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MATHEMATICAL PROGRAMMING FORMULATIONS FOR 
TWO-GROUP CLASSIFICATION W I T H  BINARY VARIABLES 

ABSTRACT 
In this paper, we introduce a nonparametric mathematical programming (MP) approach for 

solving the binary variable classification problem. In practice, there exists a substantial interest in the 

binary variable classification problem. For instance, medical diagnoses are often based on the presence 

or absence of relevant symptoms, and binary variable classification has long been used as a means to 

predict (diagnose) the nature of the medical condition of patients. Our research is motivated by the 

fact that none of the existing statistical methods for binary variable classification - parametric and 

nonparametric alike - are fully satisfactory. 

The general class of MP classification methods facilitates a geometric interpretation, and MP- 

based classification rules have intuitive appeal because of their potentially robust properties. These 

intuitive arguments appear to have merit, and a number of research studies have confirmed that MP 

methods can indeed yield effective classification rules under certain non-normal data conditions, for 

instance if the data set is outlier-contaminated or highly skewed. However, the MP-based aproach in 

general lacks a probabilistic foundation, an ad hoc assessment of its classification performance. 

Our proposed nonparametric mixed integer programming (MIP) formulation for the binary 

variable classification problem not only has a geometric interpretation, but also is consistent with the 

Bayes decision theoretic approach. Therefore, our proposed formulation possesses a strong probabilistic 

foundation. We also introduce a linear programming (LP) formulation which parallels the concepts 

underlying the MIP formulation, but does not possess the decision theoretic justification. 

An additional advantage of both our LP and MIP formulations is that, due to the fact that the 

attribute variables are binary, the training sample observations can be partitioned into multinomial 

cells, allowing for a substantial reduction in the number of binary and deviational variables, so that 

our formulation can be used to analyze training samples of almost any size. 

We illustrate our formulations using an example problem, and use three real data sets to 

compare its classification performance with a variety of parametric and nonparametric statistical 

methods. For each of these data sets, our proposed formulation yields the mimimum possible number 

of misclassifications, both using the resubstitution and the leave-one-out method. 

Keywords: Binary Variables, Classification Analysis, Discriminant Analysis, Linear Programming, 
Mixed Integer Programming. 
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MATHEMATICAL PROGRAMMING FORMULATIONS FOR 
1 

TWO-GROUP CLASSIFICATION W I T H  BINARY VARIABLES 
1. INTRODUCTION 

Over the years, a considerable body of literature has accumulated on classification analysis, 

with its usefulness demonstrated in various fields, including engineering, medical and social sciences, 

economics, marketing, finance and management (Anderson et  al. 1972; McLachlan 1992; 

Joachimsthaler and Stam 1988, 1990; Ragsdale and Stam 1992; Huberty 1994; Yarnold e t  al.  1994). 

Most of the research in classification analysis is based on statistical methods (Dillon and Goldstein 

1978; Hand 1981; McLachlan 1992; Huberty 1994). However, the classification performance of existing 

parametric and nonparametric statistical methods has not been fully satisfactory. For instance, it is 

well-documented that parametric statistical methods, such as Fisher's linear discriminant function 

(LDF) (Fisher 1936) and Smith's quadratic discriminant function (QDF) (Smith 1947) may yield poor 

classification results if the assumption of multivariate normally distributed attributes is violated to a 

significant extent (McLachlan 1992; Huberty 1994; Krzanowski 1988; Joachimsthaler and Stam 1990; 

Duarte Silva 1995). As we will discuss in more detail below, nonparametric methods may give overly 

positive resubstitution (training sample classification) rates, while performing poorly on validation 

samples, and may be overly sensitive to certain data conditions (Goldstein and Dillon 1978; Hand 

1983, 1993; McLachlan 1992). 

A number of the statistical classification methods are based on distance measures. Some 

involve probability density functions and variance-covariances, and have a Bayes decision theoretic 

probabilistic interpretation, while others have a geometric interpretation only. An example of a 

distance-based measure is the Euclidean distance measure, which obviously has a goemetric 

interpretation. If the attribute variables are independent, the Euclidean distance measure is equivalent 

to the Mahalanobis distance, with the usual probabilistic interpretation. However, if the variables are 

correlated the Euclidean measure does not have a probabilistic justification, as it does not involve any 

function of the probability density functions. 

Recently, a class of nonparametric mathematical programming (MP)-based techniques has 

attracted considerable research attention. Among the most widely known MP methods are the 

minimize the sum of deviations (MSD) method (Freed and Glover 1981b; Mangasarian 1965; Minnick 

1961; Smith 1968), the minimize the maximum deviation (MMD) method (Freed and Glover 1981a; 

Rubin 1989), the minimize the number of misclassifications (MIP) method (Ibaraki and Muroga 1970; 

Liitschwager and Wang 1978; Asparoukhov 1985), and the Hybrid method (Glover, Keene and Duea 

1988). Nonlinear (Stam and Joachimsthaler 1989), multi-group (Gehrlein 1986; Gochet e t  al. 1996), 

polynomial and second-order variants (Banks and Abad 1994; Rubin 1994; Duarte Silva and Stam 

1994; Wanarat and Pavur 1996) of linear MP formulations have been proposed as well. MP-based 

methods for classification have a geometric interpretation, and are based on the construction of surfaces 

that provide an optimal separation of the groups. The optimization criterion either minimizes some 

function of the undesirable distances of the training sample observations from the separating surface, or 
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minimizes the number of misclassified observations directly. Most MP-based methods lack a 

probabilistic justification. An exception is the method proposed by Lam et al. (1993). 

In this paper, we focus on two-group classification problems with binary attribute variables. 

There are numerous real-life binary variable classification problems, e.g., in the field of medical disease 

diagnosis, where the medical condition of patients is evaluated on the basis of the presence or absence 

of relevant symptoms. Some examples of such applications will be analyzed and discussed in Section 5. 

It is obvious that the multivariate distribution of the binary attributes is non-normal, and it appears 

promising to analyze such problems using nonparametric approaches (like MP ones). A number of 

specialized statistical discriminant methods have been developed for problems with categorical (usually 

binary) or mixed (continuous and binary) variables (Goldstein and Dillon 1978; Hand 1981; 

Krzanowski 1993; McLachlan 1992; Huberty 1994). To date, there has been little MP-based research in 

this area, with the exception of Markowski and Markowski (1987), who discussed the mixed variable 

problem, and Stam and Joachimsthaler (1990) and Stam and Jones (1990), who included discrete 

uniform data conditions in their simulation experiments. 

Our purpose is to develop an MP-based formulation for the binary variable classification 

problem which is fully consistent with the Bayes decision theoretic approach, and has both intuitive 

appeal and a formal probabilistic justification. In Section 2, we define the classification problem 

formally, and present the decision theoretic approach to classification. Section 3 reviews existing 

statistical methods for binary variable classification. In Section 4, we derive a simple Bayes decision 

theoretic classification rule for the case of binary attribute variables, and use this rule to formulate the 

Bayes decision theoretic MIP method (BMIP). Section 5 presents a rigorous analysis of three real data 

sets, comparing the classificatory performance of the BMIP and a related MSD method with a plethora 

of existing parametric and nonparametric statistical methods. Section 6 contains concluding 

comments. 

2. DECISION THEORETIC APPROACH 
Consider the classification problem with r mutually exclusive and collectively exhaustive 

groups, and denote group j by Gj. Suppose that the characteristics of each group are described by the 

p-dimensional attribute vector x = (zl, ..., zp)=. The purpose in classification analysis is to predict the 

group membership of an observation i based on the characteristics of its vector of attribute values xi. 

Define the conditional   rob ability that i belongs to Gj  by ~ ~ ( x ; )  = p(xi ( Gj), the prior probability of 

membership in Gj by p(Gj), the posterior probability of group membership by p(Gj I xi), and the cost 

associated with erroneously classifying an observation from GI into Gj by cjl. Most decision theoretic 

classification rules are based on the posterior probabilities. These probabilities are usually unknown, 

but may be estimated using Bayes' theorem through $(Gj I xi) = $(Gj)$j(xi)/i(xi), where $ ( x i )  is 

calculated as $(xi) = j$(Gj)$j(xi). 

The Bayes decision theoretic approach to classification seeks to divide the attribute space 

X c %P into r mutually exclusive, collectively exhaustive regions R1, ..., R,, such that observation i 
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will be assigned to Gj  if and only if xi E R j  (Anderson 1984; Das Gupta 1973). Among the most 

widely known decision theoretic rules are the maximum likelihood rule, the rule which minimizes the 

expected misclassification costs, and the rule which minimizes the total probability of misclassification. 

The Bayes rule in (2.1) minimizes the expected cost of misclassification (Hand 1981), 

Classify observation i into Gk iff x ~ ~ j p ( G j ) p j ( ~ ~ ) / p ( ~ ~ )  < x cqjp(Gj)pj(xi)/p(xi), 
j =  l , j #  k j = l , j  # q 

As p(xi) is common to both sides, it can be omitted from (2.1). If the misclassification costs 

across groups are equal, the Bayes discriminant rule minimizing the total probability of 

misclassification (Hand 1981) classifies observation i into Gk for which (2.2) holds, 

Classify observation i into Gk iff p(Gk)pk(xi)/p(xi) = m a x j { ~ ( G j ) ~ j ( x i ) / ~ ( x i ) } .  Pe2) 

The rule in (2.2) in fact classifies an observation into the group with the highest posterior 

probability. As in (2.1), the term p(xi) is usually omitted from the expression. The maximum 

likelihood discriminant rule in (2.3) assigns observation i to Gk with the highest probability density 

function value, 

Classify observation i into Gk iff pk(xi) = maxj{pj(xi)}. (2.3) 

In the remainder of this paper, we will focus on building decision theoretic rules for the binary 

variable classification problem based on the general decision rule in (2.2). Specifically, we will develop 

MP- based rules which are consistent with this decision-theoretic rule. Although we will limit ourselves 

to rules of the type of (2.2), it is straightforward to develop analogous MP-based rules based on (2.1) 

and (2.3). 

3. CLASSIFICATION IN THE PRESENCE OF BINARY VARIABLES: 
STATISTICAL METHODS 

Consider the case where observation i is characterized by the binary attribute vector xi = (xi,, 

..., x. ), i.e., xi, = 0 or 1, for all u. Suppose that the number of training sample observations in Gj  is ' P 

given by nj, for a total of n = C > ,  , nj observations in the sample. Thus, a training sample 

observation i from Gj is characterized by the ptuple xi j  = (xijl, ..., x . .  )T of binary variables. 
'3P 

Define the degree of discordance between two binary vectors x and y by the Hamming distance 

measure d(x, y) = ( X - ~ ) ~ ( X - ~ ) ,  and let the number of training sample observations x i j  with d(x, 

xij) = k be given by njk(x). In the case of binary vectors, d(x, y) represents the number of components 

of x and y which differ in value (i.e., 0 vs. 1 or 1 vs. 0). Denote the number of observations x i j  located 

in the multinomial cell of a given x, i.e., with d(x, xij) = 0, by njo(x). Since x consists of binary 

components, we can associate each distinct xT = (x,, ..., xp) with uniquely with cell 

e(s) = 1 + C f= ,xi2('-'), s = 1, ..., t, where 1 = 2". For example, all observations in cell e ( l )  have 
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x1 = ... = xp = 0, whereas all observations in cell e(2) have x1 = 1, x2 = ... = x = 0. Denote the P 

attribute vector associated with each observation located in a given cell e(s) by b,. Obviously, any 

classification rule based on binary attribute variables will allocate all observations in cell e(s) to the 

same group. Denote the number of training sample observations i E Gj which are located in cell e (s j  

by njs. Then, in the case of two groups the number of misclassified observations for cell s will be 

either nl, (if the decision rule assigns the observations in cell e(s) to G2) or n2, (if the decision rule is 

to assign the observations in cell e(s) to GI). 

Next, we review a number of widely used statistical methods for binary variable classification. 

Each of these methods estimates the group-conditional distribution pj(xi) = p j(xi I Gj), j = 1, ..., r, 

and classifies an observation i into the group Gk with the highest estimated posterior probability 

F(Gk I xi), determined from the Fj(xi) using Bayes' theorem. 

Full Multinomial, Nearest Neighbor and Kernel Methods 

The full multinomial procedure estimates the pj(x) by the relative frequencies 
A 

pj(x) = njo(x)/nj, j = 1, ..., r. For a meaningful statistical interpretation, it is recommended that 

each cell in the experimental design contain a t  least five training sample observations. In practice, 

frequently some of the cells are empty, in particular if the number of attributes is large or if the 

number of observations is small. The full multinomial procedure requires many parameters and 

provides little information about the shape of the distribution pj(x). On the positive side, the 

procedure is straightforward, easy to understand and easy to implement, and yields an asymptotically 

optimal, unique minimum variance unbiased estimator of pj(x) (Hand 1993). 

Hills (1967) proposes a smoothed group membership probability estimator for the binary 
A 

variable classification problem, pj(x) = n r l  EL= njh(x), j = 1, ..., r, where L, 0 < L < p, is the order 

of the procedure. This estimator, known as Hill's k-nearest neighbor estimator (kNN-Hills), avoids the 

problem with empty cells by including in the numerator the training sample observations in all cells 

with a Hamming distance from x of a t  most L. Note that the full multinomial is the kNN-Hills 

estimator for L =O. While intuitively appealing, the kNN-Hills estimator is ad hoc and lacks a 

theoretical or model-based justification (Krzanowski 1988). 

The kNN-Hall estimator (Hall 1981b) is an adaptive variant of the kNN-Hills estimator of the 

form Fj(x) = nr1 E ;= wjhnjh(x). The weights wjh are chosen to minimize A(wjl, ..., 

w T  = = l ~ { j ( b , ) - p j ( b , ) .  Unfortunately, the kNN-Hall estimator may yield negative 

probability estimates, but this usually arises only if the true probabilities are small or if the training 

sample is too small. Negative estimates can be interpreted as a warning that the probabilities in 

question cannot be estimated accurately given the current design (Hall 1981b). 

Aitchison and Aitkin (1976) propose the nonparametric kernel estimator, Fj(x; A) = 
n .  p-d(zhj,4 

nyl EhJ= 1X (l-~)~('~j':)where X is a smoothing parameter such that 0.5 < X 5 1. These 

authors suggest to estimate X by cross-validation, for instance by means of the leave-one-out (LOO) 

method, using an estimate of the likelihood function. Unfortunately, the resulting adaptive estimator 
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may behave erraticly in the presence of empty or near-empty cells. To overcome this difficulty, Hall 

(1981a) proposes an alternative estimator which minimizes a global function of the mean squared error. 

Kernel and kNN estimators are based on one single assumption, namely that neighboring cells 

are highly correlated, so that adjacent cells will have similar group membership probabilities. In 

contrast, no such assumption is made in the full multinomial method (Hand 1981). The kNN-Hall and 

kernel estimators are very flexible and have a tendency to overfit the data (Aitchison and Aitkin 1976; 

Asparoukhov and Andreev 1995; Hall 1981b). As a consequence, these methods tend to yield overly 

optimistic and heavily biased resubstitution (i.e., training sample) misclassification errors, thus 

providing an unreliable measure of classification accuracy on validation samples. Moreover, these 

methods have been found to be effective only if the training sample is large or if the number of 

variables is large (Asparoukhov and Andreev 1995; Hand 1983). 

Bahadur Model 

The first-order Bahadur model (Bahadur 1961) assumes that the variables are independent, 
I. 1-1. 

and estimates pj(xi) by cj(xi) = n f= 1(9ij) '(1-Bij) ', where 9 .  13 . = p(xi = 1 I G j )  This model 

involves few parameters and can easily handle missing data, but tends to be overly optimistic (i.e., 

biased) in terms of estimating the group membership probabilities (Hand 1993), and the classification 

accuracy of the first-order Bahadur model may decrease significantly if the variables are correlated. 

The second-order Bahadur model, which uses first order correlation terms, performs much better if the 

variables are correlated (Dillon and Goldstein 1978). 

Log Lznear Models (LLM), Logistic and Quadratic Regression, and Normality-Based Procedures 

Log linear models (LLM) are widely used for analyzing contingency tables, and estimate 

log(pj(x)) as a linear function of the main effects and interactions between the binary variables (Agresti 

1990). However, the decision of which main effects and interactions to include in the analysis has to be 

made prior to fitting the model, and empty cells may cause serious estimation problems. As a result, 

this method is of limited use for analyzing classification problems with binary variables, particularly if 

the number of variables (and therefore the number of cells) is large. 

The logistic regression (LR) and quadratic logistic regression (QLR) methods avoid the 

problem of estimating the density function, by assuming that p(Gj I x) has a logistic form (Cox 1966; 

Day and Kerridge 1967; Anderson 1972, 1975). In the LR method, the interaction structure between 

the different groups is assumed to be equal, whereas the QLR assumes a more general structure, albeit 

a t  the expense of having to use higher-dimensional iterative estimation schemes (Anderson 1975). 

If the observations are multivariate normally distributed with equal variance-covariances 

across groups, Fisher's (1936) linear discriminant function (LDF) yields the optimal classification rule 

(Anderson 1984). Similarly, if the observations are multivariate normally distributed with unequal 

variance-covariances across groups, Smith's (1947) quadratic discriminant function (QDF) is optimal 

(Anderson 1984). Moore (1973) demonstrates that the LDF tends to perform better than the QDF. 
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This may be due to the large number of parameters to  be estimated in the QDF, which plays an 

important role if the training sample is small relative to the number of attributes (Duarte Silva 1995). 

As the LDF is relatively robust and easy to  apply, it has often been used to analyze 

classification problems for which the normality assumption is mildly violated (Krzanowski 1977), for 

instance in the case of binary attribute variables (Dillon and Goldstein 1978; Gilbert 1968; Hand 1983; 

Moore 1973; Krzanowski 1977; Trampisch 1978). One characteristic of the LDF is the stability of its 

classification performance as the number of variables increases. Dillon and Goldstein (1978) 

recommend the use of the LDF in situations of moderate correlations and reasonably large mean 

differences. A number of authors have studied the performance of LR in relation to the LDF 

(McLachlan 1992). The general consensus is that logistic discrimination is preferred to  the LDF if the 

distributions are clearly non-normal (as with binary variables) or the dispersion matrices are strongly 

unequal (Krzanowski 1988). 

Fourier Procedure 

Ott and Kronmal (1976) propose a nonparametric model based on an orthogonal expansion of 

the density in terms of discrete Fourier series. This model, however, is unsuitable for problems with a 

large number of attribute variables (Asparoukhov and Andreev 1995; Titterington et  al. 1981). 

All of the statistical methods described above are included in the experimental comparison 

below. Other statistical methods for binary classification that we will not discuss in detail, as these are 

not part of our study, include single-stage methods such as the minimum logit X 2 ,  minimax estimators, 

Rademacher-Walsh polynomial approximations (Goldstein and Dillon 1978; Hand 1981, 1982, 1983; 

Martin and Bradly 1972; McLachlan 1992), neural networks (Lippmann 1989; Misson and Wang 1990; 

Rypley 1994; Salchenberger et al. 1992; Tam and Kiang 1992), classification trees (Hartigan 1975), and 

multi-stage methods such as multiclassifiers (Xu et  al. 1992), multilevel classifiers (Benediktson and 

Swain 1992; Ng and Abramson 1992) and tree classifiers (Sturt 1980). 

4. MP-BASED CLASSIFICATION FOR THE BINARY VARIABLE PROBLEM 
If the attribute variables are binary, the r groups may be thought of as swarms of points in 

XP. An observation signifies one single point in %P, and it is intuitively attractive to allocate it to the 

"closest" training sample group (Krzanowski 1988). The Bayes decision theoretic approach to 

classification seeks to divide the attribute space into regions that minimize either the expected 

misclassification cost or the total misclassification probability, or maximize the likelihoods, based on 

probability density functions. Hand (1981) notes that, although perhaps intuitively attractive, non- 

Bayesian decision rules may result in poor classifiers, unless the decision surface closely resembles that 

of the Bayes rule. 
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With the exception of the MIP, which directly minimizes either the number of misclassified 

training sample observations or the expected misclassification costs, MP methods use distance measures 

from the boundaries of R j  for classification purposes. Most MP methods are based on the absolute 

distance criterion (L1 norm distances), which derives its intuitive appeal as a potentially robust 

alternative to L2 norm-based parametric normality-based classification methods such as the LDF and 

QDF if the data are clearly non-normal. A number of simulation studies have shown that for non- 

normal and outlier-contaminated classification problems, several MP-based methods, in particular the 

MSD and Hybrid methods, may indeed give better classification results than the LDF, QDF, LR, QLR, 

kernel and Nearest Neighbor methods (Glorfeld and Kattan 1989; Joachimsthaler and Stam 1990; 

Duarte Silva and Stam 1994; Duarte Silva 1995), but not all research studies confirm this finding. In 

the case of binary variable classification problems, the normality assumption is clearly violated, so that 

MP methods appear natural candidates for solving these problems. 

4.1. Developing a Bayes Decision Theoretic Rule for the Binary Variable Discriminant Problem 

We next develop the MIP-based Bayesian rule (BMIP) is optimal not only in a geometric 

sense, but also in the Bayes decision theoretic sense. Although we could develop analogous MP-based 

classification rules based on (2.1) and (2.3), in this paper we will focus on the Bayes discriminant rule 

in (2.2) which minimizes the total probability of misclassification. In the case of binary vectors xi, 

pj(xi) = p(xi E e(s) I Gj), and for the two-group problem (2.2) can be written as (4.1), 

Classify observation i into GI, if p(Gl)p(x, E e(s) I GI) L p(G2)p(xi E e(s) 1 G2), 

and into G2 otherwise, (4.1) 

The rule in (4.1) in fact maximizes the posterior probability of group membership p(Gj I xi) = 

p(Gj)pj(x,)lp(xi), but we can omit p(xi) > 0 from the expression because it is common to both the left- 

and right-hand-side of the inequality. The rule in (4.1) shows that, in order to classify observation i, 

we only need to identify the group Gj for which the posterior probability is the highest, regardless of 

how much higher it is, or what the exact probability values are. In other words, in classifying 

observation i, it makes no difference whether p(Gl I xi E e(s))  = 0.99 and p(G2 I x, E e(s)) = 0.01, or 

P ( G ~  I xi E e(s)) = 0.51 and P ( G ~  I xi E e(s))  = 0.49; in both cases, observation i is assigned to GI. 

We can estimate ~ ~ ( x , )  by the relative frequencies in the training sample, yielding the unbiased 

estimator in (4.2), 

If the prior group membership probabilities P ( G ~ )  = q j  are known, the joint probabilities are 

estimated by p^(x, E e(s) n x ,  E Gj) = qjnj,/nj, and (4.1) can be written as (4.3), 

Classify observation i E e(s) into GI, if > B, and into G2 otherwise. 
nl n2 (4.3) 
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If unknown in advance, the prior probabilities can be estimated by the relative frequencies of 

training sample observations in Gj, yielding p^(Gj) = nj/(nl + n2), j = 1, 2, so that the decision rule is 

nl s to assign observation i E C(s) to GI, if - 2 - n2s and to G2 otherwise. Canceling common 
nl + n2 nl + n2' 

terms, the Bayesian decision theoretic rule can be simplified to (4.4), 

Classify observation i E C(s) into GI, if nls 2 nzS, and into G2 otherwise. (4.4) 

The rule in (4.4) indicates that we can use the number of observations in the different cells to 

estimate the posterior group membership probabilities, and therefore to predict the group membership 

of each observation. Since (4.4) was drived directly from the Bayes decision theoretic classification rule 

in (2.2), this approach is not just ad hoc but has a strong decision theoretical justification. 

Inequalities of the type of (4.4) are easily implemented within the MP context. Hence, within 

the Bayes decision theoretic framework we should focus our attention on the fitting of inequalities, 

rather than on the estimation of the probability density function. We will refer to this approach as the 

BFI (Bayesian fitting of inequalities). Rather than maximizing the posterior probability directly, the 

BFI approach seeks to maintain the correct direction of the inequalities according to (4.4) for as many 

training sample observations as possible, therefore implicitly maximizing the posterior probability of 

group membership. 

In the MP context, (4.4) implies that we have n inequalities, one for each training sample 

observation, and fit the direction of each inequality as a function of the binary attribute variables. 

Denoting the classification function by Ax) = xTw, where w is the p-dimensional vector of attribute 

coefficients that are to be estimated, the classification score of observation i by Axi), and the cut-off 

value separating G1 and G2 by c, the MP formulation will classify i into G1 if Ax,) < c, and into G2 if 

Axi) > C. The classification function Ax) may either be linear in the attributes xi or nonlinear 

functions of the attributes (e.g., quadratic or polynomial). In order to keep the notation simple, we 

will limit our notation to the original attribute vector x. Of course, in either case the resulting 

formulation is fully consistent with the BFI approach. 

4.2. MIP Formulations for the Binary Variable Discriminant Problem 

We are now ready to formulate a MIP formulation for the general two-group binary variable 

classification problem based on the BFI approach in (4.4), and derive an equivalent but greatly 

simplified formulation with many less binary variables and constraints, taking advantage of the special 

structure of the binary variable classification problem. 

The general MIP formulation is given as Problem I, 



Problem I: Minimize zl = 6, 
i = 1 

Subject to: 

X ~ W - ~ 6 ,  5 c, i E GI, 

x7w+M6,>c ,  i € G 2 ,  

wk and c are unrestricted, k = 1, ..., p, 

6, = 1 if observation i is misclassified, and 6; = 0, otherwise, i = 1, ..., n, 

where M is a sufficiently large positive scalar. 

It is well-documented that this formulation, with n = nl + n2 proper constraints and n binary 

variables, is computationally feasible for small training samples only (Stam and Joachimsthaler 1990; 

Koehler and Erenguc 1990; Banks and Abad 1991; Soltysik and Yarnold 1993, 1994; Duarte Silva 

1995). However, as in our case all observations located in a given cell e(s) have identical values for 

each of the p binary variables and will be classified into the same group, we can combine the problem 

constraints and contributions to  the objective function zl for each cell. Replacing the individual 

observations xi E C(s) by the corresponding vector b, (recall that b, = xi iff i E e(s)) ,  Problem I can be 

restated as: 

Problem 11: Minimize z2 = 2 {n1s6~s + n2s62s) 

Subject to: , = I ,  e( , )#0  

b ; w - ~ 6 ~ ,  5 c, if nls > 0, s = 1, ..., 2, 
b:w + Mh2, > c, if n2, > 0, s = 1, ..., 2, 

wk and c are unrestricted, k = 1, ..., p, 

bj3 = 1 if the observations from Gj in cell t (s)  are misclassified, 

and hj, = 0, otherwise, s = 1, ..., 2; j = 1, 2. 

Problem I1 has a t  most two binary variables and a t  most two proper constraints for each cell 

e(s), for a total of a t  most 22 binary variables and a t  most 22 proper constraints. The optimal 

solutions to Problems I and I1 are identical. As we need to include a constraint only if the 

corresponding nj, > 0, the actual number of binary variables and constraints may be strictly less than 

22. 

Problem I1 can be tightened further, because b ; w - ~ 6 ~ ,  will either be a t  most c or exceed c, 

and either all training sample observations i E e(s) that belong to  G1 will be classified correctly, i.e., 

bl, = 0 and b2, = 1, or those belonging to G2 will be classified correctly, in which case 61, = 1 and 

b2, = 0. Note that 61s62s = 0 and bl, + b2, = 1, for each s. Using the Bayes decision theoretic rule in 

(4.4), we can minimize the the total probability of misclassification by assigning all observations in 

e(s) to G1 if nls >_ n2,, and to  G2 otherwise. Therefore, we need only one constraint for each cell, 

rather than the two constraints used in Problem 11. 

If nl, >_ n2,, the component of z2 associated with e(s) becomes n1s61s + n2,62s = 

(nls-n2s)61s + n2,. Similarly, if nls < n2, this component of z2 equals n1s613 + n2,b2, = 
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(n28-n1,)62, + n18. Therefore, the contribution of C(s) to t2 equals I nls-n2, 1 6, + min(n18, n2,), 

where the binary variable 6, equals 1 iff the majority of training sample observations in e(s) is 

misclassified. Hence, the objective function component for e(s) is weighted according to the difference 

between the number of observations in e(s) that belong to each group. For each individual cell e(s), 

the minimum number of misclassified observations equals min(nl,, n2,). 

Based on the above, we rewrite Problem I1 as the BFI formulation in Problem 111: 

t 
Problem 111: minimize z3 = { I  nl,-n2, I 6, + min(nl,, n2,)), 

(BMIP) 8 = l ,e(,) # 0 

Subject to: 

b:w-M6,< c, if n l ,> n2,; n ls>O, s = 1 ,  ..., t, 
b;w+M6,> c, if nl,< n2,, s = 1 ,  ..., 2, 

wk and c are unrestricted, k = 1, ..., p, 

6, = 1 if the majority of observations i E e(s) is misclassified, and 6, = 0, otherwise, s = 1, ..., t. 

Problem I11 has a t  most t binary variables and a t  most t proper constraints, and has the same 

optimal solution as Problem 11. Note that, if 6, = 0 for all s, zg = = 8,ec.l # 0 
min(nl,, n2,) equals the 

minimum number of misclassifications, which term is a constant and can be omitted from the objective 

function. Also note that, since the value of each nj, in the training sample is known a priori a t  the 

time of the model formulation, the objective function coefficients are determined prior to the analysis. 

............................... 

Table 1 Here 

As an example, consider the two-group classification problem in Table 1 with p = 2 binary 

attributes, for a total of t = 2P = 4 cells. From Table 1, we see that nl = 50, n2 = 40, and the training 

sample size equals n = 90. The third and fourth columns show the distribution of the training sample 

observations over the different cells. For instance, of the 21 observations located in cell e(1) 15 belong 

to G1 (rill = 15) and 6 to G2 (n12 = 8), SO that I nll-n21 I = 15-6 = 9 and min(nll, n21) = 6. The 

BMIP fomulation according to Problem I11 is as follows, 

Minimize z3 = 9b1 + 9b2 + 6b3 + 16b4 + 25 
0 x wl + 0 x w2-Mb1 < C, for e ( l ) ,  
0 x wl + 1 x w2 + Mb2 > c, for e(2), 
1 x wl + 0 x w2 + Mb3 > c, for e(3), 
1 x wl + 1 x w2- M64 5 c, for e(4), 

wl, w2 and ca re  unrestricted, 
6, = 1, if the majority of observations in e(s) is misclassified, 

and 6, = 0, otherwise, s = 1, ..., 4. 

The greatly simplified formulation in Problem I11 renders the BMIP approach computationally 

feasible for any size training sample. 



4.3. MSD Formulations for the Linear Binary Variable Discriminant Problem 
Development of the Conventional MSD Formulation 

In this section, we develop a reduced size MSD formulation for the binary variable 

classification problem, much analogous to the BMIP formulation, except that the justification for the 

MSD formulation is intuitive, and does not have a direct decision theoretic justification. 

The general MSD formulation that does not take advantage of the special structure of the 

binary variable classification problem is given as Problem IV: 

Problem IV: Minimize zq = 2 di 
i = l  

Subject to: 

wk and c are unrestricted, k = 1, ..., p, 

Problem IV has n deviational variables and n proper constraints, one for each training sample 

observation. This formulation is the direct counterpart of Problem I, with the deviational variables d, 

replacing the binary variables 6;. As in Problem I, we can organize Problem IV by cell, combining all 

observations in cell e(s)  to a single binary variable b,, yielding Problem V: 

Problem V: Minimize z5 = 

(Conventional Cell MSD) 8 = l ,e(,) # 0 

Subject to: 

wk and c are unrestricted, k = 1, ..., p, 

Problem V has up to 22 deviational variables and up to 22 constraints. The optimal solution 

to Problem V is identical to that of Problem IV. The Problem V formulation of the example problem 

introduced above is as follows: 



Minimize z5 = 15dll + 6d2i + adl2 + 17d22 + 6d13+ 12d23+ 21d14 + 5d24 
O x w l + O x ~ 2 - d l l ~ ~ ,  for e ( l ) ,  
0 x wl + 0 x w2 + dz1 > c, for e ( l ) ,  
O X  wl + 1 x w,-dl, 5 c, for e(2), 
O X  w1 + 1 x w2+ d2, > c, for e(2), 
1 x wl + 0 x w2-d13 5 C, for e(3), 
1 x wl + 0 x w2 + d23 > c, for e(3), 
1 x wl+ 1 xw2-d14 5 C, for e(4), 
1 x wl + 1 x w2 + d24 > c, for e(4), 

wl, w2 and c are unrestricted, 
dl,, d2,>0,  s = 1 ,  ..., 4. 

Development of Cell Reduced MSD Formulation 

Similar to  the BMIP formulation in Problem 111, where 61s62s = 0, it is easy to show that in 

Problem V, dlsd2, = 0, for each s. However, whereas in the BMIP formulation 61,+62s = 1, in 

Problem V there is no general expression for dl, + d2,. Nevertheless, from a classification viewpoint we 

can limit ourselves to using only one value d,, because either b:w 5 c or bzw > c, so that we may use 

only one inequality for each cell, namely that for the class with the greatest number of observations for 

this cell. Thus, each cell has a t  most one constraint associated with it, either b:w-d, 5 c, if nl, > n2, 

and nls > 0, or b:w + ds > C, if nls < n2,. We simplify the Cell Reduced MSD formulation criterion z6 

in (4.6), 
t 

minimize z6 = x { 1 nl,-nz, 1 d, + min(nl,, n2,)), (4.6) 
s =  l , e ( s ) #  0 

by omitting the second term, as it is merely a constant. 

t 

Problem VI: Minimize z7 = x I nls-n2, I d, 

(Cell Reduced MSD) 8 = l,C(s) # 0 

Subject to: 

wk and c are unrestricted, k = 1, ..., p, 

Problem VI has at  most t deviational variables, and a t  most t proper constraints. The 

formulation in Problem VI does not have a decision theoretic justification. However, an intuitive 

motivation is that criterion z7 weights the "balance of evidencen ( nls-n2, 1 of the number of 

observations belonging to G1 and G2 in each cell e(s) by the undesirable distance d, of b:w from the 

surface separating the groups. The example problem formulation according to Problem VI is as 

follows: 



Minimize z7 = 9dl + 9d2 + 6d3 + 16d4 
0 x wl + 0 x w2-dl 5 C, for e( l ) ,  
0 x wl + 1 x w2 + d2 > c, for e(2), 
1 x wl + 0 x w2 + d3 > c, for e(3), 
1 x wl + 1 x w2-d4 5 C, for e(4), 

wl, w2 and c are unrestricted, 
d , > O , s = l ,  ..., 4. 

5. EXAMPLES 
We use three real data sets to illustrate the effectiveness of the MP approaches to binary 

variable classification. An advantage of using real data sets is that the classification results are not 

artificially biased in favor of certain methods. Of course, the use of real data  also limits the scope of 

any conclusions. The MP methods were solved using LINDO (Schrage 1991). For the other methods 

we used our own programs. We used Hall's estimator of the smoothing parameters of the kernel 

procedure. All experiments were carried out on an IBM compatible PC 486180 MHz. 

5.1. Data Sets 

Example 1 

The data of the first example pertain to a study conducted to construct a prognostic index for 

predicting postoperative pulmonary embolism (PPE), using information on 395 patients who had 

surgery a t  the Military Medical Academy in Sofia. Of these patients, 141 developed PPE and 254 did 

not. Three binary variables were used to predict PPE. Each of these variables represents the presence 

or absence of a symptom of PPE,  with each variable equal to 1 iff the symptom is present: xl indicates 

the presence of cancer as the main disease; x2 the presence of a t  least one of the following moderate risk 

concomitant diseases - cardiac failure, local atherosclerosis, diabetes, hypertonia, varicisis, pulmonary 

emphysema; and x3 the presence of a t  least one of the following high risk concomitant diseases - 

syndrome postphlebitic, cardiac decompensation, chronic lung disease, general atherosclerosis. The 

distribution of the patients over the multinomial cells is given in Table 2. 

Table 2 About Here 
.............................. 

Example 2 

The data set of the second example consists of 242 patients a t  the National Center for 

Emergency Medicine in Bulgaria, 102 of whom were diagnosed with dissecting aneurysm (DA) and 140 

were diagnosed with other, similar diseases (Other: 40 with pulmonary embolism, 50 with angina 

pectoris, and 50 with myocardial infarction). In our analysis, we seek to diagnose each patient as 

belonging to one of these groups (DA or Other), based on three symptoms: xl, albuminuria; x2, 

paroxysmal suffocation; and x3, conscious disturbances. Each of these variables equals 1 if the 

symptom is present, and 0 if the symptom is absent. The actual patient distribution over the 

multinomial cells is given in Table 3. 



.............................. 
Table 3 About Here 

Example 3 

The third data set contains information on 144 children who suffered from cranial trauma, 

collected a t  the Department of Pediatrics, Medical Faculty of Sofia. Of these children, 94 did not 

suffer from posttraumatic epilepsy (NO) and 50 did suffer from posttraumatic epilepsy (PE). Three 

binary variables were used to describe the symptoms: zl, the presence or absence of seizures during the 

first month after the trauma; x2, the presence or absence of previous psychoneurological disturbances; 

and x3, the presence or absence of treatment immediately after the trauma. Again, xi equals 1 if the 

corresponding symptom is present, and 0 if the symptom is absent. The multinomial table with the 

distribution of the training sample is given in Table 4. 

Tables 4 and 5 About Here 

5.2. Discussion of Results 

For each data set, we can establish the minimum possible number of misclassifications by 

summing the values of min(nl,, n2,) over each C(s). Therefore, the optimal solution of ~ , m i n ( n l , ,  

n2,) equals 81, 95 and 35 rnisclassifications for Data Sets 1, 2 and 3, respectively. The 19 different 

classification methods included in our study are listed in Table 5. We use two types of error measures 

to  evaluate each classification method: the resubstitution error (RES), which measures the number of 

misclassifications in the training sample, and the leave-one-out (LOO) or cross-validation error 

(Lachenbruch and Mickey 1968). In the LOO method, the number of misclassifications is determined 

by removing one observation from the training sample, estimating the classification rule based on the 

remaining training sample observations, then classifying the observation that was held out, and 

repeating this process, holding each observation out successively. 

From Table 5, we see that the Full Multinomial, kNN-Hall (order 1, 2, 3), LLM (order 2), 

Bahadur (order 2), BMIP and Cell Reduced MSD methods each obtained the optimal solution for all 

three data sets. Interestingly, the BMIP and Cell Reduced MSD methods not only yielded the optimal 

number of rnisclassifications, but also coincided fully in terms of the distribution of rnisclassifications 

over the different cells and the values of each wk and c, for all three data sets. Since the linear BMIP 

and Cell Reduced MSD rules yielded the minimum number of misclassifications, there was no need to 

include nonlinear attribute terms. 

The Kernel estimator, the Fourier procedure and the QLR achieve the optimal solution for two 

of the three data sets. The Fourier procedure performs poorly on Data Set 2. Both the first and 

second order kNN-Hills estimators gives poor classification results for all three data sets. The Cell 

Conventional MSD formulation of Problem V, the Bahadur, first order LLM, QDF and LDF models 
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yield solutions which are clearly inferior to the BMIP and Cell Reduced MSD for all three data sets, 

and the classification performance of the LR is inferior for two of the three data sets. 

Of course it is well known that no one of the discriminant procedures is best in all cases, and 

the purpose of the limited comparative study in this paper is to illustrate the relative classification 

performance of various parametric and nonparametric statistical methods, and in particular the BMIP 

and Cell Reduced MSD. 

6. CONCLUSIONS 
We introduced a novel MIP formulation (BMIP) for solving the binary variable classification 

problem. We showed that the resulting classification rule not only has the usual geometric 

interpretation of other MP-based formulations, but also posesses a strong decision theoretical 

justification, as the resulting classification rule minimizes the total probability of misclassification. 

Additionally, the BMIP formulation requires substantially less binary variables than general MIP 

formulations, enabling the analysis of almost any size training sample. In comparing the classification 

accuracy of the BMIP with a number of the most widely used parametric and nonparametric statistical 

methods on three different real data sets, we found the BMIP to perform better than, for instance, the 

LDF, QDF, kNN-Hills, first order LLM, LR, QLR, first order Bahadur model, Fourier procedure, 

Kernel estimator, and the cell conventional MSD, and a t  least as well as the other methods considered. 

In each case, the BMIP achieved the minimum possible number of misclassifications, both using the 

resubstitution and the leave-one-out error measures. 

The current research can be extended in several different ways. First, additional comparative 

studies are needed to further establish the classificatory performance of the BMIP formulation. Second, 

it is of interest to develop decision theoretic MP-based formulations based on equations (2.1) and (2.3). 

Third, it appears useful to explore decision theoretic MP formulations based on variants of the MSD 

criterion. Fourth, future research should analyze the extension of the binary variable case to that of 

mixed variables and general categorical variables. 
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Table 1: Example Problem 

Table 2: Training Sample Distribution, Data Set 1' 

Cell e(s )  
s 

1 
2 
3 
4 

1: nl = 141, n2 = 254, n = 395. 
2: Patients with postoperative pulmonary embolism. 
3: Patients with no postoperative pulmonary embolism. 

I nls-n23 I 

9 
9 
6 
16 

Cell e(s)  

S 

1 
2 
3 
4 
5 
6 
7 
8 

Attribute Values 

"1 x2 

0 0 
0 1 
1 0 
1 0 

Min(n13, nz3) 

6 
8 
6 
5 

Number of Observations 

Gl G2 

15 6 
8 17 
6 12 

2 1 5 

Attribute Values 

"1 "2 5 
0 0 0 
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

Number of Patients 

P P E ~  ~0~ 

8 74 
30 123 
15 29 
23 18 
17 3 
38 7 

3 0 
7 0 



Table 3: Training Sample Distribution, Data Set 2l 

1: nl = 102, n2 = 140, n = 242. 
2: Patients with dissecting aneurism. 
3: Patients with other diseases: pulmonary embolism, angina pectoris, 

myocardial infarction. 

Cell e(s)  

s 

1 
2  
3  
4  
5 
6  
7  
8 

Table 4: Training Sample Distribution, Data Set 3l 

Attribute Values 

"1 "2 "3 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

1: nl = 94, n2 = 50, n = 144. 
2: Patients with no posttraumatic epilepsy. 
3: Patients with posttraumatic epilepsy. 

Number of Patients 

D A ~  others3 

34 39 
8 14 

17 15 
5 2  

19 2  8 
3  2  6  

12 10 
4  6  

Cell e(s)  

s 

1 
2  
3  
4  
5 
6  
7  
8 

Attribute Values 

"1 "2 "3 

0  0  0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1  1 

Number of Patients 

~0~ P E ~  

16 10 
0  5 

12 7  
1 6  

39 8 
5 3  

2  1 6  
0 5 
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Table 5: Number and Percentage of Misclassified Observations, 19 Classification Methods 

1: RES = Using the resubstitution method. 
2: LOO = Using the leave-one-out method. 

Procedure 

Full Multinomial 

kNN-Hills L=l 
L=2 

kNN-Hall L=l 
L=2 
L=3 

LLM Order 1 
Order 2 

Bahadur Model Order 1 
Order 2 

Kernel Estimator 

Fourier Procedure 

LDF 
QDF 
LR 
QLR 

MIP 
MSD (Cell Reduced) 
MSD (Cell Conventional) 

Optimal Number of 
Misclassifications 

Number Mislassified 
Data Set 1 Data Set 2 Data Set 3 

R E S ~ L O O ~  RES LOO RES LOO 

81 81 95 95 35 35 

131 131 100 100 40 40 
141 141 102 102 50 50 

81 81 95 95 35 35 
81 81 95 95 35 35 
81 81 95 95 35 35 

86 86 98 98 37 37 
81 81 95 95 35 35 

86 86 98 98 37 37 
81 81 95 95 35 35 

81 81 95 95 37 37 

81 81 95 124 35 35 

86 104 98 98 37 37 
81 104 95 95 37 37 
81 81 98 98 37 37 
81 81 95 95 35 40 

81 81 95 95 35 35 
81 81 95 95 35 35 
86 86 97 97 37 37 

8 1 9 5 35 

Percentage Misclassified 
Data Set 1 Data Set 2 Data Set 3 

RES LOO RES LOO RES LOO 

20.5 20.5 39.3 39.3 24.3 24.3 

33.2 33.2 41.3 41.3 27.8 27.8 
35.7 35.7 42.2 42.2 34.7 34.7 

20.5 20.5 39.3 39.3 24.3 24.3 
20.5 20.5 39.3 39.3 24.3 24.3 
20.5 20.5 39.3 39.3 24.3 24.3 

21.8 21.8 40.5 40.5 25.7 25.7 
20.5 20.5 39.3 39.3 24.3 24.3 

21.8 21.8 40.5 40.5 25.7 25.7 
20.5 20.5 39.3 39.3 24.3 24.3 

20.5 20.5 39.3 39.3 25.7 25.7 

20.5 20.5 39.3 51.2 24.3 24.3 

21.8 26.3 40.5 40.5 25.7 25.7 
20.5 26.3 39.3 39.3 25.7 25.7 
20.5 20.5 40.5 40.5 25.7 25.7 
20.5 20.5 39.3 39.3 24.3 27.8 

20.5 20.5 39.3 39.3 24.3 24.3 
20.5 20.5 39.3 39.3 24.3 24.3 
21.8 21.8 40.1 40.1 25.7 25.7 

20.5 39.3 24.3 


