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Foreword

This paper summarizes the results of the research conducted during the IIASA's 1996 Young

Scientists Summer Program (YSSP) in the Methodology of Decision Analysis (MDA) project

in collaboration with the Transboundary Air Pollution (TAP) project. The TAP project devel-

ops models for assessing results of various policy options aimed at reducing troposheric ozone

concentrations. Such reductions can be achieved by reducing emissions of two precursors: ni-

trogen oxides (NOx) and volatile organic compounds (VOCs). One of the main objectives of

developing and examining ozone models is to identify cost-e�ective strategies that lower ozone

concentrations below acceptable levels at various locations (grids).

A detailed model developed by the Cooperative Programme for the Monitoring and Evalua-

tion of the Long-Range Air Pollutants in Europe (EMEP) is available for simulating the e�ects

of emission reductions on the ozone concentrations at all European grids. However, the EMEP

ozone model cannot be used to determine cost-e�ective strategies. For this purpose a simpli�ed

model must be used.

The objective of the research in the report is to examine if the fuzzy rule generation ap-

proach can be successfully used to develop simpli�ed ozone models for selected grids in Europe.

The results of the study are promising. In particular, it was found that fuzzy models provide

good predictions of ozone concentrations; the predictions are better than those derived from

traditional regression models.

Due to the complexity of the problem and limited time of the YSSP, the author was not able

to develop fuzzy models for all European grids. However, the results in this paper illustrate that

the applicability of the applied methodology for development of simpli�ed ozone models.
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Abstract

The objective of this paper is to describe research on the development of a simpli�ed version of

the European ozone model using fuzzy rule generation methodology. The ozone model is used

to predict tropospheric (at the ground level) ozone concentration. The simpli�ed ozone model

illustrates source-receptor relationships between ozone precursor emissions (NOx and VOCs)

and ozone concentration in the troposphere, taking into account meteorological conditions. This

ozone model was developed by the Cooperative Programme for Monitoring and Evaluation of

Long-Range Air Pollutants in Europe (EMEP). The EMEP model provides a detailed prediction

of ozone concentration at every grid in Europe by taking into account physical and chemical

mechanisms. However, the model is too complicated for nonspecialists, such as policymakers

trying to set emission reduction levels that result in ozone concentrations below given limits.

Therefore, there is a need for a simpli�ed ozone model that can be veri�ed by the EMEP model

and that can be used for analyzing policy options.

One approach is to use the fuzzy rule generation methodology. In this approach, the sim-

pli�ed model consists of a number of fuzzy rules. Fuzzy rules have a fuzzy proposition in the

conditional statement and a linear regression model in the conclusion. The rules describe a

complete nonlinear system by using several linear models and membership functions. The de-

velopment of such fuzzy rules is called fuzzy modeling. The membership functions of conditional

variables are determined by the subset of data which is obtained by a clustering method. The

degree of con�dence of a rule is determined by the grade of the membership functions for input

values. The role of fuzzy logic is to integrate fuzzy rules smoothly.

In this paper, a basic scenario, which predicts no reduction of ozone precursor emissions, is

used to determine fuzzy rules, subsequent scenarios are derived from the basic scenario, which

includes information on source-receptor relationships. Simpli�ed models of three grids have been

developed to show the e�ectiveness of this approach. This methodology can be used to develop

models of all grids.

Keywords : ozone concentration, the EMEP ozone model, fuzzy rules.
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Fuzzy Rule Generation from the

EMEP Ozone Model to Examine

Source-Receptor Relations

Mina Ryoke�

1 Introduction

Recently, interest in transboundary air pollution has been intensi�ed by the increase of empirical

evidence. The environmental impacts of tropospheric ozone have been analyzed in Heyes et al.,

(1995). Ozone in the troposphere has a harmful inuence on crops, forests, raw materials, and

human health. To protect agricultural crops and forests, critical levels have been established for

long-term exposure to accumulated excess ozone (Heyes et al., 1995). Recently the amount of 40

parts perbillion (ppb) has been established as a threshold concentration for both crops and trees

(Fuhrer and Achermann, 1994). The exposure index is referred to as AOT40, the accumulated

exposure over a threshold of 40 ppb. In many grids in Europe ozone concentrations are above

this index, therefore, an important research activity is to develop a tool, to examine policy

options that would reduce the concentration of tropospheric ozone below the critical level.

A detailed European ozone model has been developed by the EMEP. The EMEP ozone model

is a single-layer Lagrangian trajectory model that takes into account physical and chemical mech-

anisms of ozone production and meteorological conditions. It can predict ozone concentrations

in Europe over six-month period. Simulations are carried out by using a number of practical sce-

narios. Many precursor emission reduction scenarios have been examined by using this EMEP

ozone model.

The optimization problem to minimize costs for reducing precursor emissions below critical

levels in each grid is developed by Zawicki and Makowski (1995). Their approach is based

on the simpli�ed ozone model documented in Heyes and Sch�opp (1995), which was developed

and veri�ed using the EMEP ozone model. The resulting optimization problem is a large-scale

nonlinear programming problem.

The EMEP ozone model requires various emission scenarios to simulate possible ozone con-

centrations; however, the result from the model are too complicated for policymakers to un-

derstand. The fuzzy models developed in this paper can be used to summarize and simplify

important scenarios for decision makers. The objective is to express the theoretical, power-

ful, and complex model of the basic scenario by a fuzzy model that consists of a number of

rules, and to carry out the sensitivity analysis by using this simpli�ed model to obtain possible

future scenarios. The problem is to build a number of fuzzy rules about the source-receptor

relationships between ozone precursor emissions (NOx and VOCs) and ozone concentrations in

the troposphere. The set of fuzzy rules (if developed for all grids) can be used as an alternative

simpli�ed model for the optimization problem.

The problem is introduced in detail in Section 2. The EMEP ozone model, 1990 input-

output data, and various scenarios of this model are also introduced. In Section 3, the fuzzy

model (Takagi and Sugeno, 1985) consisting of a number of fuzzy rules are introduced; after an

introduction of the problems in model identi�cation, a method of fuzzy modeling is described

simply (Nakamori and Ryoke, 1994; Ryoke et al., 1996). In Section 4, several fuzzy models

�Osaka University, 1-3 Machikaneyama, Toyonaka 560, Osaka, Japan.



based on the basic scenario are developed to predict ozone concentrations at three grids. One

in southern United Kingdom, one in Stuttgart, one in upper Austria.

2 Preparation

2.1 Problem and approach

Concern about transboundary air-pollution issues, including the ozone problem, is increasing.

To estimate ozone concentrations in Europe, an international e�ort must be taken to identify

the physical and chemical mechanisms.

The EMEP ozone model (Simpson, 1992, 1993, forthcoming) is based on the Norwegian

photochemical trajectory model developed at the Meteorological Synthesizing Centre-West in

Oslo (Eliassen et al., 1982).

The EMEP ozone model is a single-layer Lagrangian trajectory model, and can predict

ozone concentrations at de�ned grids every six hours, by using annual data of precursor emissions

reported by each country in Europe and meteorological data taken every two hours. To determine

e�ective emission reduction scenarios, the EMEP ozone model must examine many scenarios of

precursor emissions. The EMEP ozone model is a very powerful tool for estimating ozone

concentrations and provides many complicated scenarios. To help policymakers use the model

results e�ectively, the important scenarios must be simpli�ed. One way to simplify the EMEP

model results is with a fuzzy model consisting of a number of fuzzy rules speci�c to the conditions

in each area (or grid) under investigation. In this paper, we apply the fuzzy model to three areas:

southern United Kingdom, Stuttgart, and upper Austria.

The fuzzy model simulates input-output relationships of the EMEP ozone model. The fuzzy

rules include physical and chemical information on ozone production. The fuzzy model is a

nonlinear model consisting of a number of fuzzy rules. A fuzzy rule has a fuzzy proposition

statement, and a regression model in the conclusion. A country's ozone concentration is pre-

dicted by fuzzy rules that take into account meteorological conditions inside the country and

deposition from other countries. The fuzzy rules obtained are evaluated by their ability to

predict possible scenarios.

2.2 De�nition of data set

Heyes and Sch�opp (1995) provide an explanation of data set:

The EMEP ozone model (Simpson, 1992, 1993, forthcoming) is a single-layer La-

grangian trajectory model with a variable depth that extends from the ground to

the top of the atmospheric boundary layer, and calculates the concentrations of

photochemical oxidants every six hours for a set of up to 740 arrival points (on a

150km�150km grid) covering the whole of Europe and taking into account chemical

mechanism reactions. The air column in the atmospheric boundary layer is followed

along speci�ed 96-hour trajectories that pick up emissions of NOx, VOC, CO, and

SO2 from the underlying grid. The height of the air column (the mixing height)

containing the bulk of the polluted air is reset at 12 GMT each day using radiosonde

data. Along each trajectory the mass conservation equations are integrated, taking

into account the emission inputs, photolysis and chemical reactions, dry and wet

removal rates, and the inuence of meteorological parameters. These equations are

solved numerically using the quasi-steady-state approximation method with a �xed

time step of 15 minutes.

The six-hourly meteorological data required by the EMEP ozone model are taken

from the output of the Norwegian Numerical Weather Prediction model. Wind

velocity data permit calculation of 96-hour back-trajectories to any point in the

EMEP grid. The ozone model simulates the exchange of boundary layer air with



free tropospheric air as a result of convective clouds. Photolysis rates are adjusted

for cloud cover, and temperature data are used to calculate appropriate chemical

reaction rates and to estimate both natural VOC emissions and emissions of NOx

from soils. Other meteorological data are used in estimating deposition velocities,

which are calculated as a function of atmospheric stability, latitude, time of year and

time of day.

In this paper fuzzy models are applied to data gathered from April to September; this period

was selected because the sun has its strongest inuence on ozone production during this time.

Photolysis rate of NO2 is also considered in the model because it is an importance element in

ozone production. The ozone concentration is estimated with the EMEP ozone model every

six hours, but in this paper the daily maximum concentration is considered more important

measure because we are trying to study the relationship between precursor emissions and ozone

concentrations.

The EMEP ozone model simulates the exchange of boundary-layer air with free tropospheric

air that results from convective clouds. The EMEP ozone model uses a chemical mechanism

in which each important VOC class is represented by one or two members whose chemical

degradation is addressed in (Heyes and Sch�opp, 1995). The EMEP ozone model requires the

following inputs:

� Annual emissions of NOx, VOC, and SO2 from anthropogenic source (these data are taken

from o�cial national statistics) and national emissions of VOC and NOx.

� The meteorological data calculated by using the Norwegian Numerical Weather Prediction

model. Data are recorded every six hours and wind velocity data permit calculation of

96-hour back-trajectories at any point in the EMEP grid.

� The variables related to meteorological conditions used in the fuzzy model include pho-

tolysis rate of NO2 and the inuence of emissions from each country depending on mete-

orological conditions. The countries and regions contributing data of annual emissions of

NOx and VOC are shown in Table 1.

Table 1: Countries and regions contributing annual data.

1 Albania 2 Austria 3 Belgium

4 Bulgaria 6 Denmark 6 Denmark

7 Finland 8 France 10 United Germany

11 Greece 12 Hungary 13 Iceland

14 Ireland 15 Italy 16 Luxembourg

17 Netherlands 18 Norway 19 Poland

20 Portugal 21 Rumania 22 Spain

23 Sweden 24 Switzerland 25 Turkey

27 United Kingdom 29 Other areas 30 Baltic Sea

31 North Sea 32 Remaining Atlantic 33 Mediterranean

35 Nat ocean emissions 36 Kola/Karelia 37 St. Peter/Novgo Pskov

38 Kaliningrad 39 Belarus 40 Ukraine

41 Moldova 42 Russian Federation 43 Etonia

44 Poland 45 Lithuania 46 Czech Republic

47 Slovakia 48 Slovenia 49 Croatia

50 Bosnia Herzegovina 51 Serbia, Montenegro 52 Macedonia



Using national data, the EMEP ozone model can calculate total emissions in every EMEP grid

in an air trajectory over a four-day period. These emissions are called e�ective emissions (Heyes

and Sch�opp,1995):

In the EMEP ozone model, emissions and meteorological input data are revised at

two-hour intervals, so that there are 49 time steps during the four-day trajectory.

Two processes are included in the model which lead to mixing of the boundary layer

air parcels with free tropospheric air: the venting e�ect of cumulus clouds and day-

to-day increases in mixing height. The exchange mechanisms operate at two-hour

intervals, with chemical reactions calculated within each two-hour time step.

If the emissions of an ozone precursor during time step i are denoted by Ei, and

the exchange processes result in a dilution of the boundary layer air by a factor fi
(0 < fi � 1), the contribution from time step i to the trajectory-integrated value of

the precursor emissions, E, at time step (i+1) is given simply by:

Ei � fi: (1)

Subsequent mixing events further reduce the contribution of Ei, so that the contri-

bution of time step i to the �nal trajectory-integrated value is:

Ei � (fi � fi+1 � fi+2 � � � � � f49): (2)

Therefore, the integrated contribution from all 49 time steps, denoted by < E >, are given

by

< E >=
i=48X
i=1

Ei �

j=49Y
j=i+1

fi + E49: (3)

Such quantities are calculated for both NOx and VOC emissions along each trajectory and inves-

tigated as predictor variables in regression models of the fuzzy model. The variables considered

are shown in Table 2.

Table 2: Variables considered in the development fuzzy models.

The inuence of the precursor emissions of NOx from each country

presented by e�ective NOx emissions [1010 molecules cm�2sec�1]

E�ective NOx emissions in one grid [1010 molecules cm�2sec�1]

E�ective VOC emissions in one grid [1010 molecules cm�2sec�1]

Photolysis rate of NO2 [10�3sec�1]

Square of e�ective NOx emissions in one grid

Square of e�ective VOC emissions in one grid

Product of the e�ective NOx and e�ective VOC in one grid

Ozone concentration [ppb]

2.3 De�nition of scenarios

Scenarios are required for the period from April to September. The EMEP ozone model can use

new data on the emissions of pollutants, such as anthropogenic and natural sources, chemical

reaction rates, deposition velocities, and background concentrations. However, the rules that

determine a country's contributions to ozone concentrations in a particular area must be applied

in the reduction problem. The EMEP ozone model is designed to simulate ozone formation over



long periods of time and over all Europe, so that the e�ects of emission control measures on

long-term ozone concentrations can be estimated.

The scenario has two patterns. One pattern is concerned with total emissions in all of Europe;

the values in Table 3 show the total rate for NOx and VOC emissions. The other pattern provides

more detailed results. The various scenarios in the Table 4 are derived from the information

in the basic scenario, Although there are many possible combinations for reducing precursor

emissions, we have limited out study to the scenarios summarized in Table 5.

Table 3: Rate of each emission for all countries in Europe.

NOx VOC

Basic Scenario1 1.0 1.0

Basic Scenario2 0.3 0.3

Table 4: Rate of each emission for each country in Europe.

NOx VOC

Reduction Pattern1 1.0 0.6

Reduction Pattern2 0.8 1.0

Reduction Pattern3 0.6 1.0

Reduction Pattern4 0.3 0.7

Reduction Pattern5 0.5 0.3

Reduction Pattern6 0.7 0.3

Table 5: Outline of scenarios.

All Countries Country1 Country2 � � �

Basic Scenario1 No Reduction | | � � �

Basic Scenario2 All Reduction | | � � �

Scenario1 | Reduction Pattern1 No Reduction � � �

Scenario2 | Reduction Pattern2
... � � �

Scenario3 | Reduction Pattern3
... � � �

Scenario4 | Reduction Pattern4
... � � �

Scenario5 | Reduction Pattern5
... � � �

Scenario6 | Reduction Pattern6
... � � �

Scenario7 | No Reduction Reduction Pattern1 � � �

Scenario8 |
... Reduction Pattern2 � � �

... |
...

...
...

3 An Approach to Fuzzy Rule Generation

3.1 Fuzzy models and identi�cation problems

The fuzzy prediction model is a nonlinear model consisting of several rules. The original form

is presented in Takagi and Sugeno (1985). In this paper the following rule is applied:

Rule Ri : if z is Fi; then y = gi(x) = ai0 + x Ai; (4)

where x = (x1; x2; � � � ; xs) is the vector of consequence variables, z=(z1, z2, � � �, zt) is the vector

of premise variables, and y = (y1; y2; � � � ; yr) is the vector of response variables. Often, there



is an intersection between two variable sets fx1; x2; � � � ; xsg and fz1; z2; � � � ; ztg. The variables

Fi denotes a fuzzy subset with the membership function fi(z) with premise parameters. The

regression parameters 
 = fai0 2 Rr; Ai 2 Rs�r ; i = 1; 2; � � � ; cg are called consequence

parameters. The prediction of y is given by

ŷ =

cX
i=1

fi(z
�) � gi(x

�)

cX
i=1

fi(z
�)

; (5)

where x� and z� denote actual inputs and c is the number of rules.

The fuzzy modeling involves the following interdependent problems:

1. Fuzzy partition of the given data set,

2. Selection of consequence variables and identi�cation of consequence parameters in the

linear models.

3. Selection of premise variables and identi�cation of premise parameters in the membership

functions.

If the variables in the model are determined by the system under study, the �rst and second

problems may be solved simultaneously. This paper modi�es the method in Hathaway and

Bezdek (1992) for simultaneous analysis of classi�cation and regression and applies it to fuzzy

modeling, based on Dave (1990) where the shapes of clusters are changed adaptively in the

clustering process.

For the third problem, there is a possibility of relaxing the constraint that the membership

grades of a data vector across clusters must equal one (Krishnapuram and Keller, 1993). In

our experience, however, the relaxation sometimes produces a poor partition of the data set,

especially when the data distribution is complex. In such a situation, the relaxation method

recognizes many data points as noise, and all membership grades of a data point converge at the

same value. It is inconvenient to build a prediction model by applying this approach directly.

Given this fact, the membership values resulting from the fuzzy clustering are not used in the

study. Instead, the membership functions are identi�ed by using the results from clustering.

3.2 Fuzzy clustering and regression

Let f(x1;y1; z1), � � �, (xn;yn; zn)g, xk 2 Rs, yk 2 Rr, zk 2 Rt be the set of standardized data

corresponding to consequence, response, and premise variables, respectively. The clustering is

done in the space de�ned by the union of all variables. However, because the premise and

consequence variables often interset, the dimension of the clustering space is usually less than

s + r + t. Let fw1; � � � ;wng, wk 2 Rv (v � s+ r + t) be the union of standardized data.

Consider the well-known fuzzy partition matrix U with uik for the (i; k)-entry, satisfying

0 � uik � 1; i = 1; 2; � � � ; c; k = 1; 2; � � � ; n (6)

0 <

nX
k=1

uik < n; i = 1; 2; � � � ; c; (7)

cX
i=1

uik = 1; k = 1; 2; � � � ; n: (8)

De�ne the degree of �tness of the k-th data to the i-th model by

Eik(
) = kyk � gi(xk; 
)k
2: (9)



The objective function of the fuzzy clustering is then de�ned by

J(U;
) =
nX

k=1

cX
i=1

(uik)
mEik(
); (10)

where m(> 1) is the smoothing parameter indicating the degree of fuzziness. This formulation

is given in Hathaway and Bezdek (1993) , and the method is called the fuzzy c-regression models

(FCRM).

This approach provides a fuzzy partition of the given data set and a set of regression models

corresponding to the data partition. However, since this method does not take into account

data distribution, it is not necessarily appropriate for fuzzy modeling.

3.3 Adaptive fuzzy clustering and regression

In this section, the FCRM is modi�ed based on Dave (1990). The modi�ed version can be called

the adaptive fuzzy c-regression models (AFCR). Denote the set of centers of clusters in the space

of premise variables by V = f�z1; � � � ; �zcg; these variables are also parameters to be determined

in the clustering

�zi =

nP
k=1

(uik)
m
zk

nP
k=1

(uik)m
: (11)

Introduce an objective function that takes into account a balance between the minimization

of regression errors and the minimization of variances within clusters:

J(U;
; V; �1; � � � ; �c; �) =
nX

k=1

cX
i=1

(uik)
mLik(
; V; �i; �): (12)

Here, the function Lik(
; V; �i; �) is de�ned by

Lik(
; V; �i; �) = (1� �i) � Dik(V ) + �i Eik(
); (13)

and Dik(V ) is the square distance between �zi and the k-th data point zk in the space of premise

variables

Dik(V ) = kzk � �zik
2: (14)

The parameters �i (0 � �i � 1) are changed in the clustering process adaptively as in Dave

(1990). Let �i1, �i2, � � � be the eigenvalues of the fuzzy scatter matrix Si calculated by using all

data in the space of all variables:

Si =
nX

k=1

(uik)
m (wk � �wi)

>(wk � �wi); �wi =

nP
k=1

(uik)
m
wk

nP
k=1

(uik)m
: (15)

Then, de�ne

�i = 1�

min
j
f�ijg

max
j
f�ijg

; i = 1; 2; � � � ; c: (16)

The parameter � balances between the absolute values of the �rst and second terms in

the objective function. Unlike the adaptive fuzzy c-elliptotypes clustering algorithm in Dave

(1990). in this paper Dik and Eik are distance measures de�ned over di�erent spaces, hence this

parameter is needed. The appropriate value of � depends on a given data set. One possibility

is that it is determined by the ratio of the data spread over two spaces.

The clustering algorithm is given below; in this algorithm the solutions to the minimization

problems can be obtained by the necessary conditions of optimality.



Step 1: Let l = 0. Set values of the smoothing parameter m and the threshold parameter

"(> 0) in the stopping rule. Assume an initial fuzzy partition matrix U (l).

Step 2: Compute 
(l) that minimizes

J1(
) =
nX

k=1

cX
i=1

(u
(l)

ik )
m Eik(
): (17)

Step 3: Compute V (l) that minimizes

J2(V ) =
nX

k=1

cX
i=1

(u
(l)

ik )
m Dik(V ): (18)

Step 4: Compute the trade-o� parameters �
(l)
i (i = 1; 2; � � � ; c) by using the eigenvalues of

the fuzzy scatter matrices.

Step 5: Update the partition matrix form U (l) to U (l+1) which minimizes

J3(U) = J(U;
(l); V (l)): (19)

Step 6: If the condition

max
i;k

fju
(l+1)

ik � u
(l)

ik jg < "; (20)

holds, then stop. Otherwise, let l = l+ 1 and go to Step 2.

3.4 Premise modeling

In this section, we propose a method of identifying membership functions of premise variables.

First the data set of premise variables is partitioned crisply by introducing an �-cut to the fuzzy

partition obtained in the clustering algorithm.

Let �ij be the local coordinate of input vector z :

�ij = (z � ci) e
>

ij ; (21)

where ci is the center of cluster i and eij is the j-the principal component with keijk = 1.

When eij is a unit vector, the membership function is de�ned on the original axis. Denote the

�rst, second and third quartiles on the j-th principal axis of the cluster i by �ij1, �ij2, and �ij3,

respectively. The second quartile corresponds to the median of data distribution on the principal

axis. The �rst and third quartiles are de�ned so that the �rst is smaller than the third. If they

are equal, one quartile must uctuate to maintain �ij1 < �ij2 < �ij3.

De�ne membership functions on the principal axes of the cluster i as follows:

8>><
>>:

�ij(�ij ; �ij1; �ij2; �ij3; tij1; tij2) = exp
n
�

(�ij��ij2)
2

2(tij1)2(�ij1��ij2)2

o
; �ij � �ij2;

�ij(�ij ; �ij1; �ij2; �ij3; tij1; tij2) = exp
n
�

(�ij��ij2)
2

2(tij2)2(�ij3��ij2)2

o
; �ij � �ij2;

(22)

where tij1; tij2 (> 0) are tuning parameters with the unit default. They are optimized by the

nonlinear optimization algorithm (see Box et al., 1969). Now, de�ne the membership function

corresponding to rule i:

fi(z) =
tY

j=1

�ij(�ij ; �ij1; �ij2; �ij3; tij1; tij2): (23)



There are several reasons for using such a membership function. Because the premise vari-

ables are usually correlated to each other, we recommend using multi dimensional membership

functions. These are derived from the product of one-dimensional membership functions which

are de�ned on the principal axes. The reasons for using quartiles are that they are robust

statistics, are not easily inuenced by extraordinary data units, and are suitable to represent

nonsymmetrical cluster spread. The function de�ned in equation(22) is an asymmetrical curve

with two inection points that are internally or externally dividing points between the median

and the �rst (or the third) quartile in the ratio tij1 : 1� tij1 (or the ratio tij2 : 1� tij2). That is,

the parameters tij1; tij2 appear to be related to a cluster spread and are optimized to minimize

the sum of square errors of predictions de�ned in equation (9).

It should be noted that good linear regression models are not always obtained for some data

sets. For such data sets one can examine nonlinear regression or try to build ordinary fuzzy

proposition models(see Kainuma et al., 1990).

4 Fuzzy Rule Generation for Selected EMEP Grids

4.1 Review of each grid

Fuzzy models of grids in southern UK, Stuttgart, and upper Austria, are provided in this section.

The EMEP ozone model can simulate the inuences on each grid from all the countries in

Europe. The results from the simulations for NOx emissions are shown in Table 6; the numbers

correspond to countries de�ned in Table 1. Each fuzzy model considers inuences from sources

outside, and possibly inside the countries. The large inuence on each grid is represented by

the �ve main sources (countries). Total e�ective NOx emissions from foreign sources and the

e�ective NOx from domestic sources are used for building the fuzzy model.

Table 6: Inuences on each grid of e�ective NOx emissions; numbers correspond to countries

listed in Table 1.

Southern UK 27 10 17 8 3 14 6 19 15 39 42 46

Stuttgart 10 8 27 46 17 3 19 15 24 2 16 23

Upper Austria 10 2 15 46 8 27 19 24 17 3 47 6

E�ective VOC emissions from all countries in Europe are also used in the fuzzy model. The

response variable is ozone concentration and the explanatory variables are e�ective NOx and

e�ective VOC emissions. These e�ective emissions are calculated by the EMEP ozone model

along the simulated trajectory under meteorological conditions over a 96-hour period. The

variable representing the photolysis rate of NO2 is also considered. Photolysis rate of NOx acts

as a catalyst for ozone generation (Heyse and Sch�opp, 1995).

The e�ective emissions of NOx and VOC are highly correlated. This situation causes the

collinearity problem, so explanatory variables should be selected. The reason why they have

such a high correlation is that sources of these emissions are very similar; for instance, they

often come from the same plants, and large-scale sources contribute to both. To analyze the

reduction of precursor emissions using the fuzzy model, the variables related to NOx and VOC

are used in fuzzy rules.

Figure 1, Figure 2 and Figure 3 show the levels of NOx emissions in the selected grids.

The horizontal axis shows the number of days and the vertical axis provides the amount of

e�ective NOx emissions. The white diamonds denote e�ective NOx emissions from sources in all

countries in Europe, the white squares denote e�ective NOx emissions from sources in the four

main countries, and the black diamonds denote e�ective NOx emissions from domestic sources.
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Figure 1: E�ective NOx emissions in the grid of southern UK.

0

500

1000

1500

2000

2500

20 40 60 80 100 120 140 160 180

E
ff

ec
tiv

e 
 e

m
is

si
on

s 
 N

O
x 

[ 
 1

010
 M

ol
ec

ul
es

  c
m

-2
 s

ec
-1

 ]

Day

Effective NOx from Germany
Total effective NOx

Effective NOx from 4 countries

Figure 2: E�ective NOx emissions in the grid of Stuttgart.
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Figure 3: E�ective NOx emissions in the grid of upper Austria.

Figure 1 shows that southern England receives a small amount of NOx from countries. E�ective

NOx emissions from UK sources have a strong inuence on the grid. A fuzzy model of this

grid may be developed without considering other countries.

Figure 2 shows that in Stuttgart, Germany, total e�ective NOx emissions are almost equal to

the amount contributed by other countries. The emissions from sources in Germany are

the main inuence on this grid.

Figure 3 shows that in upper Austria receives more e�ective NOx emissions from sources in

other countries than from sources in Austria. Germany contributes the largest amount of

e�ective NOx emissions to this grid.

4.2 Fuzzy models of the grid of southern United Kingdom

The grid of southern UK (Figure 1) shows that only a small amount of e�ective NOx emissions

comes from other countries. Table 7 presents a regression model and its prediction power. The

explanatory variables are also shown in Table 7; these variables are used in the simpli�ed model

(Heyse and Sch�opp, 1995).

Table 8 shows that the correlation coe�cients between explanatory variables are very high.

This situation causes the general collinearity problem. However, as mentioned earlier, the level of

e�ective emissions in the grid must be used for fuzzy rules even though the correlation coe�cients

between explanatory variables are high.

The grid of southern England shows that the amount of e�ective NOx emissions from foreign

sources is very small. This variable is not suitable as a premise variable, but it is necessary for

policy making. Therefore, two fuzzy models are developed for this grid: one includes the level

of e�ective NOx emissions from foreign sources and the other does not.

Model I: A fuzzy model using e�ective NOx emissions from foreign sources coun-

tries.



Table 7: A regression model developed from data of the grid of southern UK.

Explanatory Variables

Const. E.NOx E.VOC E.NOx
2 E.NOx�E.VOC

36.549 -0.016165 0.010392 -5.0058e-5 2.20768e-5

The correlation coe�cient of predictions between

the EMEP model and the regression model is 0.5633.

Table 8: Correlation coe�cients between explanatory variables of the grid of southern England.

Ozone E.NOx E.VOC E.NOx
2 E.NOx�E.VOC

Ozone 1.0 0.4227 0.4812 0.3726 0.4044

E.NOx 1.0 0.9821 0.9076 0.9158

E.VOC 1.0 0.8790 0.9003

E.NOx
2 1.0 0.9968

E.NOx�E.VOC 1.0

In this model, the premise variables are e�ective NOx emissions from sources in the United

Kingdom, the e�ective NOx emissions from sources in Germany, the Netherlands, France, and

Belgium, and the photolysis rate of NO2. The model has four rules. The estimation results of

Model I are shown in Figure 4.

The correlation coe�cient of predictions between the EMEP model and Model I is 0.6270.

The selected premise variables are e�ective NOx emissions from UK sources, the photolysis rate

of NO2, and e�ective NOx emissions from the four countries.

The identi�ed membership functions of premise variables are shown in Figure 5, Figure 6,

and Figure 7. In these �gures, the vertical and horizontal axes correspond to the grade of

the membership function and the premise variable, respectively. The membership function of

e�ective NOx emissions from sources in the four countries is not partitioned in this model. The

premise and consequence of the fuzzy model are summarized in Table 9 through Table 13.

Model II: A fuzzy model without e�ective NOx emissions from the four countries.

A fuzzy model that does not consider e�ective NOx emissions from sources in Germany, the

Netherlands, France, and Belgium is described in this section. The model has three fuzzy rules.

The estimation results of Model II are shown in Figure 8.

The correlation coe�cient of predictions between the EMEP model and Model II is 0.7707.

The selected premise variables are e�ective NOx emissions from the UK and the photolysis

rate of NO2. The identi�ed membership functions of premise variables are shown in Figure 9

and Figure 10. The premise and consequence of the fuzzy model are shown Table 14 through

Table 17.

4.3 Fuzzy models of the grid of Stuttgart site in Germany

In this section, two fuzzy models of the grid of Stuttgart are introduced. This grid receives some

e�ective NOx emissions from other countries (see Table 6). As shown in Figure 2, this grid is

strongly inuenced by precursor emission NOx from Germany. A regression model based on

all data from the grid of Stuttgart site is shown in Table 18. Correlation coe�cients between

explanatory variables in the grid of Stuttgart are summarized in Table 19.
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Figure 4: Estimation results from Model I of the grid of southern UK.
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Figure 5: E�ective NOx emission in the grid of southern UK from sources in the United Kingdom.
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Figure 6: E�ective NOx emissions in the grid of southern UK from sources in Germany, the

Netherlands, France, and Belgium
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Figure 7: Photolysis rate of NO2 in the grid of southern UK



Premise of Model I of the grid of southern UK

Table 9: Minimum, quartiles, maximum, and tuning parameters in rule 1.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from UK 141.13 172.38 205.00 354.10 813.43 2.1 3.8

Photolysis rate of NO2 2.6894 3.4781 3.7578 4.4180 4.8417 3.5 3.6

E.NOx from 4 countries 0.0000 0.0000 0.0000 0.0000 178.48 3.9 4.1

Table 10: Minimum, quartiles, maximum, and tuning parameters in rule 2.

Premise Variables min q1 q2 q3 max t1 t2
E.Nox from UK 256.33 393.00 603.59 957.39 2226.3 2.2 2.7

Photolysis rate of NO2 3.0645 4.1436 4.4889 4.6528 4.8461 2.4 4.0

E.NOx from 4 countries 0.0000 0.0000 0.0000 32.700 570.00 3.5 4.9

Table 11: Minimum, quartiles, maximum, and tuning parameters in rule 3.

Premise Variables min q1 q2 q3 max t1 t2
E.Nox from UK 134.85 165.76 241.38 401.35 3187.5 2.7 2.1

Photolysis rate of NO2 2.5032 3.6112 4.1865 4.4265 4.8489 0.9 1.5

E.NOx from 4 countries 0.0000 0.0000 0.0000 1.5375 1058.8 3.2 4.2

Table 12: Minimum, quartiles, maximum, and tuning parameters in rule 4.

Premise Variables min q1 q2 q3 max t1 t2
E.Nox from UK 135.80 163.09 210.54 297.01 1454.5 3.4 3.1

Photolysis rate of NO2 1.0540 2.1413 2.6888 2.9491 3.4782 2.0 4.1

E.NOx from 4 countries 0.0000 0.0000 0.0000 0.0000 57.100 1.2 3.6

Consequence of Model I of the grid of southern UK

Table 13: Regression models of Model I of the grid of southern UK.

Rule Const. E�ective NOx E�ective VOC

Rule 1 39.215 -0.084880 0.030136

Rule 2 37.919 -0.081425 0.037291

Rule 3 28.084 -0.21351 0.10015

Rule 4 36.566 0.010581 -0.0056247
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Figure 8: Estimation results from Model II of the grid of southern England.
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Figure 9: E�ective NOx emissions in the grid of southern UK from UK sources.



Premise of Model II of the grid of southern UK

Table 14: Minimum, quartiles, maximum, and tuning parameters in rule 1.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from UK 207.13 358.60 511.81 746.98 3187.5 0.8 3.2

Photolysis rate of NO2 2.9910 4.0880 4.4522 4.6102 4.8417 0.6 1.7

Table 15: Minimum, quartiles, maximum, and tuning parameters in rule 2.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from UK 134.85 161.50 183.54 258.93 918.00 2.5 4.4

Photolysis rate of NO2 1.8333 3.3500 3.7674 4.3236 4.8489 3.4 3.9

Table 16: Minimum, quartiles, maximum, and tuning parameters in rule 3.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from UK 135.80 166.90 227.18 333.93 1454.5 1.7 4.9

Photolysis rate of NO2 1.0540 2.1413 2.6888 2.9653 3.6126 4.2 2.4

Consequence of Model II of the grid of southern UK

Table 17: Regression models of Model II of the grid of southern UK.

Rule Const. E�ective NOx E�ective VOC

Rule 1 24.706 -0.056971 0.031271

Rule 2 30.577 0.0019158 0.021854

Rule 3 33.671 -0.046039 0.013568

Table 18: A regression model developed from data of the grid of Stuttgart.

Explanatory Variables

Const. E.NOx E.VOC E.NOx
2 E.NOx�E.VOC

40.339 -0.0028820 0.020350 -6.2404e-5 1.60638e-5

The correlation coe�cient of predictions between

the EMEP model and the regression model is 0.7794.

Table 19: Correlation coe�cients between explanatory variables of the grid of Stuttgart.

Ozone E.NOx E.VOC E.NOx
2 E.NOx�E.VOC

Ozone 1.0 0.5356 0.7097 0.4832 0.2656

E.NOx 1.0 0.9196 0.9357 0.9059

E.VOC 1.0 0.8666 0.9122

E.NOx
2 1.0 0.9781

E.NOx�E.VOC 1.0
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Figure 10: Photolysis rate of NO2 in the grid of southern UK.

For this grid, two fuzzy models have been developed. One has a higher correlation coe�cient

between predictions by the EMEP ozone model and predictions by the fuzzy model than the

other. It is quite di�cult to judge which fuzzy model is better because the rules of the fuzzy

model with better prediction are not clearly separated.

Model III: A fuzzy model with two fuzzy rules

The premise variables selected in this fuzzy model are the photolysis rate of NO2, e�ective

NOx emission from sources in Germany, and e�ective NOx emissions from sources in France, the

UK, the Czech Republic, and Belgium. The selected consequence variables are e�ective NOx

emissions and e�ective VOC emissions. The predictive power of the model is shown in Figure 11.

The correlation coe�cient of predictions between the EMEP model and Model III is 0.9296.

The identi�ed membership functions of premise variables are shown in Figure 12, Figure 13, and

Figure 14.

As mentioned before, the membership functions of the photolysis rate of NO2 are not well

partitioned, although the correlation coe�cient between the simulated values of the EMEP ozone

model and the predictions of this fuzzy model is high. The model is summarized in Table 20

through Table 22.

Model IV: A fuzzy model with three fuzzy rules

The variables in this model are the same as those in the Model III, but the model has three

fuzzy rules. The predictive power of Model IV is shown in Figure 15.

The correlation coe�cient of predictions between the EMEP model and Model IV is 0.8970.

The premise variables are e�ective NOx emissions from Germany, the photolysis rate of NO2,

and e�ective NOx emissions from four countries. The identi�ed membership functions of the

premise variables are shown in Figure 16, Figure 17, and Figure 18.

The model is summarized in Table 23 through Table 26.
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Figure 11: Estimation results from Model III of the grid of Stuttgart.
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Figure 12: E�ective NOx emissions in the grid of Stuttgart from sources in Germany.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

G
ra

de
 o

f M
em

be
rs

hi
p

Total  of  effective  NOx emissions  from  4  countries  [  Molecules  cm-2 sec-1 ]

Rule1
Rule2

Figure 13: E�ective NOx emissions in the grid of Stuttgart from sources in France, the UK, the

Czech Republic, and the Netherlands.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

G
ra

de
 o

f M
em

be
rs

hi
p

Photolysis  rate  of  NO2 [  10-3 sec-1 ]

Rule1
Rule2

Figure 14: Photolysis rate of NO2 in the grid of Stuttgart, Germany.



Premise of Model III of the grid of Stuttgart, Germany.

Table 20: Minimum, quartiles, maximum and tuning parameters in rule 1.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Germany 53.650 145.50 257.78 411.28 1842.3 2.0 4.1

Photolysis rate of NO2 2.8271 4.0540 4.5387 4.7073 5.0535 1.0 1.0

E.NOx from 4 countries 0.0000 21.325 67.475 133.66 632.38 2.7 4.6

Table 21: Minimum, quartiles, maximum and tuning parameters in rule 2.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Germany 56.125 108.90 157.25 269.59 925.20 3.5 3.6

Photolysis rate of NO2 1.848 2.6537 2.9969 3.5247 4.6394 1.0 1.0

E.NOx from 4 countries 0.0000 17.275 67.350 140.28 786.50 2.3 3.6

Consequence of Model III of the grid of Stuttgart, Germany.

Table 22: Regression models of Model III of the grid of Stuttgart, Germany.

Rule Const. E�ective NOx E�ective VOC

Rule 1 49.9128 -0.010790 0.019682

Rule 2 41.6517 -0.055144 0.022326
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Figure 15: Estimation results from Model IV of the grid of Stuttgart, Germany.
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Figure 16: E�ective NOx emissions in the grid of Stuttgart from sources in Germany.
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Figure 17: E�ective NOx emissions in the grid of Stuttgart from sources in France, the UK, the

Czech Republic, and the Netherlands.
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Figure 18: Photolysis rate of NO2 in the grid of Stuttgart, Germany.

4.4 Fuzzy model of the grid of upper Austria

A comparison of Figures 1, 2, and 3 shows that the grid for upper Austria (Figure 3) inuenced

more by NOx emissions from speci�c countries, especially from Germany, than by emissions

from Austria or by emissions from all countries in Europe. A regression model developed using

data from the grid and its prediction power are shown in Table 27. Because of the collinearity

problem in this model, the coe�cients are not stable as shown in Table 28.

The four foreign that have the most inuence on this grid are Germany, Italy, the Czech

Republic, and France. The estimation results from the fuzzy model are shown in Figure 19.

The correlation coe�cient of predictions between the EMEP model and this fuzzy model is

0.9251. The premise variables selected are e�ective NOx emissions in the grid of upper Austria

from sources in Austria, the photolysis rate of NO2, and e�ective NOx emissions from sources in

Germany, Italy, the Czech Republic, and France. The membership functions of premise variables

are shown in Figure 20, Figure 21 and Figure 22.

The premise and consequence of the fuzzy model are summarized in Table 29 through Ta-

ble 32.
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Figure 19: Estimation results of the grid of upper Austria.
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Figure 20: E�ective NOx emissions in the grid of upper Austria from sources in Austria.
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Figure 21: E�ective NOx emissions in the grid of upper Austria from sources in Germany, Italy,

the Czech Republic, and France
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Figure 22: Photolysis rate of NO2 in the grid of upper Austria.



Premise of Model IV of the grid of Stuttgart, Germany

Table 23: Minimum, quartiles, maximum and tuning parameters in rule 1.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Germany 53.650 105.60 165.34 237.64 336.60 1.9 2.6

Photolysis rate of NO2 3.9937 4.4668 4.6039 4.7090 5.0091 2.8 1.8

E.NOx from 4 countries 0.22500 24.275 43.338 83.025 161.60 4.5 3.1

Table 24: Minimum, quartiles, maximum and tuning parameters in rule 2.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Germany 164.75 293.85 388.96 519.15 1842.3 0.2 1.9

Photolysis rate of NO2 2.8271 4.2233 4.6042 4.8081 5.0535 2.7 1.3

E.NOx from 4 countries 0.0000 14.113 117.58 200.64 632.38 4.3 4.5

Table 25: Minimum, quartiles, maximum and tuning parameters in rule 3.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Germany 54.125 109.25 162.45 295.65 1842.3 3.4 3.9

Photolysis rate of NO2 1.8479 2.7615 3.1794 3.7749 4.9486 4.4 0.6

E.NOx from 4 countries 0.0000 13.725 62.550 146.45 786.50 0.5 2.4

Consequence of Model IV of the grid of Stuttgart, Germany.

Table 26: Regression models of Model IV of the grid of Stuttgart, Germany.

Const. E�ective NOx E�ective VOC

Rule 1 49.248 0.038496 0.0062520

Rule 2 56.634 -0.034042 0.024643

Rule 3 40.9011 -0.087600 0.036111



Table 27: A regression model developed from data of the grid of upper Austria.

Explanatory Variables

Const. E.NOx E.VOC E.NOx
2 E.NOx�E.VOC

42.639 0.0049415 0.018019 -9.0036e-5 2.29272e-5

The correlation coe�cient of predictions between

the EMEP model and the regression model is 0.7971.

Table 28: Correlation coe�cients between explanatory variables of the grid of upper Austria.

Ozone E.NOx E.VOC E.NOx
2 E.NOx�E.VOC

Ozone 1.0 0.5748 0.7489 0.4878 0.6333

E.NOx 1.0 0.9047 0.9396 0.9171

E.VOC 1.0 0.8301 0.9234

E.NOx
2 1.0 0.9556

E.NOx�E.VOC 1.0



Premise of the Model of the grid of upper Austria

Table 29: Minimum, quartiles, maximum and tuning parameters in rule 1.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Austria 13.175 23.100 32.363 56.488 200.95 2.6 3.6

Photolysis rate of NO2 2.3953 3.5583 3.9952 4.3477 5.0609 2.9 2.7

E.NOx from 4 countries 0.2500 80.388 159.48 257.24 726.60 2.2 1.8

Table 30: Minimum, quartiles, maximum and tuning parameters in rule 2.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Austria 15.300 27.250 39.463 72.313 182.48 1.9 2.1

Photolysis rate of NO2 3.2453 4.4697 4.6479 4.7939 5.0647 2.1 3.4

E.NOx from 4 countries 0.5000 87.913 196.78 276.46 811.95 3.8 4.4

Table 31: Minimum, quartiles, maximum and tuning parameters in rule 3.

Premise Variables min q1 q2 q3 max t1 t2
E.NOx from Austria 14.525 17.725 21.375 30.913 170.50 3.5 2.9

Photolysis rate of NO2 1.0049 2.4377 2.7393 3.0494 4.3831 4.0 2.0

E.NOx from 4 countries 1.2500 48.200 89.650 152.26 628.08 3.9 3.9

Consequence of the Model of the grid of upper Austria

Table 32: Regression models of the grid of upper Austria.

Const. E�ective NOx E�ective VOC

Rule 1 45.594 -0.047080 0.027122

Rule 2 51.209 -0.010746 0.020866

Rule 3 40.143 -0.076712 0.028836



5 Conclusion

This paper documents fuzzy models of relationships between precursor NOx and VOC emissions,

and ozone concentrations. A detailed, theoretical model and basic scenarios of emissions have

been used in the development of these fuzzy models.

Time limitation have restricted the study to fuzzy models three grids; these grids represent

di�erent source-receptor relations. The grids are located in southern England, Stuttgart, and

upper Austria. Results from the EMEP model have been used to verify the fuzzy models ob-

tained. Research shows that fuzzy models provide better predictions of the ozone concentrations

than traditional regression models based on data from each grid.

The results in this paper illustrate how one can use a detailed, theoretical model to develop

simple fuzzy models. Detailed models (such as the EMEP model) are very powerful tools, but

these type of models are quite di�cult to understand or use in policy analysis aimed at �nding

cost-e�ective scenarios. Simple fuzzy models can be developed and veri�ed by using a detailed

model; the results of the fuzzy models can then be used to analyze various policy options.

This study supports the development of fuzzy models for all grids. It is an open question if

it will be possible to identify a relatively small number of clusters of grids and to develop for

each cluster a model which can be applied to all grids belonging to this cluster.
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