t ) )  satisfies the central path equations (2.1 I ) ,  (2.12) for all t E [to, t,), by Lemma 
2.1 we conclude that there is a K > 0 such that xi( t )  2 K, 1 - Cril1 x;(t) 2 K, yj(t) 2 K, 
1 - C,"=;' yj(t) > K for all t E [O,t,]. Since (x(.), y(.)) solves the differential equation 
(2.13), x(.) and y(.)  are bounded in a left neighborhood of t,. Consequently, (x(.), y(.)) is 
Lipschitz in this neighborhood. Therefore there is the limit (x,, y,) = limt-+o+(x(t), y(t))  
belonging obviously to the interior of x Sm-l. Then in a right neighborhood of t ,  
there exists a solution (x,(-), y,(-)) of the equation (2.13) satisfying the initial condition 
(x,(t,), y,(t,) = (x,, y*). Thus the solution (x(-), y(.)) of the Cauchy problem (2.13), 
(2.16) can be extended to the right of t,, which contradicts the definition of t,. 

Let us give several simple conditions sufficient for Condition 5.1. 

Lemma 5.6 Let 

for all s E Rn+m-2 . Then Regularity Condition 5.1 is satisfied. 

Proof. For an arbitrary ( t ,  x, y) E [O, m) x int Sn-1 x int Sm-1, and a rlonzero s E 8 n+m-2 

we have 



implying H(t, x, y)s # 0. In view of the arbitrariness of s ,  we have that H(t, x, y )  is 
invertible. 

Corollary 5.3 If B = -A, then Regularity Condition 5.1 is satisfied. 

Proof. For every s = ( s l ,  s2)  E Rn-' x Rm-l we have 

0 AT T T T T T 

sT ( ) s = s l  A s2 + s2 Bsl  = ( A s )  s2 - (Asl)  s2 = 0, 

that is, (5.14) holds. Now apply Lemma 5.6. 

Remark 5.1 If the initial bimatrix game is zero sum, that is, Bo = -Ao, then we have 
B = -A; the inverse is, generally, untrue. 

We shall call a matrix column disjunct if its every row has a single nonzero element, 
and sign constant in columns if all its nonzero elements in a same column have a same 
sign. The matrices A and B will be called identically column disjunct if they are column 
disjunct and their nonzero elements are placed identically. The matrices A and B will be 
said to be sign diflerent if their corresponding elements either have different signs, or one 
of them vanishes. 

Lemma 5.7 Let A and B be identically column disjunct and sign diflerent. Then Regu- 
larity Condition 5.1 is satisfied. 

Proof. Take arbitrary t 2 0, (x, y )  E int Sn-l x int Sm-1. Suppose that H(t, x, y)  is 
not invertible. Then the linear combination of its rows with some coefficients, not all of 
which vanish, is zero. Denote these coefficients corresponding to rows 1, ..., n - 1, n, ... , 
n + m - 2, respectively, by P1, ..., pn-1, yl ,  ..., ym-l. Consider the submatrices 

(see (2.14)). In HA(t, x, y )  the lower (m - 1) x (m - 1) matrice, -D(y) (see (2.15)), is 
diagonal with negative diagonal elements. Hence it cannot be that pj = 0 for all j .  Let 
J be the (nonempty) set of all j such that pj # 0. Take an j E J and consider the 
j t h  column in the matrix HB(t,  x, y). All nonzero elements in the j th  column of B have 
a same sign. Let them be positive (the opposite case is treated similarly). The single 
nonzero element dj(x) in the j th  column of - D(x) lies in the j t h  row. The sum of all 
elements of the j th  column of t B  with the coefficients yl, ..., 7,-1 plus pjd;(x) is zero. 
Since dj(x) is negative and all elements of the j th  column of B are nonnegative, there 
is a i such that y; # 0, its sign coincides with that of pj, and b > 0 where b is the i th 
element in the j th  column of B. Now consider the ith column of HA(t,  x, y). The ith 
column of tAT coincides with the transposed ith row of tA. Since A is column disjunct, 
this row contains a single nonzero element a The latter, as long as A and B are identically 
column disjunct, is placed like the single nonzero element in the ith row of B, that is, 
b. Consequently, a is placed on the j th  column in A. Coming back to AT, we conclude 
that the single nonzero element, a,  in the ith column of AT lies on the j th  row of this 
matrice. In the ith column of -D(y) the single nonzero element d;(y) belongs to the ith 
row. Therefore pja + y;d;(y) = 0. So far as A and B are sign different and b > 0, we 
have a < 0. Furtheremore, obviously d;(y) < 0. Consequently pj and y; have the different 



signs. However, above we have obtained that their signs coincide. The  contradiction 
completes the proof. 

Under Regularity Condition Theorem 5.3 obviously implies the following corollary. 
We shall say that an equilibrium (2,  y) is globally selected if int Sn-l x int Sm-l selects 
(2, y )  at every time to 2 0, that is, (5.13) holds for every central path (x(.),  y(.)) starting 
at  to in int Sn-l x int Sm-1. 

Corollary 5.4 Let Regularity Condition 5.1 be satisfied, N be finite, and p(xl ,  yl) f 
p(x2, y2) for every diflerent ( x l , ~ ~ ) ,  ( 2 2 ,  y2) E N .  Then 

(a) there is a unique globally selected equilibrium (z, y), 
(b) the intersection N n (int Sn-l x int Sm-l) is either empty, or  contains the single 

element ( 2 ,  y).  

For the 2 x 2 case Corollary 5.4 and Lemma 5.6 imply a simple characterization of 
global equilibrium selection. 

Corollary 5.5 Let n = n = 2 and AB 5 0 (see (3.4), (3.5), (3.1)). Then there is a 
unique globally selected equilibrium. 

An equilibrium lying in int Sn-l x int Sm-l will be called interior; an equilibrium 
which is not interior will be called boundary. The next simple examples show that a 
globally selected equilibrium can be interior or boundary (we refer to  the notations (3.4), 

(3.5)) (3.1)). 

Example 5.1  Let 

We have A = 0, B = -2, AB = 0. The single equilibrium (1/2,1/2) is interior and by 
Corollary 5.5 globally selected. 

Example 5.2 Let 

(a  variant of the Prisoner's Dilemma). We have A = B = 0. The single equilibrium (0,O) 
is boundary and by Corollary 5.5 globally selected. 

6 Select ion of interior equilibrium 

In this section we shall show that if matrices A and B are square and nondegenerate, and 
there is an interior equilibrium (2, y ) ,  then a set of uniqueness selecting (Z,  y) is arbitrarily 
close to the interior of Sn-l x Sm-l provided initial t ime to is sufficiently large (Theorem 
6.1) The  proof is based on Theorem 5.3 and utilizes Lemma 4.1 and a criterion of viability. 

Following Aubin, 1991, we call a set F E 'H viable if for every (to, xO, E F there 
exists a solution (x( . ) ,  y( . ) )  of the Cauchy problem (2.13), (2.16) defined on [to, m )  such 
that ( t ,  x ( t ) ,  y ( t ) )  E F for all t E [to, m) (by Lemma 4.1 the above solution is unique). 
Lemma 4.1, (a), is obviously specified as follows. 

Lemma 6 .1  Let F = [to, m) x Z0 E 'H be viable. Then Z0 is a set of uniqueness for 
initial time to and contains the central paths starting in Z0 at to. 



Let G ( t ,  x ,  y )  stand for the right hand side of the equation (2.13). A standard viability 
criterion reads as follows (see Aubin, 1991, Theorems 1.2.1, 1.2.3). 

Lemma 6.2 A closed set F E 7-t is viable if and only if for every ( t , x ,  y )  E F it holds 
that 

( l , G ( t ,  X ,  Y ) )  E T F ( ~ , x ,  Y ) ;  (6 .1 )  

here T F ( t ,  x ,  y )  is the tangent cone 20 the set F at point ( t ,  x ,  y ) ,  

( T , ( )  E R1 x (Rn-' x Rm- l )  : liminf 
+ P T ,  ( x ,  Y )  + PO, 

= 0} . (6.2) 
P-++O P 

Lemma 6.3 Let n = m, the matrices A and B be invertible, and there exists an interior 
equilibrium (x, y ) .  Then 

(a) it holds that " - f I - l g l  7 Y = - ( A  T ) -1 h2 

(consequently, there are no other interior equilibria) 
(b) for each ( t ,  x ,  y )  E 7-t the right hand side of the central path diflerential equation 

(2.13) is specified into 

Conjecture (a) follows from the definition of an equilibrium and the form of the payoffs 
pA(x ,  y ) ,  pB (x ,  y )  (see (2.3), (2.4)) ;  conjecture ( b )  is easily implied by (a). 

Now we come back to Lemma 6.1 which provides a condition sufficient for Z0  to be a 
set of uniqueness. Using Lemmas 6.2 and 6.3, we shall verify this condition for 

( 1  S i 5 n - 1 ,  1 < j S m - I ) } ,  (6.4) 

where t > 0. We see that as t is sufficiently small, Z0 covers "almost" the whole product 
int Sn-l x int SmP1.  

Lemma 6.4 Let the conditions of Lemma 6.3 be fulfilled, ( 5 ,  y)  be the interior equilib- 
rium, C > 0 be such that 

and Z 0  be defined by (6.4). Then there exists a t ,  2 0 such that for every to 2 t ,  the set 
F = [ to ,  m) x Z 0  lies in  7-t and is viable. 



Proof. The inequalities l / (n-1)  > t > 0 imply that Z0 lies in the interior of Sn-l x Sm-l. 
Taking into account (2.15) we easily obtain that D (z )  and D(y) are bounded on ZO, 

for a certain constant Irl. Hence, for all t greater than a sufficiently large t ,  we have 

where S is an arbitrarily chosen positive value. The second matrix 'on the left hand side is 
nondegenerate, since A and B are such by assumption. Therefore the first matrix on the 
left is nondegenerate too provided 6 is sufficiently small. Assuming the latter, we conclude 
that H ( t ,  y, z )  (see (2.14)) is nondegenerate for all t > t, and (x, y) E ZO. Consequently, 
F C 7-l if to > t,. It remains to show that F is viable. Without loss of generality, we 
assume that for t 2 t, the matrices inverse to those from (6.6) are &-close, 

The latter together with (6.3) imply that 

where with no loss of generality we assume 

l d t ,  2, Y ) l  I S ( t  > t*, (x, y) E zO) .  (6.8) 

Now we shall verify the viability criterion (6.1). Take a ( t ,  x, y) E F and assume to 2 t,. 
Let, first, (x,  y) E int ZO. Then obviously TF(t,x, y) = (1) x Rn-' x Rm-l (see (6.2)), 
and the criterion (6.1) is satisfied. Let (x,  y) belong to the boundary of ZO. From (6.5) 
and (6.4) we easily deduce that the Euclidean ( / (n  - 1)-neighborhood of (x,  y )  lies in ZO. 
In other words, 

(x + (2  - x)y + ( y  - y)) + a E z0 
for all a E Rn-' x Rm-' such that I a I <  ( / (n - 1). Assuming with no loss of generality 
that S < ( / (n  - 1) and taking into account (6.7) and (6.8), we obtain that, in particular, 

So far as Z0 is, obviously, convex and (x, y) E ZO, we have 

Consequently 

( t , x ,  Y )  + (P, P G ( ~ ,  2,  y)/t) E [t, a) x Z0 C F ( p  E [O, I.]), 

yielding the desired inclusion (6.1). 

We are ready to formulate our final result on selection of the interior equilibrium. 



Theorem 6.1 Let n = m, the matrices A and B be invertible, there exist an interior 
equilibrium (?,y), and ( > 0 satisfy (6.5). Then for every e E (O,min{l/(n - 1),(/2) 
there exists a t ,  2 0 such that for every to 2 t ,  the set Z0 defined b y  (6.4) selects the 
interior equilibrium (5, y) at time to.  

Proof. By Lemma 6.4 there exists a t ,  2 0 such that for every to  2 t ,  the set F = 
[ to,  oo) x Z0 lies in I f  and is viable. Therefore by Lemma 6.1 Z0 is a set of uniqueness for 
above to. This set is convex and cosequently connected. Since F is viable, Z0 contains the 
central paths starting in Z0 at to.  Hence by Theorem 5.3 Z0 selects at time to  a certain 
Nash equilibrium belonging to N n Z O .  So far as Z0 lies in the interior of x SmP1, and 
by Lemma 6.3 (5, y) is a single interior equilibrium, N n Z0 contains the single element 
(5, y). Consequently Z0 selects (5, y) at time to. 
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