
Nontraditional Approaches to 
Statistical Classification: Some 
Perspectives on Lp-Norm Methods

Stam, A.

IIASA Working Paper

WP-96-128

December 1996 



Stam, A. (1996) Nontraditional Approaches to Statistical Classification: Some Perspectives on Lp-Norm Methods. IIASA 

Working Paper. WP-96-128 Copyright © 1996 by the author(s). http://pure.iiasa.ac.at/4899/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


Working Paper 
Nontraditional Approaches to 
Stat istical Classification: Some 

Perspectives on L,-Norm Methods 

Antonie Stam. 

\VP-96- 128 
December 1996 

I I ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

:immm Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: i n f o c "  1)llasa.ac.at 



Nontraditional Approaches to 
Statistical Classification: Some 

Perspectives on L,-Norm Methods 

WP-96- 128 
December 1996 

Department  o f  Management,  Terry College o f  Business 
T h e  University o f  Georgia, Athens, G A  30602 

and 
Internat ional Inst i tu te for Applied Systems Analysis 

Laxenburg, Austr ia 

Jlkr.kirzy Pnpel-s a.re interim reports on work of the Interna.biona1 Institute for .4pl>lied 
Systems .Analysis and have received only limited review. \liews or opinions expressed 
hcrein do not necessarily represent those of the Inst,itut,e, its National ~ le in l>er  
Organizations, or other orgariizations supporting the work. 

FfllIASA International Institute for Applied Systems Analysis n A-2361 Laxenburg Austria 

.L A.  w.w.. Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail .  info(@iiasa.ac.at 



Nontraditional Approaches to Statistical Classification: 
Some Perspectives on L,-Norm Methods 

Antonie Stam 
Department of Management 

Terry College of Business 
The University of Georgia 

Athens, GA 30602 

October 1996 

Acknowledgment: This research was supported in part by a Terry Summer Research Fellowship from 
the University of Georgia. 

Acknowledgement: The author thanks Ogi Asparoukhov, Pedro Duarte Silva, Carl Huberty and Cliff 
Ragsdale for their stimulating comments regarding the topic of this paper. 



Nontraditional Approaches to Statistical Classification: 
Some Perspectives on L,-Norm Methods 

ABSTRACT 
The body of literature on classification methods which estimate boundaries between the groups 

(classes) by optimizing a function of the Lp-norm distances of observations in each group from these 

boundaries, is maturing fast. The number of published research articles on this topic, especially on 

mathematical programming (MP) formulations and techniques for Lp-norm classification, is now 

sizable. This paper highlights historical developments that have defined the field, and looks ahead at  

challenges that may shape new research directions in the next decade. 

In the first part, the paper summarizes basic concepts and ideas, and briefly reviews past 

research. Throughout, an attempt is made to integrate a number of the most important Lp-norm 

methods proposed to date within a unified framework, emphasizing their conceptual differences and 

similarities, rather than focusing on mathematical detail. In the second part, the paper discusses 

several potential directions for future research in this area. The long-term prospects of Lp-norm 

classification (and discriminant) research may well hinge upon whether or not the channels of 

communication between on the one hand researchers active in Lp-norm classification, who tend to have 

their roots primarily in decision sciences, the management sciences, computer sciences and engineering, 

and on the other hand practitioners and researchers in the statistical classification community, will be 

improved. This paper offers potential reasons for the lack of communication between these groups, and 

suggests ways in which Lp-norm research may be strengthened from a statistical viewpoint. The 

results obtained in Lp-norm classification studies are clearly relevant and of importance to all 

researchers and practitioners active in classification and discrimination analysis. The paper also briefly 

discusses artificial neural networks, a promising nontraditional method for classification which has 

recently emerged, and suggests that it may be useful to explore hybrid classification methods that take 

advantage of the complementary strengths of different methods, e.g . ,  neural network and Lp-norm 

methods. 

Keywords: Classification Analysis, Discriminant Analysis, Lp-Norm Estimation, Mathematical 
Programming. 



Nontraditional Approaches to Statistical Classification: 
Some Perspectives on L,-Norm Methods 

1. Introduction 

Discriminant is almost as old as mankind. In Deuteronomy 21 of the Bible (NASB) Moses 

declares that1 

"If a slain person is found lying in the open country in the land which the Lord 

your God gives you to possess, and it is not known who has struck him, then 

your elders and your judges shall go out and measure the distance to the cities 

which are around the slain one. It shall be that the city which is nearest to the 

slain man, that is, the elders of that city, shall take a heifer of the herd, which 

has not been worked and which has not pulled in a yoke ..." 

Thus, thousands of years ago, long before Fisher, Smith and Mahalanobis, Moses already 

suggested the use of distance measures for solving discriminant problems. Statistical discriminant 

analysis can be used for one of two purposes: (a) description or discrimination, where the goal is to 

identify the set of variables which maximally discriminates one group from the others, and (b) 

classification or prediction, where the interest is focused on correctly classifying observations into well- 

defined groups, based on their characteristics, when group membership is either known or unknown 

(Huberty 1984; Joachimsthaler and Stam 1990). The primary subject of this paper is the second 

purpose of discriminant analysis, i . e . ,  the classification problem of discriminant analysis. 

Define the class of Lp-norm classification methods as those methods that directly estimate the 

boundaries of each class (group) by optimizing some function of the Lp-norm distances of a set of 

observations in each group from these boundaries. These boundaries are defined by surfaces that 

separate the groups. Since its inception in the mid 1960s, the body of research in Lp-norm 

classification, and particularly in mathematical programming (MP)-based formulations for solving the 

classification problem, has grown and matured considerably. Inspired by problems in pattern 

recognition, initial Lp-norm classification research focused primarily on MP-technical aspects of the 

formulations, rather than on comparing the classification accuracy of Lp-norm rules vis h vis other 

classification methods. The popularization of Lp-norm methods in the early 1980s led to an impetus of 

novel formulations, and infused new energy into the field. In the second half of the 1980s and the early 

to mid 1990s, the focus of research in Lp-norm classification has shifted gradually to issues related to 

the relative classification accuracy of various different Lp-norm methods, although the research on 

refined formulations and methods has continued to prosper as well. 
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This paper first defines the basic concepts of Lp-norm classification analysis, and reviews - 

within a unified framework - what the author views as some of the main trends and issues that have 

helped shape the current state of Lp-norm classification research. Then, the paper continues by 

identifying several ways in which Lp-norm classification research may be strengthened, especially from 

a statistical viewpoint. One issue of general concern is that, whereas it has spurred considerable 

discussion within the management science and engineering fields, the Lp-norm approach to 

classification has not attracted much attention in statistical circles, posing a serious challenge to 

researchers in the field of Lp-norm classification (and discrimination) to reach out and catch the 

interest of the statistical community. The long-term prospects of this line of research may well hinge 

upon whether or not the channels of communication between researchers active in Lp-norm 

classification and researchers in the statistical classification community will be improved. This paper 

offers potential reasons for the lack of communication between these groups, and suggests ways in 

which a bridge between these groups may be forged. The paper also discusses some recently emerged 

research directions that have attracted much attention, e.g., promising new Lp-norm methods, efficient 

algorithms for solving the Lo-norm method, and nontraditional classification methods other than Lp- 

norm ones. 

2. Review of the Most Popular Lp-Norm Methods 
Morrison (1990, p. 1) notes that "every statistical analysis must be built upon a mathematical 

model linking observable reality with the mechanism generating the observations." Thus, a model is a 

conceptual abstraction of reality, and the relationships between the variables are captured in the 

mathematical formulae. After making relevant model assumptions, such as the optimization criterion 

and distributional properties, an appropriate method is selected to estimate the model parameters. 

Specific techniques or algorithms are then used to determine the optimal solution according to the 

method selected. For instance, regression methods can be used for estimation within the framework of 

the "general linear model," with calculations performed using some specialized algorithm. T o  date, 

almost all Lp-norm research has assumed that the classification model is known a priori, and has 

focused on methods for solving the (already known) classification model. Whereas many of the Lp- 

norm classification methods are conveniently formulated as MP problems, and MP optimization 

techniques - such as linear programming (LP), nonlinear programming (NLP) and mixed integer 

programming (MIP) - provide an efficient vehicle for solving these models, several Lp-norm methods 

can be solved using alternative (non-MP-based) algorithms as well. Thus, Lp-norm methods may or 

may not be formulated as MP problems and solved using MP techniques or algorithms. In fact, a few 

of the classification algorithms cited in this paper are not MP-based. Therefore, this paper refrains 

from using the potentially confusing term "MP methods," and uses "Lp-norm methods" instead. 
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Moreover, in an attempt to distinguish between on the one hand conceptual foundations of Lp-norm 

classification methods and on the other hand MP formulations, techniques and algorithms which are 

typically used to solve these formulations, formulations of the various Lp-norm methods are not 

presented in the traditional MP format. 

Rather than reviewing a plethora of different Lp-norm classification methods and MP 

formulations used to solve these methods in detail, this section will introduce the classification problem 

conceptually, integrate a number of the most important formulations within a unified framework, and 

briefly highlight some of the differences between and similarities of these formulations. For a detailed 

description of each individual method and formulation, the reader is referred to  the original papers in 

which these were first introduced, many of which are cited in this paper. Throughout, the 

mathematical detail is kept to a minimum. 

2.1. The Classification Problem 

This paper will only define the case of two-group classification explicitly. The concepts 

underlying the two-group case can be generalized to multiple groups (in several different ways), but the 

notation becomes tedious and complex. Consider the problem where an observation i is to be classified 

into one of two groups, G1 or G2, based on a q-dimensional vector of attributes xi = (zil, ..., x , ~ ) ~ ,  

such that R1 U R2 U RU = ?X4, R1 n R2 = 0, and Rj  n RU = 0, j = 1, 2, where R j  is the region of the 

attribute space 8 4  assigned to Gj  and RU is the region for which the group assignment is undetermined 

(preferably, RU = 0), sometimes called the classification gap. Denote the classification score of 

observation i by Ax,), where Ax,) is some function of the attribute variables. 

Classification Rules 

After first introducing a general framework for Lp-norm classification, the major methods and 

corresponding MP formulations and techniques will be reviewed in detail. The rule for the two-group 

Lp-norm problem is defined by R1 = {x I Ax) < c), R2 = {x I Ax) > c) and RU = {x I Ax) = c), where 

the value of c is called the cut-off value. The surface defined by Ax) = c establishes the boundary 

between G1 and G2. In the MP problem formulation, the classification rule, augmented with 

appropriate deviational (distance) variables, is represented by constraints, one constraint for each 

training sample observation. In these constraints, most MP formulations either relax one (or both) of 

the strict inequalities in R j  to include the case Ax) = c, or allow for a classification gap, defining the 

group assignment regions by R1 = {x I Ax) 5 c), R2 = {x I Ax) 2 c + E)  and RU = {x I c < Ax) < c + E ) ,  

with E > 0 (Erenguc and Koehler 1990; Koehler 1991a). In the latter case, after estimating the 

classification function additional rules are needed to classify observations with scores between c and 

c + E (Ragsdale and Stam 1991; Stam and Ragsdale 1992). 
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In early research, only linear classification functions of the form Ax,) = C:  = la jz, j  = c were 

considered. Similar to what is common practice in regression modeling, recently nonlinear 

transformations of the attributes, y,, = g(x,), have been used as well, implying a classification rule 

h(y,) = Ck = b,y,,, which is nonlinear (e.g., quadratic, second order, polynomial) in terms of the 

original attributes (Banks and Abad 1994; Duarte Silva and Stam 1994b; Rubin 1994). The 

components of a =  (al ,  ..., aq)T or b =  (bl, ..., bJT, along with c, are the classification function 

coefficients to  be estimated. Since Ax,) is linear in the original attributes, Ax,) = c defines a linear 

hyperplane; if h(y,) = c is nonlinear in the original attributes, then it defines a (nonlinear) separating 

surface. For the sake of generality, in the remainder of this paper classification functions of the form 

h(yi) will be used. 

In L -norm classification methods, the "optimal" classification rule is determined by 
P 

minimizing a function of the undesirable deviations (or, in some methods, by maximizing a function of 

the desirable deviations) of all training sample observations from the surface separating the groups. 

The undesirable (external) deviations d, 2 0 and desirable (internal) deviations e, > 0 from the 

separating surface are determined using the equalities in ( I ) ,  

h(y,)-d, + e, = c, if observation i E GI, and 

h(y,) + d,-e, = c, if observation i E G1, 

Thus, for given h(y,) and c, an observation i is misclassified if and only if (iff) d, > 0, i.e., iff 

the observation is located on the "wrong" side of the separating surface. Similarly, e, measures the 

extent to which observation i is located on the "correct" side of the separating surface (see also 

Ragsdale and Stam 1991; Glover et al. 1988; Glover 1990). If the classification criterion includes only 

the d,, and not the e, (this is the case, e.g., for classification methods which focus solely on 

misclassification), (1) is replaced by (2), 

h(yi)-di < c, if observation i E G1, and 

h(y,) + d, > c, if observation i E Glr 

where the classification of observations with h(yi) = c is yet to be resolved. 

Mangasarian (1968) proposes a generalization of the linear rule in (2), in which the group 

boundaries are defined by a multi-surface, piecewise linear separator. T o  date, the classification 

accuracy of Mangasarian's method has not been evaluated for various data  conditions. As discussed 

below, this method is related to  recently proposed artificial neural network methods for solving the 

classification problem (Bennett and Mangasarian 1992a). 
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Classification Criteria 

Focusing on minimizing misclassification, the most widely used class of Lp-norm optimization 

criteria is given in (3), 

minimize 2 P = (2 (d,)p)lJp, 
i = 1 

where n represents the number of training sample observations. In the generic MP formulation for Lp- 

norm classification, (3) is optimized, subject to (2) and nonnegativity constraints d, 2 0. Essentially, 

MP formulations for Lp-norm classification may be viewed as goal programming (GP) formulations 

(Ignizio 1982; Stam 1990). 

The class of Lp-norm criteria includes as special cases the L1-norm criterion, which minimizes 

Cy= (minimize the sum of deviations, a.k.a. the MSD method), the L,-norm criterion, minimize 

limp+,zp, which minimizes d = max,{d,) (minimize the maximum deviation, a.k.a. the MMD 

method), and the Lo-norm criterion, minimize limplozp, which minimizes Cy= 16,, where 6, is a 

binary variable which equals 1 iff d, > 0 (minimize the number of misclassifications, typically solved 

using MIP, a.k.a. the MIP method), and 0 otherwise. The rationale for considering various different 

values of p is that extreme observations are emphasized more heavily as p increases, so that Lp-norm 

methods with "low" values of p may yield potentially robust classification results in the presence of 

extreme observations in the training sample. A graphical representation of different Lp-norm distance 

measures can be found in Joachimsthaler and Stam (1990) and Stam and Joachimsthaler (1989). 

In terms of computational aspects of solving Lp-norm methods, any criterion with p < 1 is 

concave, and as a result the global optimal solution is difficult to identify (this explains why the 

computational requirements of the Lo-norm method are substantial). Lp-norm methods with p E (1, 

m) have a convex criterion with a unique optimal solution and can be solved using NLP techniques 

(Stam and Joachimsthaler 1989). The L1- and L,-norm methods can be solved using LP techniques, 

but the optimal solutions are typically non-unique. The optimal solution of the Lo-norm method is 

typically non-unique. 

2.2. Specific Methods 

The first two-group Lp-norm classification method was the MSD method, proposed in the 

1960s (Minnick 1961; Koford and Groner 1966; Mangasarian 1965; Smith 1968), followed in the 1970s 

by the MIP method (Ibaraki and Muroga 1970; Liitschwager and Wang 1978; Warmack and Gonzalez 

1973). With the exception of Koford and Groner (1966) and Warmack and Gonzalez (1973), these 

methods were solved using MP techniques. Conducted mostly in the fields of engineering and 

management science, early studies focused primarily on the geometric properties of novel Lp-norm 
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methods for pattern recognition, rather than on statistical issues of discrimination and classification. 

The methods were typically illustrated by example. 

The popularity of Lp-norm classification methods experienced a substantial impetus in the 

early 1980s, due largely to the work by Freed and Glover (1981a, 1981b), who analyzed the MSD 

method and introduced the MMD method, and Bajgier and Hill (1982), who conducted extensive 

simulation experiments involving several different Lp-norm methods developed a t  that time, including 

the MMD, MSD and MIP. In his seminal discriminant analysis text, Hand (1981) forwarded a general 

L1-norm method, of which the MSD is a special case. Early research on the MIP method also includes 

the little-known work by Asparoukhov (1985). While continuing to deliver refinements of existing 

methods and novel variants of previous MP-based methods for Lp-norm classification, research in the 

late 1980s and the early to mid 1990s increasingly shifted its focus to the issue of classification 

accuracy. 

During the early 1980s, it was discovered that several of the originally proposed MP-based 

formulations for, a.o., the MSD, MMD and MIP, were fundamentally flawed, and could easily result in 

unbounded (2 = co), unacceptable or trivial (h(y) 0, or b = 0 and c = 0) and improper (h(y,) = c, 

b'i E G1 U G2) solutions (Freed and Glover 1986b; Koehler 1989a, 1989b, 1990, 1991a; Markowski and 

Markowski 1985). Moreover, the solutions of several formulations were shown to be sensitive to data 

transformations (Freed and Glover 1986b; Glover et al. 1988; Markowski and Markowski 1985). Rubin 

(1990b) notes that the MSD problem may have to be solved twice, once with the original group 

designation and again with the groups reversed, after which the solution with the greater classification 

accuracy should be selected. Various modified formulations were proposed to remedy these problems. 

Most of these included normalization schemes, which usually involved either including a normalization 

constraint in the problem formulation, e.g., C,b, + c = 1, or exploring different ways to deal with the 

classification gap. Unfortunately, most of the supposed cures caused other problems. For instance, the 

normalization constraint mentioned above precludes certain separating surfaces from consideration. 

The normalization proposed by Glover (1990) in (4) resolves the problems with previous 

formulations, provided that the mean vectors y = nil C i  ,yi , j = 1, 2, are different, 
3 

where n .  is the number of training sample observations in Gj. If y1 # y2, a rule of the type of (4) 
3 

cannot be an effective classifier. 

Ragsdale and Stam (1991) and Stam and Ragsdale (1992) present alternative ways to deal 

with the classification gap, which also resolve the problems with unacceptable and improper solutions, 

and is insensitive to linear transformations of the data. Cavalier et al. (1989) propose adding a 
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constraint of the type 1 1  b 1 1  = 1, which, although preventing unacceptable solutions, changes an LP 

problem into a non-convex programming problem which is hard to solve. Bennett and Mangasarian 

(1992b) develop a single LP formulation which generates a plane that minimizes an average sum of 

undesirable deviations. Their formulation does not require additional constraints which rule out 

certain solutions from consideration. Wanarat and Pavur (1996) note that the inclusion of second- 

order and cross-product terms of the attributes guarantees that the basic MSD and MIP methods are 

invariant to nonsingular transformations of the data, but that this is not the case if the cross-product 

terms are omitted. Xiao (1994a) derives necessary and sufficient conditions for unacceptable solutions 

in NLP classification analysis. 

Further discussions of issues related to the occurrence and prevention of unbounded, 

unacceptable and improper solutions in LP and MIP formulations, and normalizations that can remedy 

some of these problems can be found in Cavalier et al. (1989), Erenguc and Koehler (1990), Glover 

(1990), Koehler (1994), Ragsdale and Stam (1991), Rubin (1989a, 1989b), and Xiao (1993, 1994b). 

Computational Aspects of the Lo-Norm Method: An NP-Hard Nut to Crack 

The problem of solving the Lo-norm method is NP-hard, and MIP solution algorithms are 

computationally very intensive. Other than the Lo-norm method and its variants which require MIP 

algorithms, there do not appear to be substantial computational problems with Lp-norm methods. The 

computational requirements in the Lo-norm method depend critically on the tightness of the 

constraints, e.g., the value of "Big M," on the number of integer variables, i.e., the number of training 

sample observations (Hillier and Lieberman 1990, p.467), and on the number of attributes (or functions 

thereof) (Duarte Silva and Stam 1996). Using standard MP packages it is virtually prohibitive to solve 

problems with over 100 training sample observations within reasonable CPU time, even on a 

mainframe (Stam and Joachimsthaler 1990). However, in real applications it is not unusual that 

classification problems have training samples with 1,000 observations or more - in particular in image 

recognition problems. Such problems are difficult to solve using MIP techniques, and require efficient 

special-purpose algorithms which seek to take advantage of the special structure of the Lp-norm 

classification problem. 

Some special-purpose MP-based algorithms solve to exact optimality (Banks and Abad 1991; 

Duarte Silva and Stam 1996; Koehler and Erenguc 1990; Marcotte and Savard 1991; Marcotte et al. 

1995), others are exact non-MP-based algorithms (Solt~sik and Yarnold 1993, 1994; Warmack and 

Gonzalez 1973), or heuristic algorithms (Abad and Banks 1993; Koehler 1991b; Koehler and Erenguc 

1990; Marcotte et al. 1995; Rubin 1990a). The MultiODA software (Soltysik and Yarnold 1994) and 

the Divide-and-Conquer algorithm (Duarte Silva and Stam 1996) appear to be the fastest special- 

purpose algorithms developed to date. The algorithm of Duarte Silva and Stam (1996), which 
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decomposes the overall problem, can reportedly solve problems with 1,000 training sample observations 

and 2 attributes on a 486 DX2 (66 Mhz) PC with 16 MB of RAM in slightly over 1 CPU minute. 

Weighted Formulations and Secondary Criteria 

In the class of classification criteria in (3), each deviation is weighted equally, which - 

depending on the application, the prior probabilities of group membership and the costs of 

misclassification - may not always be appropriate. It is possible to assign different weights to each 

component and to include both desirable and undesirable deviations in (3), in which case some 

measures of misclassification and correct classification are optimized simultaneously. An example of an 

Lp-norm criterion which minimizes a weighted function of both the desirable (dij) and desirable (eij) 

deviations is given in (5), 

where wu and wD are the weights associated with dij and eij from the separating surface of 
' 3  a3 

observation i E Gj, respectively, and nj is the number of training sample observations in Gj. The 

criterion in (5) allows for observation-specific weights, group-wise weights and weights that depend on 

whether an observation is classified correctly or incorrectly. An example the OSD (optimize the sum of 

deviations), which optimizes a weighted sum of external and internal deviations (Bajgier and Hill 

1982). Although (3) and (5) are fairly general, other types of deviations and weighted criteria have 

been proposed as well, such as the MSID (maximize the sum of internal deviations), which 

simultaneously minimizes the maximum of the weighted external deviations and maximizes the sum of 

the weighted internal deviations (Freed and Glover 1986). In its most general form, the criterion of the 

Hybrid method (Glover et al. 1988) includes both individual and group-specific deviations, desirable as 

well as undesirable, each of which can be assigned a different weight. Thus, the OSD, MSID and 

Hybrid methods essentially extend the MSD criterion, incorporating additional information. For 

reasons of brevity we do not explicitly state the multitude of different variations of weighted criteria 

proposed in the literature. 

Weighted criteria are particularly useful in the following two situations. First, a variant of the 

Lo-norm (MIP) method, in which the 6, in the objective function are weighted by the relevant 

misclassification costs, can be used to determine the classification rule that minimizes the training 

sample misclassification costs directly. This in itself is a significant contribution to statistical 

classification. The weighted criterion that minimizes the training sample misclassification cost is given 

by ( 0  



where r j  is the prior probability of membership in G. ,  j = 1, 2, and C(r  1 s) is the cost of classifying an 
3 

observation from G, into G,, r, s = 1, 2; r # s. 

The second motivation for using a weighted classification criterion is that LP and MIP 

formulations for Lp-norm classification, such as the MSD, MMD and MIP, commonly have multiple 

optimal solutions, implying the existence of several non-equivalent classification functions which are 

optimal with respect to this (primary) classification criterion. Hence, it is recommended to use a 

secondary criterion to resolve ties in the optimal solution of the primary classification criterion. For 

example, a useful secondary criterion for the MSD and MIP which provides relevant additional 

information about the characteristics of the groups is to maximize correct classification (e.g., to 

maximize C ,ei). A secondary criterion can be included in the method by solving a weighted problem 

formulation. T o  ensure that the secondary criterion never interferes with optimizing the primary 

criterion, the problem should be solved as a lexicographic G P  problem, with weights of the secondary 

criterion that are sufficiently smaller than those of the primary criterion. Different tie-breaking 

schemes can be found in Bajgier and Hill (1982), Erenguc and Koehler (1990) and Duarte Silva (1995). 

In the Hybrid and weighted MP methods with p>O it is not easy to identify appropriate 

weights (justified from a statistical perspective) for the elements in the objective function, and the 

interpretation of the results may be complex, because any relationship of these weights with 

misclassification costs is indirect. Glover et al. (1988) indicate restrictions on the criterion weights in 

the Hybrid method that guarantee that the problem can be solved, but offer no general guidelines on 

how to select these weights within these limits. As a cautionary note, methods for which the d, (or dij) 

are to be minimized and the e, (or eij) are to be maximized simultaneously can be tricky, and may 

easily lead to unbounded solutions, unless designed carefully. 

Extensions to Multiple-Group Classification 

Several researchers have suggested extensions of the two-group Lp-norm classification case to 

more than two groups. Freed and Glover (1981a) propose to first decompose the overall m-group 

classification problem into m(m-1)/2 two-group problems, then solve each two-group problem, and 

then determine classification rules based on these solutions. However, in doing so the group assignment 

in some of the segments in attribute space created by the m(m-1)/2 pairwise separating surfaces may 

not be clear, and the resulting classification scheme may be sub-optimal because the problem is not 

estimated in aggregate form. 

Gehrlein (1986) proposes several generalizations of the two-group MIP formulation, in which 

the classification of all groups is done simultaneously. One formulation involves a single classification 
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function with group-specific cut-off values (intercept terms), implying that the slope of the surfaces 

separating the groups is the same. Thus, the separating surfaces divide the classification scores in 

intervals, one for each group, and observations are classified into the group associated with the interval 

in which its classification score falls. Gehrlein (1986) also proposes an MIP formulation with multiple 

classification functions, one for each group, in which each observation is assigned to the group with the 

largest discriminant score. Note that this classification strategy is also used in statistical multiple- 

group classification methods. However, Gehrlein's (1986) formulations require a considerable number 

of binary variables, and are computationally infeasible for medium-size or large training sample data 

sets, given the current state of MP software technology. 

Gochet e t  al. (1996) propose an extension of the two-group MSD method to multiple groups 

which is related to  the LINMAP method for multidimensional scaling (Srinivasan and Shocker 1973), 

and which uses measures of goodness and badness of fit to simultaneously estimate pairwise 

classification functions for each pair of groups. As in Gehrlein's (1986) method, an observation is 

classified into the group with the highest discriminant score. Gochet e t  al. (1996) show that their 

method is similar conceptually to a variant of the Hybrid method (Glover e t  al. 1988), with the 

minimax deviations omitted. The advantage of the formulation by Gochet e t  al. (1996) is that all 

groups are considered simultaneously, and the formulation does not require any integer variables. 

Moreover, the authors derive several results on the behavior of their method for various special cases 

and data conditions, and show through an analysis of real data sets that their method can yield good 

classification results. However, in certain cases their method involves a sequential estimation of sub- 

problems, and without special-purpose software the method may not be easy to apply. 

Choo and Wedley (1985) develop multiple-group Lo- and L1-norm methods to  determine 

implicit optimal criterion weights in repetitive discrete multicriteria decision making. Pavur and 

Loucopoulos (1995) extend formulations for the two-group MIP method to the case of multiple groups. 

Both Choo and Wedley (1985) and Pavur and Loucopoulos (1995) use a single classification function, 

with different cut-off variables for each group. 

Multiple-group methods with multiple classification functions that are general and allow for 

separating surfaces which intersect each other divide the attribute space into multiple different 

segments, each of which is assigned to exactly one group. However, multiple-group extensions which 

are limited to only one classification function with different cut-off variables, implying separating 

surfaces with equal slopes that do not intersect, limit the division of the attribute space to layers. In 

the case of linear classification functions, the estimation of a single function with different cut-off 

variables implies that the separating planes are parallel. Hence, in this method it is assumed that the 

attributes in the classification model define a monotonic relationship between the groups. Whereas it is 

easy to design a multi-group simulation experiment for which this assumption is satisfied and for which 
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the single-function method gives good classification results, real data sets will rarely have these 

characteristics, rendering this method of limited use in practice. Clearly, the approach of estimating 

multiple classification functions that are allowed to intersect is more flexible and general, and therefore 

preferable to methods that estimate a single function. However, there is usually a price to be paid for 

generality, and as mentioned above flexible formulations such as the those by Gehrlein (1986) and 

Gochet et al. (1996) are more complex as well. 

Other Formulations 

Various other creative Lp-norm classification methods have been proposed, more than can be 

reviewed in this paper. Here, only a representative few are highlighted. Nath (1984) derives 

expressions for the misclassification probabilities for several two-group Lp-norm classification methods 

(p = 0, 1, a ) ,  for contaminated multivariate normal attribute distributions. Lam, Choo and Wedley 

(1993) develop a method, solved with MP, which takes probability of misclassification into account, 

whereas Lam and Choo (1993) use LP to solve classification problems with nonmonotonic attributes. 

Lam, Choo and Moy (1996) propose an interesting MP-based method which presumes that elements of 

the same groups should have similar characteristics in terms of summary statistics, and minimizes the 

sum of deviations from the group mean. Yarnold (1996) reports that promising classification results 

can be achieved by applying the UniODA method (Soltysik and Yarnold 1993) within a framework of 

nonlinear classification tree analysis. Markowski (1990) develops formulations which take error 

balancing into account. Markowski (1994) proposes an adaptive statistical classification method in 

which, depending on which method minimizes the sum of overall classification accuracy and provides 

the most balanced classification results on the training sample, the LDF, QDF or a nearest neighbor 

method is used for evaluating validation samples. It appears that Lp-norm methods could be included 

in this framework as well. Markowski (1994) concludes that this adaptive procedure is an effective 

alternative to both statistical and Lp-norm classification methods. 

Descriptive Lp-Norm Discriminant Methods 

As noted above, the vast majority of Lp-norm classification methods has assumed the 

classification model as given, and concerned itself with selecting appropriate classification methods. 

With a few exceptions (Glorfeld and Olson 1982; Nath and Jones 1988) the research has focused on 

prescriptive discriminant analysis, rather than on issues related to descriptive discriminant analysis. 

Nath and Jones (1988) develop a variable selection rule (criterion) based on the jackknife 

methodology to distinguish significant from non-significant attributes for use in Lp-norm methods 

(p = 1, co). By using this procedure, the analyst is able to develop a parsimonious discriminant model; 

obtain measures of variability of the parameter estimates, allowing for the assessment of the stability 
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of the estimates; and rank order the variables in terms of their discriminant ability, based on the 

relevant pvalue. The Nath and Jones (1984) procedure is important, because issues involving the 

variable selection problem and descriptive discriminant analysis have not been explored much within 

the Lp-norm classification framework. Obviously, rigorous descriptive Lp-norm methods would 

strengthen its prescriptive counterpart, Lp-norm classification, and vice versa. Thus, further research 

in this area can be very useful. Meanwhile, practitioners wishing to use Lp-norm classification methods 

may need to resort to the usual statistical methods for exploratory data analysis and statistical 

discriminant analysis techniques in order to explore general characteristics of the problem. 

3. Why Are These Methods of Interest? 
3.1. Intuitive Appeal of LdNorm Methods for Classification 

Geometric Interpretation 

The geometric interpretation of Lp-norm classification methods, with their separating surfaces 

and distances measures from this surface, clearly has intuitive appeal. Similar to least absolute 

deviation (LAV) methods in regression analysis, Lp-norm methods with p < 2 can yield robust 

classification rules in the presence of outlier observations, or if the data are skewed. Whereas Lo- and 

L1-norm methods do not emphasize extreme observations, methods which minimize the sum of squared 

errors, such as Fisher's (1936) linear discriminant function (LDF), Smith's (1947) quadratic 

discriminant function, and the MMD, which minimizes the L,-norm, are relatively sensitive to 

extreme observations. As discussed below in more detail, there is indeed evidence that in the case of 

problems with outlier-contaminated data conditions and skewed distributions, parametric statistical 

methods which assume normality do not classify accurately, and Lp-norm and other nonparametric 

methods fare substantially better. Such data conditions are common in practice, e.g., in business and 

financial data (Eisenbeis 1977; Glorfeld 1990; Mahmood and Lawrence 1987). 

Estimating Probability Distributions Vs. Estimating Separating Surfaces 

McLachlan (1992, p. 16) notes that the accuracy of a classification rule depends mostly on how 

well it can handle entities of doubtful origin, rather than on how well i t  handles observations of 

obvious origin. Whereas statistical classification methods such as the LDF and QDF are based on 

assumptions about the full probability density functions of the attribute variables which describe each 

group, Lp-norm methods are concerned with estimating the surface separating the groups and focus on 

the region of group overlap, without making any assumptions about the probability density functions 

of the attributes. Hence, McLachlan's observation offers a powerful motivation for using Lp-norm 

methods, in particular in situations where it is difficult to estimate the true probability densities of the 

groups. Indeed, this may be the case, for instance, if the data are highly non-normal. 
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Mainline MP Soflware Can be Used for Solving Most Two-Group Lp-Norm Methods 

An attractive property of Lp-norm methods, in particular L1- and L,-norm methods, is that 

(for two-group problems) these methods are easily formulated and solved as MP problems, as long as 

one has access to a mainline MP software package and some basic background in optimization 

techniques. The user does not need to write special-purpose computer programs, except for interface 

programs to perform data input formatting and report generation tasks. Ironically, as will be discussed 

later, the very same arguments can easily be turned around and identified as possible reasons why to 

date statisticians have made little use of Lp-norm classification methods, and why Lp-norm 

classification is not used by practitioners. 

3.2. Evidence of Performance 

In spite of their intuitive geometric appeal, no formal general decision-theoretic justification 

exists for using Lp-norm classification methods, and these methods are not firmly grounded in 

statistical theory. As a result, it has been difficult to draw general conclusions and make definitive 

statements about conditions for which the Lp-norm methods are superior to other, competing methods. 

Like other nonparametric methods, Lp-norm methods need to be evaluated on an ad hoc basis, through 

analyses of real data sets and simulation experiments. Most evaluatory research conducted to date 

compares Lp-norm methods with well-known statistical classification methods, such as the LDF, the 

QDF and sometimes logistic regression. However, as will be discussed later, unfortunately few studies 

have included nonparametric statistical methods such as kernel methods, nearest neighbor methods, 

recursive partitioning and classification trees. 

It has long been established that, if the data are approximately normally distributed, the LDF 

tends to give the best classification results if the dispersion across groups is similar, and the QDF tends 

to yield the best results if the dispersion differs substantially, as long as the training sample size is 

sufficiently large to estimate the QDF parameters accurately (Lachenbruch et al. 1973; Rawlings et al. 

1986). Nevertheless, Freed and Glover (1986a) found the MSD to perform well and to be competitive 

with the LDF, even if the data are multivariate normally distributed. Whereas Joachimsthaler and 

Stam (1988) found the MSD to outperform the LDF, for moderate size training samples and 

substantially different dispersion across groups, they also found the QDF to classify more accurately 

than the MSD, which is not surprising because under this data condition the optimal rule is quadratic. 

Rubin (1990b), who compares the MSD, MMD and Hybrid methods with the LDF and QDF, finds the 

QDF to classify the most accurately if the data are normally distributed. He recommends that studies 

involving the MSD, MMD and Hybrid methods focus on non-normal data conditions, and that the 

behavior of these methods be evaluated as the number of attributes and the extent of group overlap are 

increased. In comparing several statistical, Lp-norm (a.o., MSD, MMD, OSD) and rank-based 
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methods, Nath, Jackson and Jones (1992) conclude that, while Lp-norm methods compete well with 

classical statistical procedures under some experimental conditions, their performance generally lags 

behind that of the classical methods. In their application of classification analysis to credit granting, 

involving a number of parametric and nonparametric statistical methods along with the MSD and 

MMD, Srinivasan and Kim (1987) note that the MSD and a variant of the MMD in which group-wise 

maximum deviations are minimized did not classify very well for their data set. 

In a comprehensive literature review of early empirical research in L1-norm classification, 

Joachimsthaler and Stam (1990) conclude that the intuitive appeal of these methods in the presence of 

non-normal distributions with outlier-contamination or highly skewed distributions is confirmed by 

empirical evidence, especially in studies comparing L1-norm methods with the LDF and QDF. 

However, these authors also note that the results obtained in the studies covered in their review are not 

always consistent, and do not warrant strong conclusions regarding general data conditions for which 

Lp-norm methods yield superior results. 

Stam and Joachimsthaler (1989) analyze various Lp-norm methods (p = 1, 1.5, 2, 5, m), and 

found the L1,5- and L2-norm methods to perform slightly better than the L1-, L5- and L,-norm 

methods for normally distributed data, which confirms similar findings in Lp-norm regression. Hosseini 

and Armacost (1994) study the performance of six Lp-norm methods, two linear and four nonlinear for 

multivariate normal data sets with equal group means, with and without outliers, and various levels of 

dispersion, and conclude that the L1- and Lp-norm methods (p = 1.5, 2) perform slightly better than 

the classical statistical methods in the presence of outliers and if the dispersion differs across groups. 

However, their study does not include logistic regression, which is known to yield good classification 

results if the distributions are skewed (Press and Wilson 1978). 

Duarte Silva (1995) finds that, while Lo- and L1-norm methods, with an appropriate criterion 

to resolve ties, are particularly accurate in classifying problems with few attributes, skewed 

distributions and small training samples, logistic regression methods generally tend to outperform Lo- 

and L1-norm methods for problems with large training samples, skewed distributions and many 

attributes. Yarnold and Soltysik (1991a, 1991b), Yarnold, Hart and Soltysik (1994) and Yarnold, 

Soltysik and Martin (1994) report that variants of the ODA and MultiODA Lo-norm methods (Soltysik 

and Yarnold 1993) perform better in real applications than statistical methods such as the LDF and 

logistic regression. While the Lo-norm method does appear to yield good classification results for non- 

normal data conditions, some studies have found this method to give highly variable results, especially 

if the training sample used to estimate the rule is small (Stam and Joachimsthaler 1990; Stam and 

Jones 1990). This finding, however, is not confirmed by Duarte Silva (1995), who suggests that this 

volatility may be due to the choice of (or lack of) secondary criterion. Duarte Silva (1995) uses 
IT C 1  

IT' cg l )  E Gl(di-ei) + h2 2, E G2(di-ei), i.e., the weighted extent of misclassification 
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minus the weighted extent of correct classification in the training sample as the secondary criterion to 

be minimized. 

There is ample empirical evidence confirming that - probably because these methods are 

strongly affected by extreme observations - the classification performance of the MMD and MSID on 

validation samples tends to be inferior to L1-norm methods for almost any data condition 

(Joachimsthaler and Stam 1990; Markowski and Markowski 1987; Mahmood and Lawrence 1987). 

The evidence regarding classification accuracy of weighted Lp-norm methods is sketchy. There 

is some evidence (Glover et al. 1988, Duarte Silva and Stam 1994b) that the inclusion of additional 

information, as in the Hybrid method, can improve classification performance. In situations that 

clearly call for a nonlinear classification rule, e.g., if the dispersion matrices differ across groups and the 

distributions are skewed, Lp-norm methods, in particular L1-norm methods, with classification rules 

that use nonlinear transformations of the attributes, may perform well (Banks and Abad 1994; Duarte 

Silva and Stam 1994b; Wanarat and Pavur 1996), but the inclusion of quadratic and cross-product 

terms can result in overfitting of the data (Rubin 1994, Wanarat and Pavur 1996). 

Summarizing, although in a number of studies Lp-norm methods classified more accurately 

that statistical methods, not all studies have led to results favorable for Lp-norm methods, indicating 

that Lp-norm methods do have some merit, but the balance of evidence to date suggests that "the jury 

is still out." The scope of some evaluatory studies has been limited, so that questions about when to 

use Lp-norm methods remain. This poses a serious and ongoing challenge to researchers in the Lp- 

norm classification area, and it is not surprising that critics - particularly in the statistical community 

- have not been convinced of the potential merits of this class of methods. 

4. Other Recent Nontraditional Approaches to Statistical Classification 
Lp-Norm Methods for Regression and the Linear Model 

Based on the L1 distance norm, LAV regression has proven to be a robust alternative to least- 

squares regression methods in the presence of outlier observations (Dielman and Pfaffenberger 1982; 

Dodge 1987; Gonin and Money 1989; Hample et al. 1986; Lawrence and Arthur 1990). Inspired by the 

successful application of this methodology to regression problems, and noting its conceptual kinship 

with the MSD method, Lee and Ord (1991) developed an LAV method for solving the classification 

problem. Although Lau and Post (1992) argue that this classification method cannot yield optimal 

classification results, it still appears to be useful to investigate whether some of the robust properties of 

and theoretical results derived for the LAV and Lp-norm regression can be generalized to Lp-norm 

classification. 

Excellent readings volumes, such as Dodge (1987), Gonin and Money (1989) and Lawrence and 

Arthur (1990) may provide valuable sources of information to this purpose. The ideas discussed in the 
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following landmark articles, among others, may be of interest as well. Barrodale and Roberts (1970, 

1973) and Bassett and Koenker (1978) develop approximation methods for L1-norm regression. Glahe 

and Hunt (1970) study small sample properties of L1-norm methods for the estimation of simultaneous 

equations. Narula and Wellington (1982, 1990) derive both theoretical and empirical results for L1- 

norm regression. Sposito (1990) and Koenker and Portnoy (1987) investigate properties of Lp-norm 

estimators in regression and linear models. 

Artificial Neural Networks 

Recently, several artificial neural network (ANN) methods have been applied successfully to 

classification and pattern recognition problems, especially multi-layer feed-forward neural networks 

(see, e.g., Jain and Nag 1995; Kattan and Beck 1995; Lippmann 1989; Markham and Ragsdale 1995; 

Rypley 1994; Subramanian et al. 1993; Tam and Kiang 1992). The general appeal of ANN is that 

these methods are very flexible, do not assume an a priori specification of the form of the classification 

rule, and can represent complex mappings from input space to output space. An excellent and 

authoritative article, with discussion, about the use of ANN for statistical classification was published 

by Rypley (1994). 

The feed-forward ANN (FFANN) is the most widely used ANN paradigm for classification and 

pattern recognition, and the remarks that follow refer to this paradigm. In the context of classification 

analysis, the training of certain types of FFANN has remarkable similarities with the simultaneous 

fitting of multiple separating surfaces. It is beyond the scope of this paper to introduce FFANNs in 

detail, or to discuss the classification accuracy of ANN for classification a t  great length. However, it is 

very interesting to briefly explore the link between Lp-norm and certain FFANN methods for 

classification. Although the introduction of some FFANN terminology cannot be avoided, and it is 

necessary to assume that the reader has some familiarity with FFANN concepts (or will take this 

opportunity to pick up a book on FFANN), an attempt is made to limit the mathematical expressions 

and notation to a minimum. For a good introduction of ANN, see Hertz et al. (1991) and Wasserman 

(1989). 

Artificial Neural Network Methods and Lp-Norm Methods for Classification 

Several researchers have combined LP techniques with the training of FFANNs. Mangasarian 

(1993) shows the role role of MP, particularly LP, in training FFANNs, and provides illustrations and 

examples of the use of ANNs in classification analysis. Roy and Mukhopadhyay (1990) introduce a 

novel method for pattern classification that uses LP formulations. Their method, which extends the 

LP formulation to obtain group separators with more general shapes, enabling the representation of 

complex nonlinear class boundaries, can generate FFANN type networks to take advantage of parallel 
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computation in the classification phase. Through its design, the method avoids certain difficulties of 

nonlinear optimization of complex functions. 

A FFANN is composed of sequential layers, which facilitate the representation of the 

relationship between the elements in the input layer and the output layer, through intermediate layers 

of hidden nodes and connections between nodes. Simply stated, the purpose of training a FFANN is to 

determine the weights of the connections (arcs) and the threshold values of the nodes such that the 

"true" mapping of inputs to outputs is approximated as accurately as possible. Whereas FFANN 

methods for classification without hidden nodes can represent linear classification functions only, 

FFANNs with hidden layers can represent complex nonlinear classification functions. The FFANN is 

trained to learn the "true" mapping using example input vectors and associated desired outputs. In a 

FFANN designed for classification analysis, the nodes in the input layer correspond with the attributes, 

plus perhaps transformations of the attributes and other relevant variables. Each node in the output 

layer corresponds with exactly one of the groups, and the network output values associated with a 

given observation indicate the group membership information for this observation. As the FFANN can 

accomodate any number of output nodes, the FFANN method can easily be used for multiple-group 

classification. 

Each hidden node and output node has an activation function which transforms the input 

signals of the node into an output signal. The aggregate input Ij into hidden (or output) node j 

consists of a weighted combination of signals Iij from nodes i in the previous layer to node j, plus a 

threshold value Bj, Ij = C;W;~I;~ + Bj,  where the wij is the weight of the arc from node i to node j. 

Note that this notation is simplified, but it suffices for the purpose of this paper, which is intended to 

exemplify the connection between FFANNs and Lp-norm classification methods, rather than cover of 

ANN methods for classification comprehensively. The network error to be minimized is a function of 

the discrepancy between the desired network output and the actual network output. For instance, this 

error function may involve a sum of the absolute or quadratic discrepancies. 

One way to view the similarities between Lp-norm classification methods and FFANN is as 

follows. This discussion is similar to the discussion in Wasserman (1989, pp. 29-37) on perceptrons. 

First, consider a FFANN with one hidden layer, and suppose that the activation function of each 

hidden node and each output node is a step function, such that the output of node j, Oj, equals Oj = 1 

if Ij 2 0, and Oj = 0 if Ij < 0. The output signal Oj of hidden node j is binary, and indicates which 

side of the surface defined by Ij = 0 the input vector is most likely located. The output nodes perform 

the logical "and" function, taking the value 1 in a specific convex segment of the attribute space. For 

instance, in the case of a two-group classification problem, a FFANN with one hidden layer consisting 

of m nodes and the step-wise activation function described above can represent piece-wise linear 

separators with m segments. The propagation of signals in a FFANN with more than one hidden 
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layer, and with the above step-wise activation functions, allows for any non-convex division of the 

attribute space into areas for each group. 

Of course, typically the hidden and output nodes have more general activation functions, e.g., 

sigmoidal or logistic. Sigmoidal activation functions for the hidden nodes allow "fuzziness" into the 

division of the attribute space, introducing additional flexibility and complexity into the mapping, and 

sigmoidal activation functions for the output nodes imply that these nodes can take any value between 

0 and 1. In this case, the link with the LP approach is less evident. Sigmoidal activation functions are 

much more useful, in general, than step functions. For instance, Cybenko (1989) shows that FFANN 

with hidden layers and sigmoidal activation functions are capable of approximating any input-output 

relation to any desired degree of accuracy, provided that a sufficient number of hidden nodes is used. 

The network training set corresponds directly with the training sample in statistical and Lp- 

norm classification analysis. In each training pattern, the desired value of the output node 

corresponding to the group to which the training sample observation belongs equals 1, and the desired 

value of each other output node equals 0. During the training process, the conflict between desired 

output (true group membership value) and the actual output (predicted group membership value) 

determined within the ANN for the training sample observations is minimized, according to some 

optimization criterion. The backpropagation algorithm (Rumelhart, Hinton and Williams 1986) or a 

variant thereof is often used to train the FFANN to optimality. 

Once the ANN has been trained, the FFANN classification function is implicitly defined by a 

complex (usually nonlinear) function embodied by the network structure, weights, thresholds and 

connections. The FFANN classification rule is to assign an observation to the group for which the 

output node value is the highest. In the case of two groups, this rule reduces to assigning an 

observation to  the group for which the output node value exceeds 0.5. Thus, one interpretation of the 

FFANN method is that it seeks to approximate the probability of correct classification, but without 

assuming probability densities for the attributes. Another interpretation is that the output node values 

provide a 'Lbalance of evidence," or fuzzy group membership values. 

Although a detailed discussion of the caveats of FFANNs is beyond the scope of this paper, it 

is important to mention some common technical drawbacks of FFANN training, besides the potential 

occurrence of local minima. First, there is a danger that during the training process the FFANN gets 

trapped in a local optimal solution, thus providing inferior classification results. Second, it is possible 

to  overtrain a FFANN, in which case it memorizes training sample patterns, thus reducing the ability 

to generalize. The FFANN is particularly vulnerable to overtraining if the training sample is relatively 

small. Third, FFANN are susceptible to network paralysis, which occurs when the weights grow to 

very large values, without improving the classification performance. 

Mukhopadhyay et al. (1993) and Roy et al. (1995) propose novel ANN-like LP-based methods 
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that use memory, storing training sample patterns for learning. These authors argue that, in contrast 

to traditional ANN training, where the network design is usually fixed by the analyst prior to the 

network training phase, the network design should take place during the training phase, as this 

corresponds more closely with actual learning in the brain. Their algorithms reflect these ideas, and as 

such constitute a quite different and creative approach to classification, extending elements of both the 

LP and FFANN approach to classification. 

Comparative Studies Involving Artificial Neural Network Methods for Statistical Classification 

Numerous papers have been published on the classification performance of ANN methods, for a 

review see Rypley (1994). Several studies have compared FFANN methods directly with Lp-norm and 

statistical methods, with good results. Archer and Wang (1993) and Yoon et al. (1993) compare 

FFANN methods with the LDF, and report results positive for the FFANNs. In studies by 

Benediktsson et al. (1990) and Fischer et al. (1994), ANNs outperform statistical methods in 

applications of classification involving remote sensing data. In a comparison of the ANN with the 

LDF, QDF and MSD, Patuwo et al. (1993) find that ANN methods performs as well or better on 

training samples, but slightly worse on validation samples. Of course, the findings are difficult to 

compare across studies, because different studies use different ANN architectures, training schemes and 

network parameter settings - in addition to different data conditions and validation schemes. 

However, whatever the comparative results, like the Lp-norm methods the neural network 

approach has intuitive appeal, but lacks a decision-theoretic justification. Hence, although flexible, 

without a theoretical framework the classification performance of ANN methods should be evaluated on 

a case-by-case basis. The trained ANN has been compared with a "black box," since it is not easy to 

assign a meaningful interpretation to the multitude of network weights and parameters which together 

constitute the classification rule. In MP-based Lp-norm classification, the interpretation of the 

estimated model is not a problem, as the rule defined by R1, Rz and RU is explicit and has a simple 

form. Therefore, while certainly promising and powerful, ANN classification methods should be 

interpreted with some caution, just like any other nonparametric method, and it is advisable to 

conduct a statistical analysis as well, in parallel, in order to assess relative classification accuracy. It is 

especially important to test the generalizability of ANN methods using validation samples. 

Are Artificial Neural Network Methods Appropriate for all Statistical Classification Problems? 

There are additional considerations affecting the decision whether or not to use ANN methods 

that have not been mentioned in many research studies, in that - given the current state of technology 

and software development - building an ANN is simply not feasible or efficient for all classification 

applications. The effort of constructing and training an appropriate ANN is time- and expertise- 
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intensive. ANN methods are certainly attractive if there is sufficient time for constructing and training 

the network, if the appropriate software is available, and if an analyst with the necessary neural 

network building expertise is a t  hand. All of these requirements are met, e.g., in the case of a large 

bank wanting to develop a screening system for credit applicants, or an investment company seeking to 

predict turning points in the stock market. Such applications are characterized by a frequent usage of 

the model, a substantial project development budget and the luxury of a relatively long development 

period. Large companies often have an in-house R&D team, and can afford to expend the man-power 

needed for building effective ANNs. Often, these ANN models are embedded in a larger decision 

support system. Once developed, in such applications the basic ANN structure often remains intact for 

an extended period of time, but taking advantage of the adaptivity of ANNs the networks are updated 

frequently, through additional training as new data become available. 

With the currently available software technology it is not feasible to build an ANN from 

scratch if a quick turnaround time is essential, due to the careful effort and considerable time 

commitment that are required. Small companies with a limited budget may find the use of ANNs 

prohibitively expensive. For infrequent classification decisions, the effort of building a neural network 

model may not be worthwhile either, even if the money is available. In those cases, existing statistical 

methods may be preferred, or Lp-norm methods if the software is available. 

It is no coincidence that a t  present real-life ANN applications are mostly limited to large 

companies. Considering the tremendous effort of constructing and training separate ANNs for each 

replication, it is also no coincidence that there exist only a few evaluatory simulation studies involving 

ANNs, and that most of these are based on few replications or a limited holdout sample analysis. Once 

reliable, automated, self-structuring ANN packages will become available, the classification analyst 

may no longer need to build his/her own ANN models. As soon as such products become available a t  

a reasonable price, which may happen in the near future, the impediments to a wide-spread use of 

ANN methods for classification in practice are bound to disappear. 

Combining Artificial Neural Networks with Other Methods 

In addition to the combination of ANNs and LP, several interesting hybrid ANN methods have 

been proposed. Particularly intriguing are approaches that to seek to combine the strengths of 

statistical methods and ANNs, based on the premise that certain kinds of statistical information, such 

as an observation's distance from the group centroids, might provide useful input into a FFANN for 

classification. Markham and Ragsdale (1994) propose a FFANN method in which, in addition to the 

original attributes, the Mahalanobis distances from the group centroids serve as inputs into the 

FFANN. This method is similar in concept to that forwarded by Lam, Choo and Moy (1996), who 

however do not use ANNs. Markham and Ragsdale (1994) note that the predictions from the 
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Mahalanobis distance method are equivalent to the LDF, and report that their combined method yields 

more accurate composite predictions on two real data sets than either of the individual methods. 

Wang (1996) first pre-processes the training sample data using linear discriminant analysis, and then 

uses a combination of self-organizing feature maps to detect clusters of misclassifications. 

5. Trends: What Might be in Store for the Lp-Norm Classification Field? 
Undoubtedly, the literature on Lp-norm classification is interesting and forms a worthwhile 

contribution to the field of classification. Given their geometric rather than decision-theoretic 

foundation, it is not surprising that to date many different Lp-norm classification methods have been 

proposed. Some of these have proven to perform better than others, but none dominates across the 

board for all data conditions, and much work is to be done to establish the Lp-norm methods vis a vis 

competing methods. As the research in this area continues to mature, the field is approaching an 

important crossroad, well worth reflecting about. It may well be that the direction of research in this 

area over the next five to ten years will be pivotal, in terms of whether or not in the long run Lp-norm 

methods will be used by practitioners and will have an impact on the field of statistical classification. 

In this section, a number of promising directions for future research are identified, and issues are 

discussed with are of vital importance to the long-term outlook of the field of Lp-norm classification. 

5.1. Why Have Statisticians Rarely Used L6Norm Methods? 

In order to identify promising research directions, it is necessary to examine in detail why 

statisticians have largely ignored Lp-norm classification, and which lessons can be learned from this. 

The research conducted on Lp-norm classification has had little impact in statistical circles, and many 

statisticians do not seem to be familiar with the Lp-norm line of research. For instance, although 

many of the over 1,000 papers cited in McLachlan's (1992) seminal text on statistical discriminant 

analysis deal with nonparametric classification methods, only two of them are papers on Lp-norm 

classification and discriminant analysis. In his book on applied discriminant analysis, Huberty (1994) 

cites only a handful of Lp-norm papers. Of course, most Lp-norm classification articles have been 

published within the last ten to fifteen years, and the time lag effect may play a role. However, this 

can provide only a partial explanation. Other reasons why statisticians have not used Lp-norm 

methods for classification - some of which the author learned about in personal discussions with 

statisticians - are introduced below, along with suggestions on how each issue might be remedied. 

Communication, Promotion and Terminology 

First, researchers in Lp-norm classification may not have promoted their work effectively to the 

statistical community. For instance, few Lp-norm classification papers have been presented a t  major 
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statistical meetings, such as the Annual Joint Statistical Meetings organized by the ASA, ENAR, 

WNAR, IMS and SSC, and the Annual Meeting of the Classification Societies. Of course, the reverse is 

true as well - few statisticians have presented their classification work a t  DSI and INFORMS 

meetings. Second, most Lp-norm classification papers are packaged in a way familiar to readers in the 

management science community, but the terminology used is not familiar to most statisticians, thus 

representing a communication gap which inhibits the adoption of Lp-norm methods by statisticians, 

especially practitioners. By necessity, much of the early Lp-norm classification research focused on 

issues related to refining mathematical modeling aspects of the MP methodology, rather than on 

statistical aspects. This may have contributed to the low exposure of Lp-norm methods to  statisticians 

as well. 

Communication can be improved by adopting terminology in L -norm classification papers 
P 

which corresponds more closely with that used in mainstream statistical circles, and avoiding 

unnecessary MP-related details (an exception, of course, being those papers which relate directly with 

MP-algorithmic issues), making L -norm classification research more accessible to statistical researchers 
P 

and practitioners. In addition, Lp-norm classification methods can be promoted in various ways, e.g., 

by submitting solid research articles to leading statistical journals, presenting research findings a t  

professional meetings of statistical organizations, and making a serious attempt to address those issues 

which statisticians perceive as weaknesses of Lp-norm methods. Some of these perceived problems with 

Lp-norm methods are discussed next. 

S o f l w a r e  Ava i l ab i l i t y  

There is a real need for easily accessible Lp-norm classification software packages, both user- 

friendly stand-alone packages and add-on software that can be used in conjunction with mainline 

statistical packages such as SAS (1990), SPSS (1990) and BMDP (1990). Most researchers in L -norm 
P 

classification use their own software programs. To the knowledge of the author, a handful of software 

packages are available to interested analysts (Lam and Choo 1991; Duarte Silva and Stam 1994a; Stam 

and Ungar 1995; Soltysik and Yarnold 1993, 1994). Among these, only the ODA software by Soltysik 

and Yarnold (1993) is available commercially - the others can be obtained upon request from the 

respective authors. Among these packages, Bestclass (Duarte Silva and Stam 1994a) is the only one 

that can be used as an add-on to  a major statistical package, SAS (1990). There is no doubt that a 

wider availability and more commercial-quality software products for Lp-norm classification will 

stimulate the use of these methods, by researchers and practitioners alike. I t  would very helpful to 

develop a central repository of Lp-norm classification analysis software, perhaps on the World Wide 

Web, with easy access for any analyst. 
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Relaiive Accuracy of Lp-Norm Classificaiion Methods: Ad Hoc Siudies 

As noted above, most simulation studies have compared the accuracy of Lp-norm methods 

with the LDF, QDF and logistic regression, but not (or not enough) with other nonparametric 

methods, such as nearest neighbor, kernel, classification tree and recursive partitioning methods. This 

is unfortunate, since literally hundreds of studies in the statistical literature have - not surprisingly - 

found nonparametric methods to outperform the LDF, QDF and logistic regression for data conditions 

similar to those in the studies involving MP-based methods. For a more detailed review of the findings 

in these studies, see, e.g., Dillon and Goldstein (1978), Fatti ei al. (1982), Goldstein and Dillon (1978), 

Hand (1982, 1993), Huberty (1994), Krzanowski (1988), McLachlan (1992) and Press and Wilson 

(1978). 

Thus, from a statistical viewpoint evaluations of Lp-norm methods that are limited to a 

comparison with classical statistical methods are less than interesting. One may view the early studies 

which evaluated Lp-norm methods vis h vis the LDF and QDF as preliminary scouting work, in order 

to establish that Lp-norm methods are a t  least viable. However, in the long run such research is bound 

to have a decreasing marginal impact. Since it appears that the viability of Lp-norm methods has 

indeed been established, it is now much more interesting to turn the attention to assessing how Lp- 

norm methods compare with the most successful nonparametric statistical methods. For example, 

little is known on how the different nonparametric methods compare for skewed distributions, various 

different misclassification cost schemes, different training sample sizes, and various numbers of 

attributes. It is known that nonparametric statistical methods, such as kernel and nearest neighbor 

methods, perform well if the distributions are skewed and the training samples are large, but not as 

well - i.e., not necessarily better than the LDF and QDF - if the training samples are small (Remme, 

Habbema and Hermans 1980). Therefore, it is interesting to compare the performance of these 

methods with Lp-norm classification methods for these data conditions. It is imperative that these 

studies lay to rest the concerns that statisticians have regarding the relative standing of Lp-norm 

methods. 

It is worthwhile to mention some other issues that have not received much attention in Lp- 

norm classification research, nor in many of the classification studies that focus on statistical methods. 

Almost all Lp-norm studies use the proportion (rate) of misclassified (or correctly classified) 

observations in the training or validation sample as the only measure of classification accuracy. Of 

course, the misclassification rate is the most widely used accuracy measure, but it is not always the 

most telling one. For instance, if the misclassification costs differ across groups, a simple error count 

does not provide an accurate measure of classification performance. The misclassification rate is a 

measure of overall accuracy. It would also be of interest to conduct studies involving micro-level 

measures, for instance investigating whether or not different methods tend to misclassify the same 
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observations, in order to develop a better understanding of the reasons why Lp-norm methods yield (or 

do not yield) improved classification rules for specific data conditions. 

One way to enhance simulation studies for classification is to use data conditions for which the 

"true" optimal classification rule (e.g., the Bayes rule) is known, the advantage being that the accuracy 

of the optimal rule can serve as a benchmark for measuring the absolute classification performance of 

each method under consideration, providing valuable information in addition to (or, instead of) the 

usual relative classification accuracy measures. The Bayes optimal classification rule can be derived for 

a number of different probability distributions (Duarte Silva 1995). 

Summarizing, the goal of convincing statisticians that the Lp-norm class of methods has 

definite merits can be achieved by showing the classification accuracy of Lp-norm methods using 

rigorous, well-designed experimental studies. While still ad hoc, studies with carefully selected data 

conditions and factors (e.g., skewness, extreme observations, number of attributes, group overlap, prior 

probabilities as reflected in the balance of the group sizes, misclassification costs, training sample size) 

in the experimental design that closely reflect reality, a legitimate statistical analysis of the results 

(e.g., using MANOVA and perhaps T-tests), a sufficiently large number of replications, appropriate 

measures of classification accuracy, and a competitive set of alternative methods used in the 

comparison - especially nonparametric rivals - will provide excellent insights. Such studies will lend 

additional credibility to the class of Lp-norm classification methods and will capture the attention of 

those statisticians who are active in nonparametric classification. 

Accuracy of Lp-Norm Classification Methods: Decision Theoretic Justification 

One needs to be careful in generalizing results obtained in simulation studies. Of course, an 

advantage of simulation studies is that the distributional characteristics of the populations in the 

experimental design can be controlled exactly. However, by the nature of the process by which the 

data were generated, simulation results can be unrealistically "clean," and a generalization to 

classification problems with real data may be tenuous. For example, many simulation studies have 

assumed independent attribute variables, a condition which is rarely met in reality. 

Ideally, studies evaluating the classification accuracy of a given method would be supplemented 

by a decision-theoretic justification for using this method. The advantage of exploring decision- 

theoretic properties is that, once such properties have been established, extensive simulations to show 

the relevance of the method are no longer needed - the decision-theoretic foundation provides this 

justification. Of course, a decision-theoretic justification does not guarantee an accurate classification 

rule, but it does improve the odds that the estimated rule is a good one; besides, it is always preferred 

to use a method that has a proven theoretical foundation. 

It is unrealistic to expect that a general decision-theoretic foundation exists for the class of Lp- 
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norm methods, but certain Lp-norm methods do have one for specific data conditions that are realistic 

in practice. For instance, Asparoukhov and Stam (1996) derive an Lo-norm method for binary variable 

classification problems which yields an optimal Bayesian rule. Binary variable classification has many 

applications, a.o., in medical disease diagnosis, where a given symptom is either present or absent. It 

is likely that decision-theoretic Lp-norm methods exist for other specific types of classification problems 

as well, for instance in the case of mixed and discrete variable problems. An important development in 

the direction of a formal foundation for Lo-norm discrimination is the research by Soltysik and Yarnold 

(1993) and Yarnold and Soltysik (1991a, 1991b), who derive several fundamental properties of the 

UniODA and MultiODA methods. 

As mentioned previously, the Lo-norm method is a promising classification tool for yet another 

important reason, in that it can be used to minimize the training sample misclassification costs 

directly, if the objective function components are weighted appropriately as in (6), according to their 

prior probabilities and rnisclassification costs. As statistical methods for minimizing the 

rnisclassification costs are not fully satisfactory if the group-wise attribute probability distributions are 

difficult to establish, this is a real contribution to the field of statistics. Due to the importance of 

methods that minimize misclassification costs, it appears useful to continue to study all aspects of the 

Lo-norm method, and to evaluate its accuracy for various data conditions and various levels of 

misclassification costs for each group. Note that it is much more complicated to reflect 

rnisclassification costs in the case of weighted variants of Lp-norm (p > 0) and Hybrid methods. 

Moreover, the MIP appears to have interesting asymptotic properties (Glick 1976), which may be 

warrant further study, e.g., in the context of rnisclassification costs. 

In sum, as the proponents of these methods it is the responsibility of researchers in Lp-norm 

classification to expose statisticians to and convince them of the merits of these methods. Clearly, a 

stronger link with statisticians and exchange of views with statisticians are of vital importance in terms 

of the long-term prospects of research in Lp-norm classification, as are rigorous comparative studies. 

5.2. Other Important Research Topics 

Computational Aspects 

The need for more efficient methods to solve the MIP problem is obvious. Any serious 

methodology should allow for the analysis, within reasonable computational time, of several thousand 

training sample observations, and a t  least 10 attributes. From previous research it appears that, 

besides the size of the training sample, the number of attributes affects the computational performance 

of Lo-norm methods critically, and that the most promising improvements of exact special-purpose 

algorithms for the Lo-norm method may be found by decomposing the problem formulation into 
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smaller sub-problems that can be solved more easily. In turn, efficient problem decompositions offer an 

open invitation for the development of parallel processing techniques. Other ways to take advantage of 

the special structure of the Lo-norm classification problem should be explored in further detail as well. 

In addition to exact algorithms for the Lo-norm method, it is of interest to develop efficient (and 

effective) special-purpose heuristics, such as genetic algorithms (Koehler 1991b) and Tabu Search 

algorithms, for solving the Lo-norm method. Special-purpose algorithms for Lp-norm methods, p > 0, 

do not appear to be as worthwhile, since powerful software exists for solving these methods. 

Generality of Scope: Multi-Group Methods and Nonlinear Transformations of Attributes 

As discussed above, most multi-group Lp-norm classification methods have serious drawbacks, 

limiting either their applicability in practice or their generalizability. Gehrlein's extension for the Lo- 

norm method with intersecting hyperplanes is methodologically rigorous and generalizable, but requires 

many binary variables and is difficult computationally, even for small training samples. The extension 

by Gochet et al. is also general, conceptually simple and methodologically rigorous, but fairly involved 

in terms of implementation. Multi-group methods based on parallel separating surfaces may provide 

accurate classification results on a given data set and for certain data conditions, but are not 

sufficiently general. While the multi-group methods have greatly expanded the scope of Lp-norm 

methods, using them in practice requires software that is not readily available or easily accessible. T o  

date, few studies have evaluated the classification performance of these methods. Clearly, more 

research is needed to evaluate multi-group methods, but this research should not restrict itself to 

methods based on a single function with parallel hyperplanes. 

Another topic of interest is to study under which conditions Lp-norm formulations with 

nonlinear transformations of the attributes yield good classification results. Early Lp-norm studies 

ignored such nonlinear transformations, although the data conditions analyzed would seem to justify 

the use of nonlinear rules. In these studies, the deck was stacked against the methods with linear rules, 

and the question arises whether some of the earlier studies that considered only Lp-norm rules which 

were linear in the original attribute values should be re-done, in particular if the data conditions clearly 

called for a classification rule which was nonlinear in the attributes. 

The evaluation of nonlinear Lp-norm rules is particularly interesting because it is not a given 

that a nonlinear rule classifies more accurately than a linear one, even if the theoretically optimal rule 

is nonlinear. As noted above, for small training samples the QDF tends to be less accurate than the 

LDF, even if the populations are normally distributed and the group-wise dispersions are clearly 

different. It is an open question whether Lp-norm formulations which involve quadratic (and perhaps 

cross-product) terms are as sensitive to sample size as the QDF. It would be a contribution to the field 

of Lp-norm classification to establish guidelines about appropriate training sample sizes for the use of 
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nonlinear rules, and to develop an analogon for Lp-norm methods to the concept of degrees of freedom 

in statistical analysis. The related phenomenon of overfitting has not been studied thoroughly in the 

context of L -norm classification analysis either, and warrants additional research, not only in the 
P 

context of nonlinear classification rules, but also as it relates to multi-group classification. In both of 

these cases, the number of parameters to be estimated can be substantial. 

Lp-Norm Methods for Descriptive Discriminant Analysis 

The focus in this paper - as in the field a t  large - has been on prescriptive issues involving the 

classification problem in discriminant analysis. Perhaps it is time to expand the horizon to  include 

issues in descriptive discriminant analysis, such as variable (attribute) selection (Glorfeld and Olson 

1982; Nath and Jones 1988). As it stands now, almost all research in Lp-norm classification and 

discrimination has taken the number of attributes as given. A reasonable Lp-norm variable selection 

methodology which complements (but does not replace, of course) traditional descriptive discriminant 

methods would add another dimension to Lp-norm discrimination, and would develop this area more 

fully. 

Combination with other Methodologies 

As noted above, Roy and Mukhopadhyay (1990) and Mangasarian (1993) offer interesting links 

between Lp-norm classification methods and Artificial Intelligence, showing how MP techniques can be 

used for machine learning, and how MP and ANN can be combined into powerful classifiers. The 

arguments forwarded by Mukhopadhyay et al. (1993) and Roy et al. (1995), who argue in favor of an 

approach which retains training patterns in memory and accommodates a flexible network design that 

can be adapted during the training process, are intriguing. Their approach, which involves both LP 

and ANN-like networks, appears very promising. Although they have been illustrated by individual 

examples, the classification accuracy of these methods has not been put to sufficient testing through 

comprehensive, systematic statistical comparisons with competing methods. As noted previously, a 

rigorous statistical evaluation of ANN methods involving numerous replications may be cumbersome, 

but it is definitely a worthwhile effort. It also appears useful to  explore other hybrid methods that 

combine ANNs with, e.g., with statistical methods and Lp-norm methods. Spiegelhalter and Knill- 

Jones (1984) combine statistical methods with Expert Systems models for classification in the medical 

field. The use of statistical classification methods within an Expert Systems framework is also used in 

other areas, e.g., in the field of finance. As these models combine statistical evidence with expert 

knowledge that may not be easy to analyze quantitatively, classification models which combine Expert 

Systems with statistical, Lp-norm, ANN methods and classification trees, appear fertile ground for 

future research. 



6. Conclusions 

This paper highlights previous research in Lp-norm classification, and suggests directions for 

future research. Above all, it is argued that there is a need to forge a link between researchers active in 

statistical discriminant analysis and researchers in the area of Lp-norm classification. Such a link 

would be beneficial for both groups. Particularly, Lp-norm classification may well be of considerable 

interest to researchers in areas where nonparametric classification analysis is traditionally used 

successfully, such as discrete variable classification, mixed variable classification, and in application 

areas which are often susceptible to data analytical problems, such as medical diagnosis, psychology, 

marketing, financial analysis, engineering and pattern recognition. Without reaching out, the Lp-norm 

classification field will remain limited to a small group of researchers with interesting new 

methodologies that are hardly used where they may be most needed. 

In order to improve the channels of communication, closer ties with the Society of 

Classification and similar organizations would be helpful, as would be the availability of and easy 

access to software for Lp-norm classification, the development and evaluation of more general methods 

for Lp-norm classification that can handle nonlinear classification rules and multiple groups, and the 

development of faster algorithms for solving the Lo-norm method, which is attractive in that it allows 

for directly minimizing the training sample misclassification costs. In addition, there is a need for 

rigorous simulation experiments that should establish beyond any doubt for which general data 

conditions Lp-norm methods perform well, and which are not limited to comparisons with well-known 

but not always robust statistical methods such as the LDF and QDF, but which take on the best 

performing statistical nonparametric methods directly. 

Summarizing, the area of Lp-norm classification appears have great potential, but the future of 

this research field depends on the ability to catch the attention of the statistically oriented research 

community. This enhances the international standing of this research area. Without an effort in the 

direction of more statistically oriented and motivated papers and rigorous studies that prove beyond a 

doubt when the Lp-norm methods are most appropriate, the general interest in this area may ebb 

away, perhaps to re-emerge ten or twenty years down the road in a different form. Such a scenario is 

not far-fetched, it is a simple and plain fact that this is part of many research area's life cycles. An 

encouraging sign is that, whereas most of the earlier papers originated in North America, recently there 

has been an increasing flow of publications from Europe and the Pacific Basin. 

Footnote 1: I am grateful to Dr. Cliff T .  Ragsdale for bringing this passage to my attention. 
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