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Abstract

A stochastic branch and bound method is extended and applied to the water qualitymanagement problem.
The goal is to examine implementation issues, i.e., to look at the research questions which arise when
applying a theoretical mathematical method for practical applications. These questions consist of the
techniques for bounding and branching and the selection of di�erent stopping criteria. This extended
Stochastic Branch and Bound method is then applied to the water quality management problem of
meeting speci�ed dissolved oxygen standards in a stream. The problem is to select wastewater treatment
facilities at di�erent locations along a stream with the objective of maximizing the likelihood of good
management solutions, i.e., maximizing reliability and minimizing vulnerability, given water quality goals
and a �xed budget level. The method is demonstrated for the Willamette River in Oregon, USA. Both
implementation questions and water quality management issues are analysed. The results show that the
method is e�cient and accurate in the water quality management case studied here, and may provide
computational approaches to many other problems of similar complexity, which appear to be intractable
otherwise.
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for Applications in River Basin

Water Quality Management�

Kristo�er H�aggl�of ��

1 Introduction

Water quality management typically consists of minimizing pollution control costs, maximizing water
quality and maximizing equity. The management problem is often formulated as a mathematical pro-
gramming model that optimizes one of the above objectives subject to limits on one or more of the
other goals. This task can however be very di�cult, because the behavior of the system is never entirely
predictable, due to uncertainties in the inputs to the system. For water quality systems, uncertainty in
the pollutant transport model, the reaction rates and the natural variability in the receiving system such
as variations in stream
ows and temperatures contribute to di�culties in predicting the future behavior
of the system as described in Beck [1987]. These input uncertainties then produce uncertainties in the
decision outputs. Recently, techniques for maximizing certainty of outcome have been proposed, these
include reliability, vulnerability and resiliency. A review of the techniques proposed are presented in Burn
and Lence [1992].

In this paper the Stochastic Branch and Bound Method of Norkin, Ermoliev and Ruszczy�nski [1994]
is applied. This method is extended to include reliability, resiliency and vulnerability in Lence and
Ruszczy�nski [1996]. A detailed description of the implementation of the Stochastic Branch and Bound
Method, applied for the objectives of maximizing reliability and minimizing vulnerability under cost
constraints of a water quality management system, regarding the questions of bounding, branching and
stopping is given in this paper. The method is demonstrated for dissolved oxygen management on the
Willamette River in Oregon, USA.

The approach used in the Stochastic Branch and Bound Method is to branch the set of possible water
quality treatment levels, or management solutions into disjoint subsets such that the union of all subsets
equals the set of all possible management solutions, to generate stochastic upper and lower bounds on the
objective function for each subset, to delete infeasible subsets and then to branch on the most promising
subset further until the stopping criterion is ful�lled. This methodology is implemented and the issues of
bounding, branching and stopping are addressed. A heuristic ranking method is introduced for the lower
bound calculations and for the issue of how to branch. Upper bound calculations are handled by solving
multiple continuous linear programs and di�erent stopping criteria are investigated.

In section 2, the general water quality management model is described. In this model the pollution
transport relationship is random due to random 
ows, temperatures and reaction rates. Then the model
is formulated as a probabilistic problem. The decision variables are the discrete design waste water
treatment levels of all of the dischargers in the system. In section 3, the Stochastic Branch and Bound
Method is described. This method is based on a Branch and Bound algorithm in which branches are
subsets of discrete decision variables for waste water treatment levels. The bounds are estimates of the
upper and lower limits of the objective functions for reliability and vulnerability for a given branch. Next,
the approach for estimating the bounds for a given set of decision variables, the branching technique and
the stopping criteria are discussed. In section 5, a study of dissolved oxygen management is described
in detail and the technique is applied to the Willamette River in Oregon, USA. Extensive results are
presented and analysed in section 6. Finally, the conclusions of the work are presented.

�This work develops the techniques presented by Lence and Ruszczy�nski [1996], and is a project in Optimization Under

Uncertainty, International Institute for Applied Systems Analysis, Laxenburg, Austria.
��Department of Mathematics, Link�oping University, S - 581 83 Link�oping, Sweden. Email krhag@mai.liu.se.
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2 The water quality model and problem formulations

Consider emission sources i = 1; : : : ;m, pollutants l = 1; : : : ; L and monitoring points j = 1; : : : ; n. For
every source i there is a discrete �nite set Xi of available treatment technologies. Each technology xi 2 Xi

is characterized by the following functional information

ci(xi) - cost

eli(xi) - emission level of pollutant l, l = 1; : : : ; L.

Given some emissions elj at the sources, the ambient water quality Sl
j for pollutant l at the monitoring

point j can be expressed as
Sl
j(x; !) = Al

j(e
l
1(x1); : : : ; e

l
m(xm); !): (2:1)

The transfer functions Al
j describe the e�ect of reactions involving pollutant l that take place as a

consequence of implementing the pollution abatement decisions on the water quality levels along the
stream. These pollutant transfer functions are random, e.g., based on random stream
ows, temperatures,
reaction rates etc. The variability in the system is modelled by !. If the transfer functions Al

j are linear,

then the coe�cients in Sl
j(x; !) characterize the water quality improvement along the stream and are

called impact coe�cients.
Water quality management programs are de�ned as a selection of technologies x = (x1; x2; : : : ; xm)

such that xi 2 Xi; i = 1; 2; : : : ;m and is characterized by its cost

c(x) =
mX
i=1

ci(xi) (2.2)

and ambient water quality levels at the monitoring points

Sl
j(x; !) = Al

j(e
l
1(x1); : : : ; e

l
m(xm); !): (2.3)

The following is a common formulation of this problem

Minimize c(x)

subject to Sl
j(x; !) � �Sl

j ; j = 1 : : :n; l = 1; : : : ; L

x 2 X

(2:4)

where X is the discrete �nite set of available technology combinations and �Sl
j are the prede�ned stan-

dards for pollutants l = 1; : : : ; L at the monitoring points j = 1 : : :n. Since the constraint set for this
problem is random, the solution that satis�es these constraints for all possible events ! may be extremely
conservative, i.e., they may be biased towards extreme system conditions, and could lead to a very ex-
pensive worst case design. To arrive at meaningful and practically applicable formulations, water quality
management models are typically designed to exploit the probabilistic nature of the problem. Sets of
management decisions are selected based on measures of system performance that indicate the extent of
environmental damage under critical hydrological and background water quality conditions. In general,
the frequency, duration and magnitude of violations of a given environmental standard are indices of
pollution control performance that represent the reliability, resiliency and vulnerability, respectively, of
the management decisions. The reliability criterion describes how likely compliance to the environmental
standards may be achieved. The resiliency and the vulnerability criteria give indications of the degree
to which the system will recover from a failure sojourn and the environmental consequences caused by
water quality violations, respectively. Reliability, resiliency and vulnerability applied to water resources
systems is further discussed by Hashimoto, Stedinger and Loucks [1982].

2.1 Reliability

Given water quality standards, �Sl
j , for pollutants l = 1; : : : ; L at monitoring points j = 1; : : : ; n, the

reliability of the system is de�ned as the probability that some water quality standards are not violated,
i.e., the probability that the satisfactory states are maintained. This de�nition allows the reliability
maximization problem to be stated

Maximize IPfSl
j(x; !) �

�Sl
j ; j = 1 : : :n; l = 1; : : : ; Lg

subject to c(x) � �c

x 2 X

(2:5)
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where X is the discrete �nite set of available technology combinations and �c is the prede�ned budget
level.

2.2 Vulnerability

The objective described in the previous subsection relies on setting strict standards and design manage-
ment programs to meet these environmental standards with some level of reliability. This assumes that
all water quality levels below these standards are acceptable while those above are unacceptable. This
simpli�es the management problem but may not be the best approach because it does not describe the
severity or likely consequences of a violation. Even when the probability of a violation is small, attention
should be paid to the possible consequences of a violation. The severity of a violation can be described by
other criteria, therefore, more recently, hierarchies of standards are being used since they are considered
to be more appropriate for describing the allowable degree of water quality degradation

�Sl(0)

j � �Sl(1)

j � : : : � �Sl(H)

j (2:6)

for pollutants l = 1; : : : ; L and monitoring points j = 1; : : : ; n. System vulnerability is then de�ned as

HX
h=1

chIPf �S
l(h�1)

j � Sl
j(x; !) � �S

l(h)

j ; j = 1; : : : ; n; l = 1; : : : ; Lg (2:7)

where the coe�cients ch, h = 1; : : : ;H, satisfy the inequalities c1 � c2 � : : : � cH , measure the severity
of the water quality. This de�nition allows the vulnerability minimization problem to be stated as follows

Minimize

HX
h=1

chIPf�S
l(h�1)

j � Sl
j(x; !) � �Sl(h)

j ; j = 1; : : : ; n; l = 1; : : : ; Lg

subject to c(x) � �c

x 2 X

(2:8)

where X is the discrete �nite set of available technology combinations and �c is the prede�ned budget
level.

3 The extended stochastic branch and bound method

The basic approach of this method is to branch the set of all possible strategies X into disjoint subsets
Xp, p 2 P, such that

S
p2P Xp = X, to generate stochastic lower and upper bounds �(XP ) and �(Xp) on

the objective function for each subset, to delete infeasible subsets and then to branch the most promising
subset further until the stopping criterion is ful�lled. The steps in the extended Stochastic Branch and
Bound Method are as follows:

Initialization. Form the initial set P0 = fXg, i.e., the �nite set of all possible technology combinations
available. Calculate the lower and upper bounds, �0(X) and �0(X), respectively, for this set. Set
k = 0.

Branching. Select the most promising subset Y k, for reliability Y k 2 Argmaxf�(Xp) : Xp 2 Pkg, i.e.,
the subset with the largest upper bound �(Xp). For vulnerability the subset is Y k 2 Argminf�(Xp) :
Xp 2 Pkg, i.e., the subset with the smallest lower bound �(Xp). An approximate solution xk is
selected, for reliability, xk 2 Xk 2 Argmaxf�k(Xp) : Xp 2 Pkg, i.e., one singelton from the subset
with the largest lower bound �(Xp). For vulnerability the solution is xk 2 Xk 2 Argminf�k(X

p) :
Xp 2 Pkg, i.e., one singelton from the subset with the smallest upper bound �(Xp). If Y k is a
singelton, stop or set P0k = Pk and go to the Bound Estimation step depending on the stopping
criterion used. Such criteria are described in detail in section 4.5. Otherwise, construct a branch of
Y k, P 00(Y k) = fY k

i ; i = 1; 2; : : : ; nkg where nk is the number of branches of Y k. De�ne the new full
branch P 0k = (PknY

k)[P 00k (Y
k). The branching technique used is based upon the proposed ranking

method, where the highest ranked emission source is branched. A description of the branching
technique is described in detail in section 4.4 and the ranking method used is stated in section 4.6.
The elements of P 0k are also denoted by Xp.

3



Bound Estimation. For all subsets Xp 2 P 0
k select some estimates �k(Xp) and �k(Xp) for the bounds.

The applicability and the e�ciency of the Stochastic Branch and Bound Method depends on the
quality of the random lower and upper bounds, �(Xp) and �(Xp), respectively. These are described
in detail in sections 4.1 - 4.2.

Deletion. Remove all infeasible subsets from branch P 0
k by de�ning Pk+1 = P 0

knfX
p : minx2Xp c(x) >

�cg. Set k = k + 1 and go to Branching. If the estimates are exact then all sets Xp for which
�k(Xp) > �k(Xp) can also be deleted.

4 Problem speci�c algorithm details

In this section the bound calculations, branching technique and stopping criteria are introduced and a
ranking procedure is described.

4.1 Reliability bounds

4.1.1 Lower bounds

For a set Xp choose a point xp 2 Xp such that c(xp) � �c (if such a point does not exist, the set Xp

is deleted at the Deletion Step). However, it is preferable to choose the point xp 2 Xp in such a way
that the probability of not violating the water quality standards is as large as possible. Therefore the
following linear problem is solved

Maximize r(x)

subject to c(x) � �c

x 2 X
p
R

(4:1)

where the constraints x 2 X
p
R are the discrete set of technology combinations x 2 Xp which are relaxed

and treated as continuous. Coe�cients r represent the rank of the emission sources such that the source
which improves the probability that the predetermined water quality standards are not exceeded, the
most, has the largest rank, and so on. The ranking procedure is described in more detail in section 4.6.
Problem (4.1) does not give a discrete point as a solution. Therefore, the solution is rounded down to
the nearest feasible discrete point. This solution may not use all of the available budget, that is, the
cost constraint may not be binding in such cases. Therefore, the solution may be improved using the
remaining budget, starting with the emission source with the largest rank, and so on, if this is possible.
Then the stochastic lower bounds for the probability that the water quality standards are not violated,
i.e., the stochastic lower bounds for IPfSlj(x; !) �

�Slj; j = 1 : : :n; l = 1; : : : ; Lg, are de�ned by calculating

�N (Xp) =
1

N

NX
s=1

�(xp; !s) (4:2)

where !1; : : : ; !N are independent observations of ! and the indicator functions are de�ned as

�(xp; !) =

8<
:

1 if Slj(x
p; !) � �Slj

0 otherwise.
(4:3)

These stochastic lower bounds are calculated to get an approximate solution in every step of the algorithm.
However, if the algorithm is terminated when the most promising subset consists of a singelton, the
stochastic lower bound equals the stochastic upper bound and therefore it is not necessary to calculate
these bounds at every iteration. Instead, it is su�cient to check if there exists a feasible point and
continue, or otherwise delete the subset in question. This approach has the advantage of the possibility
of calculating the lower bound �rst, and if necessary deleting the subset before the more computationally
expensive stochastic upper bound calculation is carried out. This is possible because the ranking used
in problem (4.1), which is calculated with the use of the active constraints obtained from the stochastic
upper bound calculation, is not needed for checking if a feasible point exists.

4.1.2 Upper bounds

Generating stochastic upper bounds are more complicated, since this task consists of �nding a stochastic
bound that is larger than the best possible solution available. The key issue is the inequalities

max
x2Xp

c(x)��c

IPfSlj(x; !) � �Sljg � IPf9x : Slj(x; !) � �Slj ; c(x) � �c; x 2 Xpg (4.4)

4



� IPf9x : Slj(x; !) �
�Slj ; c(x) � �c; x 2 Xp

Rg

where the constraints x 2 Xp
R are the discrete set of technology combinations x 2 Xp which are relaxed

and treated as continuous. Therefore the following linear problem is solved

Minimize c(x)

subject to Slj(x; !) � �Slj

x 2 X
p
R

(4:5)

where ! is a �xed event. The optimal value of this problem is denoted as ĉ(Xp
R; !). If the problem

solution is not feasible, then assign ĉ(Xp
R; !) =1. The probability that there exists one singelton in the

set of technologies that does not exceed the budget level, or violates the water quality standards, is then
less than or equal to the probability that the optimal value of the problem above is less than or equal
to the budget level. Then de�ne the stochastic upper bounds for the probability that the water quality
standards are not violated, i.e., the stochastic upper bounds for IPfSlj(x; !) �

�Slj ; j = 1 : : :n; l = 1; : : : ; Lg,
by calculating

�N (Xp) =
1

N

NX
s=1

 (xp; !s) (4:6)

where !1; : : : ; !N are independent observations of ! and the indicator functions are de�ned as

 (xp; !) =

8<
:

1 if ĉ(Xp

R; !) � �c

0 otherwise.
(4:7)

4.2 Vulnerability bounds

The stochastic reliability bounds can be generalized in a straightforward way to obtain vulnerability

bounds. Without loss of generality let �S
l(0)

j = �1 and �S
l(H)

j =1.

4.2.1 Lower bounds

To obtain stochastic lower bounds for vulnerability, consider the stochastic upper bound calculation for
reliability �N (Xp) described by equation (4.6). Compute this upper bound for the water quality standard
�S
l(1)

j for pollutants l = 1; : : : ; L at the monitoring points j = 1; : : : ; n using the set of independent

observations !1; : : : ; !N of !. Then remove all independent observations !s for which the indicator
function,  (xp; !s), de�ned in equation (4.7), equals one and calculate the upper bound for the next
water quality standard with the remaining independent observations, and so on. Denote those upper

bounds �
N(h)

R (Xp) for h = 1; : : : ;H. Then de�ne the stochastic lower bounds for the sum of probabilities
weighted by the importance of the di�erent degrees of water quality violations,

HX
h=1

chIPf �S
l(h�1)

j � Slj(x; !) � �Sl(h)j ; j = 1; : : : ; n; l = 1; : : : ; Lg (4:8)

, as

�N (Xp) =
HX
h=1

ch�
N(h)

R (Xp): (4:9)

These are stochastic lower bounds for the vulnerability case. This follows from the fact that �N (Xp)

pushes the probabilities �
N(h)

R of being between certain standards towards optimistic solutions, i.e., it
pushes the probabilities towards better water quality levels. This gives a solution which is smaller than

the actual solution since the sum of �N(h)

R weighted by the coe�cients ch, which measure the importance
of the di�erent degrees of water quality violations, is smaller than or equal to the actual solution,

min
x2Xp

c(x)��c

HX
h=1

chIPf �S
l(h�1)

j � Slj(x; !) �
�S
l(h)

j ; j = 1; : : : ; n; l = 1; : : : ; Lg: (4:10)
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4.2.2 Upper bounds

To obtain stochastic upper bounds for vulnerability choose a point xp 2 Xp such that c(xp) � �c (if such
a point does not exist, the set Xp is deleted at the Deletion Step). However, it is preferable to choose a
point in such a way that the sum of probabilities weighted by the importance of the di�erent degrees of
water quality violations, i.e., the stochastic upper bounds for

HX
h=1

chIPf �S
l(h�1)

j � Slj(x; !) � �S
l(h)

j g; (4:11)

is as small as possible. To obtain this point xp, solve the problem (4.1) used for the calculations of the
stochastic lower bounds for reliability. Then de�ne for h = 1; : : : ;H the indicator functions

�(h)(xp; !) =

8<
:

1 if �S
l(h�1)

j � Slj(x
p; !) � �S

l(h)

j

0 otherwise.
(4:12)

for the selected xp 2 Xp. The stochastic upper bounds for vulnerability are de�ned by calculating

�N (Xp) =
1

N

NX
s=1

HX
h=1

ch�
(h)(xp; !s) (4:13)

where !1; : : : ; !N are independent observations of !. These random variables are stochastic upper bounds
for the vulnerability case.

4.3 Using multiple scenarios

If the probability of an event of interest is very close to one the estimates of the form (4.6) for the upper
bounds on reliability will frequently be equal to one for small N . A large number of observations of the
system will be necessary to obtain di�erent estimates for di�erent subsets. One way to overcome this
di�culty is to use many observations of the system not only in the averaging formula (4.6) but within the
key inequalities (4.4) and therefore also in the linear programs (4.5) used in the upper bound calculation
for reliability and in the lower bound calculation for vulnerability. Results showing the e�ciency of this
approach are presented in section 6.

4.4 Branching technique

Because of the weak deletion rules in the Stochastic Branch and Bound Method it is not wise to branch
the most promising subset in a fashion that promotes deletions. Instead, the most promising subset is
branched in a way that forces the new most promising subset to converge as fast as possible towards a
singelton. One way of doing this is to branch on the emission source with the highest rank, i.e., branch
on the emission source which improves the probability that the predetermined water quality standards
are not exceeded the most, if an improvement in technology is implemented at that emission source.
This gives new subsets of available technology combinations, i.e., new subsets where the technologies for
the highest ranked emission source is branched into disjoint subsets of technologies, where a few might
be infeasible but where the upper bounds of the feasible subsets can clearly be distinguished from each
other. One subset has a very good upper bound and therefore has a very good chance of being the most
promising subset in the next iteration and the other subsets have upper bounds in a decreasing order. If
the highest ranked emission source is already a single one, i.e., the technology is already decided, branch
on the next highest ranked emission source, and so on.

4.5 Stopping criteria

The main result of Norkin et al. [1994] is a convergence theorem. This theorem however is an asymptotic
result, i.e., it proves convergence under the assumption that the method is run in�nitely long. In practice,
of course, the calculation is terminated after some �nite time. The experience gained in Norkin et al.
[1994] suggests that stopping after achieving the �rst singleton is a reasonable strategy, since it leads to
a good solution, and guaranteees �nding the best solution if the method is run in a regenerative fashion.
The approach used here is slightly di�erent, the algorithm is stopped when the most promising set is
a singelton. This algorithm is also tested for the case when the method is run for a \long time". In
section 6 results are presented showing the e�ciency of the solutions gained from the algorithm with
these stopping criteria.
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4.6 Ranking method

Given the problem stated above it is necessary to rank the emission sources such that the one which
improves the probability that the predetermined pollution levels are not exceeded the most, if an im-
provement in technology is implemented, is ranked highest, and so on. To �nd this ranking a heuristic
method based on the active constraints from the linear programs used to generate the upper bounds
is proposed and implemented. The idea is to use the ratio between the impact coe�cients in Slj(x; !)
de�ned in equation (2.1) for the active constraints and the cost for technology improvement at the given
treatment level and rank the emission sources in order of decreasing values of this ratio. However, because
many linear problems are solved for each upper bound estimation, the individual rankings have to be
weighted and then summed in order to get a good overall ranking. The ranking can be stated as follows
for the reliability case

r(Xp) =
NX
s=1

1

jAsj

X
i2As

Sli
c

(4:14)

and for the vulnerability case

r(Xp) =
NX
s=1

HX
h=1

ch
1

jA
(h)
s j

X
i2A(h)

Sli
c

(4:15)

where As and A
(h)
s are the set of active constraints for the upper bound calculations for reliability and the

set of active constraints for the lower bound calculations for vulnerability, respectively, for the independent
observation !s.

Another question has to be stressed and that is the issue of whether to use a �xed ranking (i.e., the
ranking described above is calculated once for the whole �nite set of available technology combinations
and then used throughout the algorithm), or whether to use a dynamic ranking (i.e., the ranking is
recalculated for each new set obtained in the algorithm). The �xed ranking has the advantage that one
can calculate the simpler bound �rst, i.e., the lower bound for reliability and upper bound for vulnerability,
and delete infeasible sets before the more computationally expensive bound, i.e., the upper bound for
reliability and lower bound for vulnerability, is calculated. The �xed ranking tends to use fewer iterations
while the dynamic ranking tends to give better solutions, i.e., the solutions have better objective values.
This is a consequence of calculating the ranking for the whole set which do not have the same active
constraints as opposed to the one calculated for more technology constrained subsets as shown in section
6.

5 A case study

The water quality management models described above are applied here for management of biochemical
oxygen demanding (BOD) waste discharges, which a�ect the stream dissolved oxygen (DO) levels, and
are demonstrated for the Willamette River basin in Oregon, USA.

5.1 Problem formulations

The general water quality management problem is applied to the discharge of BOD waste in a stream,
which a�ects the stream DO levels.

For each simulation of an event, the generated temperature, 
ows, velocities and reaeration rates of
all reaches are used to produce a steady-state DO response, based on the Camp-Dobbins modi�cation
to the Streeter-Phelps equation. This realization of a DO response consists of DO improvements, per
unit waste removed by each discharger, i.e., impact coe�cients as described in equation (2.1), for each
monitoring point, and the minimum required DO improvement at all monitoring points. For more details
see Camp [1963] and Dobbins [1964].

This problem requires the stream DO levels to be above certain standards and therefore the problems
described in section 2 are reformulated.

5.1.1 Reliability

Given the minimum required DO improvements �Sj at the monitoring points j = 1; : : : ; n, de�ne the
reliability of the system as the probability that all minimum required DO improvements are exceeded.
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This gives the problem
Maximize IPfSj(x; !) � �Sj ; j = 1 : : :ng

subject to c(x) � �c

x 2 X

(5:1)

where X is the discrete �nite set of available technology combinations, i.e., the available combinations of
BOD removal levels by the dischargers, and �c is the prede�ned budget level.

5.1.2 Vulnerability

Introduce a hierarchy of DO improvements

�S
(0)

j � �S
(1)

j � : : : � �S
(H)

j (5:2)

for the monitoring points j = 1; : : : ; n and de�ne the vulnerability of the system as

HX
h=1

chIPf �S
(h�1)

j � Sj(x; !) � �S
(h)

j g (5:3)

where the coe�cients ch measures the severity of violating the level of DO. This gives the problem

Minimize

HX
h=1

chIPf �S
(h�1)

j � Sj(x; !) � �S(h)

j g

subject to c(x) � �c

x 2 X

(5:4)

where X is the discrete �nite set of available technology combinations, i.e., the available combinations of
BOD removal levels for the dischargers, and �c is the prede�ned budget level.

5.2 The Willamette River

The model, which is described by (5.1) and (5.4), is applied to the 298 km long segment of the Middle
Fork of the Willamette River in Oregon, USA. This segment has eight major tributaries and ten BOD
waste dischargers.

Cost data (in 1978 dollars) and wasteload characteristics of the dischargers are obtained from Kilgore
[1985]. River 
ow and temperature data are aquired from the United States Geological Survey (USGS).
Velocity and reaeration rates are functions of 
ow and are taken from Worley [1963] and Liebman [1965].
Benthic oxygen demand for the river and its tributaries is assumed to be zero and the background DO
concentration (i.e., the DO in the stream in the absence of any emissions) is assumed to be the saturation
concentration.

The 7-day average low 
ow and the highest mean monthly temperature for the months of June through
January are used for this analysis. The stretch of the Willamette River modelled is divided into 18 reaches
and thirty-�ve monitoring points are used. All dischargers have as available technologies discrete waste
removal levels between 35 % and 95 % and these may be selected in discrete increments of 5 %.

The indicator of water quality is the stream DO, hence, the equations Sj(x; !) � �Sj and �S
(h�1)

j �

Sj(x; !) � �S
(h)

j used in the objective functions for the problems (5.1) and (5.4), respectively, ensure
acceptable DO levels at all monitoring points. All monitoring points use the same water quality standards.
The standards used in this study vary between 7.0 mg/l DO and 8.0 mg/l DO for models that maximize
reliability, and between 0.0 mg/l DO and 12.0 mg/l DO for models that minimize vulnerability. The
function Sj(x; !) relates the DO improvement at monitoring point j to the waste removal levels at
emission sources. For the Camp-Dobbins modi�cation to the Streeter-Phelps equation used in this work,
Sj(x; !) is a linear function of x and its coe�cients are the impact coe�cients obtained from a simulation

of the water quality response. �Sj and �S
(h)

j represent the minimum allowable DO level improvement at
monitoring point j.
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5.3 Details of the stochastic inputs

The stochastic input information considered is the 7-day averaged low 
ows, the highest monthly mean
temperatures, and the stream velocities and reaction rates for each reach of the river, for the given
stream
ow conditions.

For each simulation used, a random stream temperature and 7-day averaged low 
ow are generated
based on the two-parameter lognormal distributions for the mean monthly temperature and for the 7-day
averaged low 
ow, respectively. The stream velocity and reaeration rates are subsequently computed
based on the generated 
ows using the functional relationships between 
ow and stream velocity, and
between 
ow and rearation rates, respectively, and on normally distributed zero mean noise terms. For
a more thorough description of the inputs used see Takyi and Lence [1996].

6 Computational results

As described in the previous section, the Stochastic Branch and Bound Method is applied for maximizing
reliability and minimizing vulnerability, for managing DO levels along the Willamette River. The allow-
able total budget, i.e., capital and operating costs, for the river is varied between 18 and 44 million $/year.
The number of simulations required for each bound calculation depends on the type and complexity of
the water quality system and on the number of uncertain input variables and their distributions. In
this study, the number of simulations used is 500, which was determined to be adequate by gradually
increasing the number of simulations until the statistical properties of the input and output information
converged for an experimental trial. The method is implemented in C++ and the callable library Cplex
4.0 is used to solve the linear subproblems.

Figure 6.1a shows the total cost of waste water treatment, above the cost of primary treatment, i.e.
35 % BOD removed, versus reliability of meeting standards between 7.0 mg/l and 8.0 mg/l. This may
be used by decision makers in selecting the best choice of management solution given their preferences
for the objectives of e�ciency and certainty of system outcome. Figure 6.1b illustrates the number of
branches needed, i.e., the number of iterations needed for the method to obtain the �rst singleton. Figure
6.1c shows the number of deleted sets for each reliability level.

18

22

26

30

34

38

42

0.4 0.6 0.8 1

C
os

t (
m

ill
io

n 
$/

ye
ar

)

Reliability

(a)

8.0 mg/l DO

18

22

26

30

34

38

42

0.4 0.6 0.8 1

C
os

t (
m

ill
io

n 
$/

ye
ar

)

Reliability

(a)

8.0 mg/l DO
7.5 mg/l DO

18

22

26

30

34

38

42

0.4 0.6 0.8 1

C
os

t (
m

ill
io

n 
$/

ye
ar

)

Reliability

(a)

8.0 mg/l DO
7.5 mg/l DO
7.0 mg/l DO

0

100

200

300

400

500

600

700

0.4 0.6 0.8 1

N
um

be
r 

of
 B

ra
nc

he
s

Reliability

(b)

8.0 mg/l DO

0

100

200

300

400

500

600

700

0.4 0.6 0.8 1

N
um

be
r 

of
 B

ra
nc

he
s

Reliability

(b)

8.0 mg/l DO
7.5 mg/l DO

0

100

200

300

400

500

600

700

0.4 0.6 0.8 1

N
um

be
r 

of
 B

ra
nc

he
s

Reliability

(b)

8.0 mg/l DO
7.5 mg/l DO
7.0 mg/l DO

0

100

200

300

400

500

600

0.4 0.6 0.8 1

N
um

be
r 

of
 D

el
et

io
ns

Reliability

(c)

8.0 mg/l DO

0

100

200

300

400

500

600

0.4 0.6 0.8 1

N
um

be
r 

of
 D

el
et

io
ns

Reliability

(c)

8.0 mg/l DO
7.5 mg/l DO

0

100

200

300

400

500

600

0.4 0.6 0.8 1

N
um

be
r 

of
 D

el
et

io
ns

Reliability

(c)

8.0 mg/l DO
7.5 mg/l DO
7.0 mg/l DO

Figure 6.1: (a) Cost versus reliability. (b) Number of iterations for di�erent reliability levels. (c) Number
of deletions for di�erent reliability levels.

For reliability levels very close to one less computational e�ort is required to reach the �rst single-
ton, because it is more di�cult to di�erentiate the quality of di�erent subsets on the basis of random
simulations. The result of this is that the branched subsets may not be the best ones. For this reason
the quality of the singletons obtained in these cases are not good. This can be improved by using the
multiple scenarios described in section (4.3). This approach calculates the upper bounds with many
scenarios simultaneously which gives slightly lower but still valid upper bounds and therefore improves
the possibility that the best subsets are branched. However, the solutions obtained using this approach
are also close to or equal to one but this approach suggests that more robust solutions may be obtained.
Nevertheless, more research is needed to �nd a proper approach to the case of a very high reliability. The
total single CPU time needed for solving one problem with a speci�c budget level and one set of standards
are in the range of two hours on a SUN Sparc Server 1000 with two CPU's and 128MB memory.
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Figure 6.2a shows the reliability values, for the problem of maximizing reliability for the 8.0 mg/l
DO standard and a 20 million $/year budget, as a function of the number of times the method was
applied. Figure 6.2b shows the number of reoccuring technology combinations obtained, i.e., each of the
lines represents one speci�c technology combination. Figure 6.2c shows the number of times a certain
technology is obtained for a given emission source. In order to generate this �gure 200 di�erent runs of
the method were made with di�erent seeds for the random number generator used. The algorithm was
stopped when the most promising subset was a singleton. The quality of the singletons obtained was then
evaluated by a prolonged simulation. Figure 6.2a shows the distribution of the solutions obtained. This
graph shows that as the number of method applications increases, the reliability of the system approaches
0.68. It also shows that the best solution found is 0.79. The best solution was only obtained once, but
it is interesting to note that all solutions selected in this way have a rather good quality. Another
interesting result, illustrated in Figure 6.2b, is that one set of technology combinations reoccured 14
times, which means that this solution is a very good candidate. Figure 6.2c shows the reoccurences
for certain technologies for the emission sources. This shows that it can be worth while to solve the
problem a number of times with fewer simulations and then to resolve the problem with a large number
of simulations with the technologies used as the set of available technologies. This means that the set of
available technology combinations is reduced substantially for the case with a large number of simulations.
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Figure 6.2: (a) Quality distribution of the �rst singleton. (b) Number of reoccuring technology combi-
nations. (c) Distribution of technologies for the emission sources.

Figure 6.3 shows the singelton solutions obtained for the method when it is run without a stopping
criterion.
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Figure 6.3: Singletons obtained when the method is run without stopping criterion.

The results show that the solutions are slightly better for the �rst 20 singeltons and that the best
solution obtained in Figure 6.2a, i.e, a reliability of 0.79, was obtained for the 15th singelton. The
singeltons obtained later also have a few good solutions but on average they are getting progressively
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worse. For the �rst 100 singeltons no solution below 0.65 was obtained but for the last 100 singeltons
several solutions with reliability 0.63 were obtained, which is below the worst solution obtained in Figure
6.2a.

The problem of maximizing reliability for the 8.0 mg/l DO standard and the 20 million $/year budget
is also tested for the �xed rank case and the results show that this approach uses approximately one third
of the branches used in the dynamic case but also gives slightly worse solutions. Twenty testruns gave
the best result of 0.70 once but also three results of 0.63 and one of 0.61 which is worse than the worst
result for the dynamic ranking case.

Figure 6.4 shows the results for the objective of minimizing the vulnerability with a 20 million $/year
budget. The Figure show that if the results are converted to the reliability case described above the
solution is worse, but this approach gives a more robust solution because there are no really bad outcomes.
In the reliability case this cannot be assured.
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Figure 6.4: Probability of being between certain standars in the vulnerability case.

7 Conclusions

The Stochastic Branch and Bound Method of Norkin et al. [1994] is an attractive approach for solving the
problem of maintainingwater quality in a stream while maximizing the certainty of system outcome under
cost constraints. This method is applied for the performance indicators of reliability and vulnerability in
the classical water quality management problem and the questions of bounding, branching and stopping
are addressed in this paper. The method is demonstrated for an example stream, and is shown to be
e�cient and accurate, at least for this application. This suggests that the method may be e�ective for
addressing other problems that require management solutions that are robust to uncertainties in the
input information.

There are a number of theoretical, implementational and application-speci�c issues associated with the
Stochastic Branch and Bound Method that are as yet unaddressed. First, since it is unlikely that general
approaches exists for identi�cation of bounds and partitioning strategies for all problems, application
speci�c approaches need to be developed. Second, stopping strategies need to be investigated in more
detail. The theory guarantees that every recurrent record singelton, i.e., a singelton set which turns out to
be the record set in�nitely many times, is optimal. Approaches are needed to identify such sets su�ciently
early with a reasonable level of reliability. Certainly, stopping at the �rst singelton is premature. Third,
in the case of very high reliability the basic upper bound estimates may frequently lead to upper bounds
equal to one, which make it di�cult to di�erentiate the quality of di�erent subsets on the basis of random
simulations. This is a highly undesirable outcome, since the subsets branched may not be the best ones.
This is a situation when use of multiple realization estimates, as is employed in this paper, may prove
useful. The basic idea is to look for decisions which are good for many scenarios simultaneously, so the
chance of being successful is lower. However, the solutions obtained using this approach are also close to
or equal to one but this approach suggests that more robust solutions may be obtained. More research
is needed to �nd a proper approach to the case of a very high reliability.

In summary, it should be stressed that the Stochastic Branch and Bound Method, having all the
advantages of a mathematically sound approach, is a very 
exible tool for solving complex decision
problems with uncertainty and discrete variables. It has proven to be quite e�cient in the water quality
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management case and promises to provide computational approaches to many other problems of similar
complexity, which appear to be intractable otherwise.
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