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Abstract

The problem of water quality management under uncertain emission levels, reaction
rates and pollutant transport is considered. Various performance measures: reliability,
resiliency and vulnerability are taken into account. A general methodology for �nding
a cost-e�ective water quality management program is developed. The approach em-
ploys a new idea of the stochastic branch and bound method, which combines random
estimates of the performance for subsets of decisions with iterative re�nement of the
most promising subsets.
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Managing Water Quality

Under Uncertainty:

Application of a New Stochastic

Branch and Bound Method

Barbara J. Lence

Andrzej Ruszczy�nski

1 Introduction

Devising successful and cost-e�ective water quality management strategies can be dif-
�cult because the inputs to, and the behavior of, the system being managed is never
entirely predictable. Decision-makers do not know what conditions will exist in the
future nor how these conditions will a�ect the impact of their decisions on the envi-
ronment. Vincens et al. [1975] classify uncertainty in modelling hydrologic systems
into three categories: uncertainty in the model structure (Type I uncertainty); un-
certainty in the model parameters (Type II uncertainty); and uncertainty resulting
from natural variability (Type III uncertainty). For water quality systems, uncertainty
in the pollutant transport model, the model reaction rates, and the natural variabil-
ity of emission rates and receiving water conditions, such as streamow, temperature,
and background pollutant loadings from unregulated pollution sources, contribute to
di�culties in predicting the future behavior of the system [Beck, 1987]. This paper
develops an approach for identifying water quality management solutions under Type
II and Type III uncertainty. It is based on an application of the Stochastic Branch
and Bound Method of Norkin et al. [1994] to water quality management, which is
modi�ed based on the solution characteristics of this problem and extended to account
for the performance indicators of reliability, resiliency, and vulnerability. The approach
is demonstrated for management of biochemical oxygen demanding wastes (BOD) and
dissolved oxygen (DO) impacts for an example river basin based on the Willamette
River in Oregon, USA.

With the exceptions of the stochastic linear programming formulation of Sobel
[1965], and the dynamic programming formulations of Lohani and Hee [1983] and
Cardwell and Ellis [1993], there are three commonly used methods for accommodating
input uncertainty in environmental quality management problems, e.g., in surface wa-
ter, groundwater, or air pollution control. These are: chance constrained optimization,
combined simulation and optimization, and, more recently, multiple realization based
approaches. Each of these approaches may be used to develop the trade-o� between
total cost of optimal waste management and system reliability.
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Under the chance constrained optimization approach, constraints that ensure ac-
ceptable environmental quality are formulated as probabilistic relationships. Each of
these probabilistic constraints is assigned an acceptable reliability level that must be
achieved. Then, for a given design set of reliability levels, the model is transformed to
an equivalent deterministic optimization model. Often, the chance constrained mod-
elling approach requires simplifying assumptions about the input information and its
distributions [see, e.g., Lohani and Than, 1978, 1979; Burn and McBean, 1985; Ellis,
et al., 1985; 1986; Ellis, 1987; Fujiwara et al., 1986, 1987; Fuessle, 1987; Wagner and
Gorelick, 1987; Ponnambalam et al., 1990]. Therefore, the chance constrained opti-
mization approach may be limited in terms of its application to complicated practical
problems.

Under the combined simulation and optimization approach for solving environmen-
tal quality management programs under uncertainty, Monte Carlo Simulation of system
conditions is performed and an environmental optimization model is solved for each
realization of such conditions. The objective function values generated, e.g., the sys-
tem total cost, are then ranked, a cumulative probability distribution of the solutions
based on the objective function values and their ranks is developed, and the cumulative
distribution is used to evaluate the trade-o� between the objective and the probabil-
ity of environmental quality violation [see, e.g., Fuessle et al., 1987; Burn, 1989]. For
typical environmental quality management problems, accurate ranking of the objective
function values may be complicated because there is not necessarily a unique corre-
spondence between the optimal value of the objective function and the corresponding
vector of decision variables. Therefore, for di�erent sets of model inputs, the same
optimal value of the objective function may be obtained, but the optimal vectors of
decision variables and the corresponding probabilities of ambient standard violation
may be di�erent. For some environmental quality management systems then, this ap-
proach may produce ine�cient decisions at some reliability levels [see, e.g., Fuessle et
al., 1987; Takyi and Lence, 1994].

In a multiple realizations model, a number of possible scenarios of the stochastic
input information are generated in a Monte Carlo Simulation and incorporated into a
single optimization model. Wagner and Gorelick [1989] introduce this approach but
do not indicate how the trade-o� relationships between management decisions and re-
liability may be obtained. Morgan et al. [1993] develop a multiple realizations model
that allows a certain proportion of the total number of Monte Carlo Simulations to
fail. The proportion of simulations allowed to fail is considered to be an estimate of
the risk of not providing adequate environmental protection. This approach results in
a large optimization model and exacts a large computational burden. While e�orts to
reduce the computational burden of a multiple realizations model have been developed
[see, e.g., Ranjithan et al., 1993; Ritzel et al., 1994; and Takyi and Lence, 1996], this
approach, as well as the chance constrained programming and combined simulation
and optimization approaches, cannot be used to estimate the reliability under all types
of input uncertainty, e.g., under cases when the emission levels may also vary stochas-
tically, and becomes increasingly di�cult to apply as the number and type of random
inputs increases.

In general, the frequency, duration, and magnitude of violations of a given environ-
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mental quality standard are indices of pollution control performance that represent the
reliability, resiliency, and vulnerability, respectively, of the management decision. The
reliability criterion describes how likely the environmental standards may be achieved.
The resiliency and the vulnerability criteria give indications of the degree to which
the system is expected to recover from a failure sojourn and the severity of the con-
sequences of environmental quality violations, respectively. Most studies that account
for uncertainty in environmental management modelling include reliability, but not
these other important indices. However, each of these are measures of system per-
formance that may o�er important insights and information to decision-makers when
formulating successful environmental quality programs. The importance of these per-
formance indicators is illustrated for water resources management systems by Glanz
[1982]; Hashimoto et al. [1982a, 1982b]; and Fiering [1982a, 1982b, 1982c, and 1982d].

In the following section, the general water quality management model is developed
for cases with stochastic input information. In this model emission levels, as well as
factors that a�ect pollution transport and impacts, may be random. Next, the gen-
eral model is formulated as a probabilistic problem which maximizes reliability and
resiliency and minimizes vulnerability under a total cost constraint. The decision vari-
ables are the discrete design waste treatment levels of the dischargers in the system.
Given a speci�ed set of decision variable values, it is shown that the objective func-
tion for this model may be estimated using Monte Carlo Simulation. In Section 4,
the Stochastic Branch and Bound Method of Norkin et al. [1994] is described. The
method is based on a Branch and Bound algorithm in which branches, or partitions,
are subsets of discrete decision variables for waste treatment levels and the bounds
are estimates of the upper and lower limits of the reliability, resiliency, and vulnera-
bility, for a given branch. Next, the approach for estimating the bounds for a given
set of decision variables is presented. In Section 6 the Stochastic Branch and Bound
Method is demonstrated for water quality management using a case study based on the
Willamette River in Oregon. Finally, a summary of the work is presented, including
insights drawn from the case study, suggestions for future applications, and a descrip-
tion of the research in progress that is examining technical questions related to the
implementation of the Stochastic Branch and Bound Method [see, H�aggl�of, 1996].

2 The water quality management model

2.1 Stationary model

Consider emission sources i = 1; : : : ;m, pollutants l = 1; : : : ; L and monitoring points
j = 1; : : : ; n. For every source i there is a �nite set Xi of available treatment technolo-
gies. Each technology xi 2 Xi is characterized by the following functional information:

ci(xi) - cost, including the capital and operation and maintenance costs of performing
the given technology;

el
i(xi; !) - random emission level of pollutant l; l = 1; : : : ; L.

Here ! denotes an elementary event in some probability space (
;F ; IP). The random
emission level accommodates the fact that biological, chemical and physical treatment
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technologies face stochastic inows and operational variability even under the most
stable conditions.

The pollutants are transferred from the sources to the monitoring points. Given
some emissions elj at the sources, the ambient water quality Sl

j for pollutant l at the
monitoring point j can be expressed as

Sl
j(!) = Al

j(e
l
1; : : : ; e

l
m;!): (2:1)

Transfer functions Al
j describe the e�ect of reactions involving pollutant l that take

place between the pollution sources and the monitoring points along the stream. They
relate the pollution abatement decisions to the instream water quality levels. These
transfer functions are random, depend on ! and the pollutants being emitted, and are
developed based on pollutant transport simulation models, pollutant characteristics,
streamow, stream velocity, stream temperature, reaction rates, and background water
quality levels. They may be linear or nonlinear with respect to the emission levels,
depending on the pollutant simulation model used. For simulation models that are
linear with respect to the pollutant emission levels (e.g., the Streeter-Phelps equation or
the Camp-Dobbins modi�cation of the Streeter-Phelps BOD-DO model), the transfer
functions are represented by a matrix of constants that typically represent the impact
obtained by simulating water quality improvement along the river per unit change in
the emission levels, for a given set of stream conditions.

When several pollutants are being managed, the transfer function increases in com-
plexity, may be nonlinear, and may be di�cult to predict. The environmental e�ects
of several pollutants in combination are classi�ed in Beavis and Walker [1979] as non-
interactive and interactive. Noninteractive pollutants exhibit independent e�ects on
stream water quality and interactive pollutants exhibit combined e�ects on stream wa-
ter quality. Interactive pollutants are further classi�ed as additive, less-than-additive,
more-than-additive, and antagonistic, i.e., pollutants that work against each other to
reduce the total impact of their combined emissions [Gaddum, 1968; Sprague, 1970].
The resultant transfer function, in the interactive case, may be di�cult to predict,
because such functions are dependent on concentrations of more than one pollutant
and may vary in form under di�erent emission and background concentration levels.

A water quality management program is de�ned as a selection of technologies x =
(x1; x2; : : : ; xm) such that xi 2 Xi; i = 1; 2; : : : ;m. It is characterized by its cost

c(x) =
mX
i=1

ci(xi)

and ambient quality levels at monitoring points j = 1; : : : ; n:

Sl
j(x; !) = Al

j(e
l
1(x1; !); : : : ; e

l
m(xm; !);!): (2:2)

Note that the quality levels associated with a control policy x are random variables,
because of the uncertainty of the emissions due to random uctuations in plant opera-
tions, uncertainties in the inputs to the transfer functions, and uncertainty in the form
of the transfer functions themselves.
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2.2 Nonstationary model

Adding the time dimension provides a more exact description of the relations between
emissions and ambient quality levels. In such a model, emissions are stochastic pro-
cesses eli(xi; !; t) where t 2 f0; 1; 2; : : :g denotes discrete time intervals. Then, clearly,
the ambient quality levels at monitoring points are stochastic processes, too. Values of
their realizations at each time interval t can be written as

Sl
j(x; !; t) = Al

j(e
l
1(x1; !); : : : ; e

l
m(xm; !);!; t); (2:3)

where Al
j is a causal operator, i.e., such an operator whose values depend on the past

emission levels eli(xi; !; � ) for � 2 f0; 1; : : : ; tg, but not on the future ones.
In the next section, a probabilistic form of the water quality management problem

is given which has an objective function based on a combination of performance indi-
cators, i.e., reliability, resiliency, and vulnerability, and maintains a limit on total cost,
or budget. Although the objective function value cannot be calculated analytically for
realistic problems, for a speci�ed set of decision variable values, Monte Carlo Simula-
tion may be used to estimate it. This estimation approach is an integral part of the
Stochastic Branch and Bound Method presented in Section 4.

3 Problem formulations

Assume that there are some quality standards �Sl
j for pollutants l at monitoring points

j. Let us de�ne the state of the system as the vector S = (Sl
j) j=1;::: ;n

l=1;::: ;L
and the set of

satisfactory states:

G = fS 2 IRnL : 0 � Sl
j �

�Sl
j ; j = 1; : : : ; n; l = 1; : : : ; Lg: (3:1)

One would like to have water quality levels Sl
j below the standards �Sl

j, i.e.,

S(x; !; t) 2 G; t = 1; : : : ; T; (3:2)

but requiring that this is satis�ed for all possible events ! 2 
 may be extremely con-
servative and could lead to a very expensive worst-case design. To arrive at meaningful
and practically useful formulations typically water quality management programs are
designed to exploit the probabilistic nature of the problem. Sets of management deci-
sions are selected based on measures of system performance that indicate the extent of
environmental damage under critical hydrological and background water quality condi-
tions. Hashimoto et al. [1982a] discuss reliability, resiliency, and vulnerability applied
to water resources systems. They derive mathematical expressions for these criteria
and utilize the expressions to evaluate the possible performance of water supply condi-
tions for a water supply reservoir. For water quality systems, these measures indicate
the acceptable frequency, duration, and magnitude of water quality violation. They
may be designed to reect our knowledge of the damage function for the ecosystem.
That is, they may reect what we know about the acceptable e�ects of frequent water
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quality violations, of di�erent lengths, and at di�erent degrees of contamination, on
species in a region.

Reliability

Given the quality standards �S, de�ne the reliability of the system as the probability
of the event that the state remains in the set of satisfactory states in the planning
horizon:

R1(x) = IP fS(x; !; t) 2 G; t = 1; : : : ; Tg : (3:3)

This allows us to formulate the reliability maximization problem:

max
x2X

R1(x) (3:4)

subject to
c(x) � �c; (3:5)

where �c is a prescribed budget level. By varying �c one can develop the cost-reliability
trade-o�s for water quality management.

Reliability under violation length limit

The notion of reliability can be relaxed by allowing violations of a short duration. For
example, if violations of only one period in length are allowed, the following perfor-
mance measure may be introduced:

R2(x) = IP fS(x; !; t) 2 G or S(x; !; t+ 1) 2 G; t = 1; : : : ; T � 1g : (3:6)

In other words, R2(x) is the probability that a failure sojourn will not last more than
one period.

Resiliency

The characteristic of resiliency of the system measures the ability of the system to
recover from failure states and can be de�ned as the conditional probability that
S(x; !; t+ 1) 2 G, if S(x; !; t) 62 G. To be more precise, let

T (x; !) = f1 � t < T : S(x; !; t) 62 Gg

and de�ne resiliency as

R3(x) = IP fS(x; !; t+ 1) 2 G for all t 2 T (x; !) j T (x; !) 6= ;g : (3:7)

Thus the resiliency may be described as the system's average recovery rate and equiv-
alently de�ned as given in Hashimoto et al. [1982a] as:

R3(x) =
R2(x)

1�R1(x)
: (3:8)
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It is clear that in a similar way one can de�ne functions that express the ability of the
system to recover from failures within any speci�ed time period.

Vulnerability

Classical water quality management has relied on setting strict standards and designing
management programs to meet these standards with some level of reliability. This
approach assumes that below some allowable standard the water quality of the system
is acceptable, and that above that standard, the system is in�nitely damaged. It
simpli�es the management problem, but may not represent what happens in reality.
In some river systems, a hierarchy of water quality standards may be more acceptable
for describing the allowable degree of water quality degradation. Furthermore, the
frequency and duration of allowable water quality violation may be di�erent for di�erent
levels of contamination, e.g., the allowable frequency and duration of water quality
violation may decrease with increases in water quality standard levels, as is the case
with U.S.E.P.A. chronic and acute ambient standards for ammonia nitrogen levels
[U.S.E.P.A., 1992].

Another possibility of de�ning performance measures is to introduce a hierarchy of
quality standards

�S � �S(1)
� �S(2)

� : : : � �S(H)

and the corresponding family of satisfactory states

G
(1)

� G
(2)

� : : : � G
(H);

where
G
(h) = fS 2 IRnL : 0 � S � �S(h)

g:

Let us de�ne the events:

�(1)(x) =
n
! : S(x; !; t) 2 G

(1); t = 1; : : : ; T
o
;

�(2)(x) =
n
! : S(x; !; t) 2 G

(2); t = 1; : : : ; T
o
n�(1)(x);

� � �

�(H)(x) =
n
! : S(x; !; t) 2 G

(H); t = 1; : : : ; T
o
n�(H�1)(x):

The performance measure (negatively related to the vulnerability) of the system can
be de�ned as

V (x) =
HX
h=1

whIPf�
(h)(x)g:

If the coe�cients wh, h = 1; : : : ;H, satisfy the inequalities: w1 � w2 � : : : � wH , this
expression for vulnerability is the opposite of the classical expression for vulnerability
given in Hashimoto et al. [1982a], and may be maximized as a performance indicator
for certainty of system outcome.

In general, all these performance measures may be included into the the optimization
problem (3.4)-(3.5) by formulating a composite objective:

max
x2X

[F (x) = 1R1(x) + 2R2(x) + 3R3(x) + 4V (x)] (3:9)
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subject to
c(x) � �c; (3:10)

where 1; : : : ; 4 are some positive weights. However, it is likely that the presence of
one objective may eliminate the need for another. For example, if resiliency, R3 , is
considered to be an important objective, the inclusion of R2 may not be necessary.

The main di�culty associated with the stochastic formulation (3.9)-(3.10) is that
it involves functions de�ned as probabilities of some events. The values of these func-
tions cannot be calculated analytically for realistic models. For example, calculating
reliability would require evaluating a multidimensional integral over the set implicitly
de�ned by inequalities (3.2), potentially involving nonlinear models of emissions and
transfer. Except for some special cases, e.g., models with one source and one receptor
and with linear transfer functions, the only tool available for identifying reliability is
simulation. In the simulation approach, for selected technologies x1; : : : ; xm, one can
execute the emission and transfer function models with some randomly drawn uncertain
parameters ~! and evaluate the function

�1(x; ~!) =

(
1 if S(x; ~!; t) 2 G; t = 1; : : : ; T
0 otherwise.

(3:11)

Clearly, the reliability is the expected value of this function

R1(x) = IEf�1(x; !)g: (3:12)

Theoretically speaking, the reliability may be estimated by the Monte-Carlo method

R1(x) �
1

N

NX
s=1

�1(x; !
s);

where !1; : : : ; !N are independent observations (realizations) of !. However, the num-
ber of simulations N necessary to evaluate the reliability at only one management pro-
gram x with a su�cient accuracy can be very large. The objective of the water quality
management problem is to �nd the best set of waste treatment decisions among all
possible options, which requires that the objective be evaluated for many candidate
solutions, and makes a straightforward simulation of the combinatorial problem com-
putationally burdensome. In this work, an approach is developed that is capable of
determining the best water quality management program without examining all pos-
sible programs and without calculating the objective function value (such as, e.g., the
reliability) for each of them exactly. The approach adapts the Stochastic Branch and
Bound Method of Norkin et al. [1994] to the water quality management problem. At
each partition, or branch, the upper and lower bounds of the system reliability may be
estimated for subsets of discrete decision variables for waste treatment levels.

Similarly, the values of other performance measures may be estimated using Monte
Carlo Simulation. For example, in the case of (3.6), the function �1 may be replaced
by

�2(x; ~!) =

(
1 if S(x; !; t) 2 G, or S(x; !; t+ 1) 2 G; t = 1; : : : ; T � 1
0 otherwise.
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Again,
R2(x) = IEf�2(x; !)g: (3:13)

and we have the Monte-Carlo estimate

R2(x) �
1

N

NX
s=1

�2(x; !
s):

4 The stochastic branch and bound method

In this section the Stochastic Branch and Bound Method of Norkin et al. [1994] is de-
scribed. The method is based on the classical integer programming Branch and Bound
algorithm in which the partitions, or branches, are based on subsets of discrete decision
variables for waste treatment levels. Consistent with the water quality management
problem in (3.9)-(3.10), the bounds of the algorithm are estimates of the reliability,
resiliency, and vulnerability, under a given budget constraint.

The main idea of the method is to split the set of all possible waste abatement
strategies X = X1 �X2 � : : :�Xm into disjoint subsets

Xp = X
p
1 �X

p
2 � : : :�Xp

m; p 2 P

such that
S
p2P X

p = X. For each subset Xp, consider the maximization problem
resulting from (3.9)-(3.10):

max
x2Xp

F (x) (4:1)

c(x) � �c: (4:2)

Let F̂ (Xp) denote the maximum objective value attainable within Xp (the optimal
value of (4.1)-(4.2)). If, for some Xp and xq 2 Xq, F̂ (Xp) < F (xq); then the optimal
solution of the original problem cannot lie in Xp. It is su�cient to look for the optimal
solution in the subsets other than Xp.

Obviously, problem (4.1)-(4.2) is almost as di�cult as the original one (3.9)-(3.10).
However, by applying the Stochastic Branch and Bound Method, the subproblems
(4.1)-(4.2) need not be solved exactly. It is su�cient to generate for these subproblems
(by simulation) some random variables �N (Xp) and �N (Xp) that represent (in some
stochastic sense) the bounds for F̂ (Xp). Here N is an index by which we can control
the accuracy of these estimates (usually the number of simulations involved).

We make the following assumptions.

(A1) For every subset Xp � X

lim
N!1

�N (Xp) � F̂ (Xp):

(A2) If Xp is a singleton, i.e., it contains only one point xp, then

lim
N!1

�N (Xp) = F (xp):
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(A3) For every subset Xp � X

lim
N!1

�N (Xp) � F̂ (Xp):

(A4) If Xp is a singleton, i.e., it contains only one point xp, then

lim
N!1

�N (Xp) = F (xp):

In the above assumptions the limits are understood in the sense of almost sure conver-
gence.

The approach by which the stochastic upper bounds �(Xp) and lower bounds �(Xp)
are generated is given in Section 5. The stochastic upper bounds �(Xp) are used to
select the record set: that is the Xp for which the upper bound, �(Xp), is the largest.
The record set, as the most promising set of possible programs, is partitioned into
smaller subsets, and new stochastic bounds are evaluated, etc., until a singleton is
achieved. At each stage, an approximate solution ~x is selected as an element of the set
with the largest lower bound �(Xp).

Since the bounds are random, the record set is random; consequently, all objects
generated by the method are random. For brevity, the argument ! is dropped from
the random indices N , random partitions P and random sets.

The steps in the Stochastic Branch and Bound Method are as follows:

Initialization. Form initial partition P0 = fXg. Calculate the bounds �0 = �N0(X)
and �0 = �N0(X). Set k = 0.

Partitioning. Select the record subset

Y k
2 Argmaxf�k(X

p) : Xp
2 Pkg

and an approximate solution

xk 2 Xk
2 Argmaxf�k(X

p) : Xp
2 Pkg :

If the record subset is a singleton, then set P 0k = Pk and go to the Bound
Estimation step. Otherwise construct a partition of the record set, P 00k (Y

k) =
fY k

i ; i = 1; 2; : : : ; nkg, where nk is the number of partitions of Y k. De�ne the
new full partition

P
0

k = (Pk n Y
k) [ P 00k (Y

k):

The elements of P 0k will also be denoted by Xp.

Bound Estimation. For all subsetsXp 2 P 0k select some estimates �k(X
p) = �Nk(X

p)(Xp)
and �k(Xp) = �Nk(X

p)(Xp) for F̂ (Xp).

Deletion. Clean partition P 0k of infeasible subsets, de�ning

Pk+1 = P
0

k n fX
p : min

x2Xp
c(x) > �cg:

Set k := k + 1 and go to Partitioning.
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If the estimates are exact, i.e., if �k(Xp) = L(Xp) and �k(Xp) = U(Xp), then at the
Deletion Step one can also delete all sets Xp for which �k(Xp) < �k(Xp).

Let X� denote the set of optimal solutions of the original problem. The main result
of [Norkin et al., 1994] is the following convergence theorem.

Theorem 4.1. Assume that the indices Nk(Xp) are chosen in such a way that if a

subset X 0 2 Pk for in�nitely many k, then

lim
k!1

Nk(X
0) =1 a:s: (4:3)

Then with probability one there exists an iteration number k0 such that for all k � k0

(i) the record sets Y k are singletons and Y k � X�;

(ii) the approximate solutions xk 2 X�.

This is an asymptotic result, assuming that the method is run in�nitely long. In prac-
tice, of course, one has to stop the calculation after some �nite time. The experience
gained in Norkin et al. [1994] suggests that stopping after achieving the �rst singleton
is a reasonable strategy; it leads to a good solution, and guarantees �nding the best
solution if the method is run in a regenerative fashion.

Di�erent approaches can be used to determine the most e�cient way to partition
the initial and subsequent sets of waste abatement strategies. Various partitioning
techniques are examined in H�aggl�of [1996], but the technique applied here, in a pre-
liminary analysis of the application of the Stochastic Branch and Bound Method for
water quality management of BOD waste e�uents, is the heuristic ranking method
proposed by H�aggl�of. This method determines the ranked importance of the emission
sources for improving the probability that the water quality goals are met. The rank
of an emission source is determined by examining the active constraints from the linear
programs used to generate the upper bounds. The rank of the emission source is the
rank of its ratio between the transfer function values in the active constraints and the
cost for technology improvement, compared to all other emission sources.

5 Stochastic bounds

The applicability and the e�ciency of the Stochastic Branch and Bound Method out-
lined in the previous section depend on the quality of the random upper and lower
bounds �N (Xp) and �N(Xp). The purpose of this section is to decribe methods for
generating such bounds for our problem.

5.1 Reliability bounds

Beginning with the simpler case of lower bounds, for a set Xp choose a point xp 2 Xp

such that c(xp) � �c (if such a point does not exist, the set Xp is deleted at the Deletion
Step). Then de�ne

�Nq (X
p) =

1

N

NX
s=1

�q(x
p; !s); q = 1; 2; (5:1)
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where !1; : : : ; !N are independent observations of !. These random variables are
stochastic lower bounds for the values of the functions Rq(x) in Xp, q = 1; 2. In-
deed, from (3.12) and (3.13) and the law of large numbers it follows that assumptions
(A3) and (A4) are satis�ed.

Generating stochastic upper bounds is more involved. The key observation is the
inequality:

R̂1(X
p) = max

x2Xp

c(x)��c

IP fS(x; !; t) 2 G; t = 1; : : : ; Tg

� IP
n
9x 2 Xp : c(x) � �c; S(x; !; t) � �S; t = 1; : : : ; T

o
: (5.2)

Let us generate a random estimate �N (Xp) of the right hand side of the above inequality.
Consider the problem with a �xed event !

min
x2Xp

c(x) (5:3)

S(x; !; t) � �S; t = 1; : : : ; T: (5:4)

and denote by ĉ1(Xp; !) its optimal value. The following equality holds:

IP
n
9x 2 Xp : c(x) � �c; S(x; !; t) � �S; t = 1; : : : ; T

o
= IPfĉ1(x; !) � �cg: (5:5)

De�ne the function

 1(X
p; !) =

(
1 if ĉ1(Xp; !) � �c
0 otherwise.

(5:6)

Combining (5.2) and (5.5) yields

R̂1(X
p) � IEf 1(X

p; !)g:

Therefore, for independent observations !1; : : : ; !N of !, the random variables

�N1 (X
p) =

1

N

NX
s=1

 1(X
p; !s) (5:7)

satisfy the relations:
IEf�N1 (X

p)g � R̂1(X
p) (5:8)

and, by the law of large numbers,

lim
N!1

�N1 (X
p) = IEf�N1 (Xp)g; a.s. (5:9)

Thus, (5.7) is a stochastic upper reliability bound satisfying (A1) and (A2).
The bounds (5.7) are relatively easy to calculate. Indeed, for a �xed ! = !s

problem (5.3)-(5.4) is a deterministic cost minimization problem that can be solved by
mathematical programming methods.

A stochastic upper bound for the reliability with a violation length limit (3.6) can
be calculated in a similar way. The problem (5.3)-(5.4) is replaced by

min
x2Xp

c(x) (5:10)

12



S(x; !; t) � �S or S(x; !; t+ 1) � �S; t = 1; : : : ; T � 1; (5:11)

its optimal value ĉ2(Xp; !) is used to de�ne the indicator function  2 (similarly to
(5.6)), and one de�nes

�N2 (X
p) =

1

N

NX
s=1

 2(X
p; !s): (5:12)

Again,
IEf�N2 (X

p)g � R̂2(X
p) (5:13)

and, by the law of large numbers,

lim
N!1

�N2 (X
p) = IEf�N2 (X

p)g; a.s. (5:14)

so (5.12) is a stochastic upper bound for R2.
While the estimates of the bounds on reliability are an integral step in the Stochastic

Branch and Bound Method, they may also be useful for other general applications,
such as for determining the estimated reliability of any management program. This
would allow decision-makers to estimate benchmarks for water quality improvement by
estimating the reliability of an existing management scheme, or one that is currently
being proposed for the system.

5.2 Resiliency bounds

Lower and upper bounds on the reliabilitymeasures R̂q(Xp), q = 1; 2, together with the
expression (3.8) can be used to de�ne stochastic resiliency bounds. Using the bounds
(5.1) calculated at the same point xp 2 Xp we can construct the stochastic lower bound

�N3 (X
p) =

�N2 (X
p)

1� �N1 (Xp)
:

Indeed,

lim
N!1

�N3 (X
p) =

R2(xp)

1�R1(xp)
= R3(x

p) � R̂3(X
p);

so (A3) and (A4) are satis�ed.
In a similar way one de�nes a stochastic upper bound

�N3 (X
p) =

�N2 (X
p)

1� �N1 (Xp)
:

Since �Nq (X
p) satisfy (5.9) and (5.14),

lim
N!1

�N3 (X
p) �

R̂2(Xp)

1� R̂1(Xp)
� R̂3(X

p):

In fact, if the observations used to generate �N1 (X
p) and �N2 (X

p) are independent, we
have a stronger result: for every N

IEf�N3 (X
p)g � R̂3(X

p):
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Indeed, by the independence of �N1 (Xp) and �N2 (X
p),

IEf�N3 (X
p)g = IEf�N2 (X

p)g � IE

(
1

1� �N1 (Xp)

)
: (5:15)

Let us estimate both factors at the right hand side of (5.15). The estimate for the �rst
factor is provided by (5.13). For the second factor, since the function '(y) = 1=(1� y)
is convex in (0,1), from Jensen inequality and (5.8) one obtains

IE

(
1

1� �N1 (Xp)

)
�

1

1 � IEf�N1 (Xp)g
�

1

1� R̂1(Xp)
:

Therefore

IEf�N3 (X
p)g �

R̂2(Xp)

1� R̂1(Xp)
;

as required.

5.3 Vulnerability bounds

The stochastic reliability bounds can be generalized in a straightforward way to obtain
vulnerability bounds. To obtain a lower bound, de�ne for h = 1; : : : ;H the indicator
functions

�(h)(x; !) =

(
1 if ! 2 �(h)(x)
0 otherwise.

Then for a selected xp 2 Xp and independent observations !1; : : : ; !N of !, the random
variables

�NV (X
p) =

1

N

NX
s=1

HX
h=1

wh�
(h)(xp; !s)

are stochastic lower bounds on the vulnerability function. This follows directly from
the law of large numbers.

To construct a stochastic upper bound, consider the deterministic problems (with
a �xed !)

min
x2Xp

c(x) (5:16)

S(x; !; t) � �S(h); t = 1; : : : ; T; (5:17)

for the family of quality standards h = 1; : : : ;H. Let ĉ(h)(Xp; !) denote its optimal
value. De�ne for h = 1; : : : ;H the functions

 (h)(Xp; !) =

(
1 if ĉ(h)(Xp; !) � �c
0 otherwise,

By the ordering of the quality standards,  (h) �  (h+1), h = 1; : : : ;H � 1. De�ne

�(h)(Xp; !) =  (h)(Xp; !)�  (h�1)(Xp; !);
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where we set  (0)(Xp; !) = 0. Then, in an identical way as in Section 5.1, one obtains
for all h = 1; : : : ;H the relations

max
x2Xp

c(x)��c

HX
h=1

whIP
n
�(h)(x)

o
�

HX
h=1

whIE
n
�(h)(Xp; !)

o
:

Indeed, by selecting x after the event ! is known, one can only improve the quality
standard (move to the inner subset), which by the monotonicity of the weights implies
the above inequality.

Therefore, for independent observations !1; : : : ; !N of !, the random variables

�NV (X
p) =

1

N

NX
s=1

HX
h=1

ch�
(h)(Xp; !s);

are stochastic upper bounds on the vulnerability function.

5.4 Using multiple scenarios

If the probability of the event of interest is very close to one the Monte Carlo estimates
of the form (5.7) (for the case of reliability) will frequently be equal to one for small
N . A large number of observations will be necessary to obtain di�erent estimates for
di�erent subsets.

One way to overcome this di�culty is the use of many observations not only in the
averaging formula (5.7) (or similar) but within the key inequality of the form (5.2).
Let us illustrate this idea on the example of upper bounds for the reliability.

Let !� , � = 1; : : : ;M be independent identically distributed observations of !. One
has the following extension of (5.2):

h
R̂1(X

p)
iM

= max
x2Xp

c(x)��c

h
IP
n
Sj(x; !; t) � �Sj; j = 1; : : : ; n; t = 1; : : : ; T

oiM

= max
x2Xp

c(x)��c

MY
�=1

h
IP
n
Sj(x; !

� ; t) � �Sj; j = 1; : : : ; n; t = 1; : : : ; T
oi

� IP
n
9x 2 Xp : c(x) � �c; Sj(x; !

�; t) � �Sj;

j = 1; : : : ; n; t = 1; : : : ; T; � = 1; : : : ;Mg : (5.18)

For given scenarios !� the veri�cation of the event at the right hand side of (5.18) is
equivalent to the veri�cation of whether the optimal value ĉ1 of the problem

min
x2Xp

c(x) (5:19)

Sj(x; !
� ; t) � �Sj ; j = 1; : : : ; n; t = 1; : : : ; T; � = 1; : : : ;M; (5:20)

is below �c. One can then de�ne the characteristic function  1(Xp; !1; : : : ; !M ) as in
(5.6) and obtain h

R̂1(X
p)
iM

� IEf 1(X
p; !1; : : : ; !M)g:
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The resulting Monte-Carlo estimate takes the form

�MN
1 (Xp) =

"
1

N

NX
s=1

 1(X
p; !s;1; : : : ; !s;M )

#1=M
; (5:21)

where !s;� , s = 1; : : : ; N , � = 1; : : : ;M , are i.i.d. observations of !.
Similar use of multiple scenarios can be made for estimating R2, resiliency and

vulnerability.
This approach was employed in the preliminary analysis of the application of the

Stochastic Branch and Bound Method for management of BOD emissions on the
Willamette River which is described in the following section.

6 Application of the Stochastic Branch and Bound Method for Managing

BOD Discharges in the Willamette River

The Stochastic Branch and Bound Method is applied here for managing point sources
of BOD wastes and their impacts on instream DO for an example river basin based
on the Willamette River in Oregon, USA. The 298 km Middle Fork of the river is an-
alyzed and receives waste emissions from eight major tributaries and ten BOD waste
dischargers. Cost data (in 1978 $US), waste load characteristics of the dischargers,
discharger locations, stream ow and temperature data, and water quality simulation
model inputs, such as decay rates, and velocity and reaeration rate versus ow relation-
ships were based on Takyi and Lence [1996]. All emission sources have waste treatment
options available that remove BOD at removal levels of between 35% and 95%, and
these may be selected in discrete increments of 5%.

The water quality model used to develop the transfer functions is based on the
Camp-Dobbins modi�cation of the Streeter-Phelps equation for the coupled reaction
of BOD decay and reaeration and its e�ect on DO. Benthic oxygen demand and the
background DO de�cit are assumed to be zero. The 7-day average low ow and the
highest mean monthly temperature for the months of June through September are used
for this analysis. The transfer functions used in the water quality management model
are based on the water quality simulation model and describe the unit decrease in DO
(usually in mg/l) at monitoring points in the stream as a result of unit increases of
BOD e�uent (in mg/l or kg/day) at the emission sources. They are linear functions of
the waste treatment levels of the emission sources. The river segment is divided into
18 reaches and thirty-�ve monitoring points are used.

The goal of the simple least cost water quality management model for BOD-DO
is to minimize the total cost of waste treatment while meeting lower bounds on the
level of allowable DO in the stream. In this case, the quality standards described in
Section 3 are lower bounds on water quality. This requires a change in the sign of the
inequality in (3.1), but the application of the Stochastic Branch and Bound Method
remains the same.

The stochastic inputs to the water quality simulation model are the 7-day averaged
low ows at �ve gauging stations in the river, the highest monthly mean temperatures
in the river, based on the Harrisburg gauging station data, and the stream velocities
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and reaction rates for each reach of the river under the varying streamow conditions.
For each simulation used in the calculation of the bounds, a random 7-day averaged
low ow and stream temperature are generated based on the two-parameter lognormal
distributions for the mean monthly temperature and for the 7-day averaged low ow,
respectively. The stream velocity and reaeration rates are computed based on the
generated ows and functional relationships between velocity and ow and reaeration
rate (at 20� C) and ow, respectively, and normally distributed zero mean noise terms,
as described in Takyi and Lence [1996].

In this preliminary demonstration, the Stochastic Branch and Bound Method is
applied for maximizing reliability, R1 , for maintaining a DO water quality standard
of 8.0 mg/l. The allowable total cost (i.e., capital and operating costs) for the entire
river basin is limited to no more than 20 million $US/year. The adequate number of
simulations required for each bound calculation depends on the complexity of the water
quality management problem and on the quality of the uncertain input information.
For this example, the number of simulations used is 500, which was determined to
be adequate by gradually increasing the number of simulations until the statistical
properties of the input and output information converged for an experimental trial.
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Figure 6.1: Cost vesus reliability of meeting the 8.0 mg/l standard.

Figure 6.1 shows the total cost of waste treatment, above the cost of primary
treatment (i.e., 35% BOD removed) versus reliability of meeting the 8.0 mg/l standard.
It may be used by decision-makers in selecting the best choice of management solution
given their preferences for the objectives of e�ciency and certainty of system outcome.

The Stochastic Branch and Bound Method results in an e�cient use of computa-
tional resources. The number of iterations (splittings) needed to obtain the solution
(understood here as the �rst singleton), for one set of simulations and varying budget
level, is illustrated in Figure 6.2. We see that for reliability levels very close to one, less
computational e�ort is required to reach the �rst singleton, because it is more di�cult
to di�erentiate the quality of di�erent subsets on the basis of random simulations. For
this reason the quality of the singleton obtained is not good in this case. The use of
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Figure 6.2: The number of iterations of the stochastic branch and bound method for
di�erent cost-reliability levels.

the multiple realization approach improves the quality of the singleton (see H�aggl�of
[1996]), but still more research is needed to �nd a proper approach to the case of a
very high reliability. The total single CPU time needed to solve a problem was in the
range of two hours on a SUN Sparc Server 1000 with two CPU's and 128MB mem-
ory. Takyi and Lence [1996] present results similar to Figure 6.1 for a two-tiered DO
standard of 7.2 and 8.1 mg/l in di�erent reaches of the Willamette River, using the
multiple realization based approach of Morgan et al. [1993] with 100 simulations, and
their work required 7 days of CPU time on a Sparc2 UNIX station.
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Figure 6.3: Quality distribution of the �rst singleton.

Finally, Figure 6.3 illustrates the operation of the method run in a regenerative
fashion. 200 di�erent runs of the method were made with di�erent seeds for the random
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number generator used, and the algorithm was stopped at the �rst moment at which
the record set was a singleton. The quality of the singletons thus obtained was then
evaluated by a prolonged simulation. Figure 6.3 illustrates the distribution of the
solutions thus obtained. The best singleton (with the reliability level of 0.79) was
obtained only once, but it is interesting to note that all the solutions selected in this
way have a rather good quality.

7 Conclusions

The Stochastic Branch and Bound Method of Norkin et al. [1994] is an attractive
approach for solving the multiobjective problem of maintaining water quality in a river
system while minimizing costs and maximizing the certainty of system outcome. This
method is extended in this paper for including the performance indicators of reliability,
resiliency, and vulnerability in the classical water quality management problem. The
method is demonstrated for maximizing reliability in an example river basin, and is
shown to be e�cient and accurate, at least in this preliminary application. This sug-
gests that the method may be e�ective for addressing other water quality and water
resources problems that require management solutions that are robust to uncertainties
in the input information.

There are a number of theoretical, implementational and application-speci�c issues
associated with the Stochastic Branch and Bound Method that are as yet unaddressed.
First, research on lower bounds and on partitioning strategies needs to be advanced.
Since it is unlikely that general approaches exist for identi�cation of bounds and parti-
tioning strategies for all problems, application-speci�c approaches need to be developed.
The heuristic procedures for determining the lower bound solution and the variables on
which to branch should, ideally, exploit the natural ordering of technologies in terms
of their cost-bene�t properties. The notion of bene�t, though, needs to be analyzed in
a more precise way in this context. Moreover, it should be stressed that the existing
theory of the Stochastic Branch and Bound Method has been developed for the case of
deterministic branching, which allows only static (i.e., determined in advance) ordering
of the waste abatement strategies. Dynamic ordering strategies (i.e., where the choice
is dependent on the outcomes of some experiments at the given node of the branching
tree) are stochastic in nature, and require additional theoretical work.

Secondly, stopping strategies need to be investigated in more detail. The theory
guarantees that every recurrent record singleton, i.e., a singleton set which turns out to
be the record set in�nitely many times, is optimal. Approaches are needed to identify
such sets su�ciently early with a reasonable level of reliability. Certainly, stopping at
the �rst record singleton is premature, but this approach should also be investigated in
more detail. One might consider such an approach a random selection of a potentially
interesting alternative. By running the method in a regenerative fashion (i.e., restarting
it with a di�erent random number seeds) one can identify a larger number of record set
candidates and then select the best one by performing extensive simulations for each
of them.

Thirdly, in the case of very high reliability the basic upper bound estimates may
frequently lead to upper bounds equal to one, which make it di�cult to di�erentiate
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the quality of di�erent subsets on the basis of random simulations. This is a highly
undesirable outcome, since it does not allow for ranking the sets. This is a situation
when the use of multiple realization estimates, as is employed in the example presented
here, may prove useful. The basic idea is to look for decisions which are good for many
scenarios simultaneously, so the chance of being successful is lower. Research that is
currently being conducted in this direction focuses on how to determine the number of
observations used to generate upper bounds, whether they should be dependent on the
estimated reliability, and whether they should be allowed to change it in the course of
computation [see, H�aggl�of, 1996].
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