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Abstract

Insurance contracts and lotteries are just the opposite sides of the same coin:
These are contracts, which allow to reshape an uncertain financial position
by exchanging risks between two contractors. In this paper, we discuss some
hasic problems of operations research which are connected with such kind of

contracts.



1 Introduction

Actions in economic planning are taken in an uncertain environment: The
economic result of a decision may depend on the future, like on future prices,
interest or exchange rates, but also on accidents, catastrophes and political
decisions. One may say that uncertainity and risk are inevitable factors in
economic decision making.

Developed economies offer instuments to buy and sell risks as if they
were goods: Insurances and banks are ready to buy risks for some specific
price. Typically, the seller’s risk is not fully taken by the buyver. but his risk
distribution is changed, 1t is reshaped.

Risk as part of the economic decision process has been studied by many
economists starting in the 70ies. The typical research question was how to
assess utilities to risky alternatives making observed human behavior rational.

Only in the 90ies the problem of how to assess prices and preferences to
risk reshaping contracts became an important ¢uestion in business adminis-
tration. This area of research is part of the Stochastic Operations Research,
in particular of Stochastic Optimization. In this paper, we review some basic
research questions connected with risk-reshaping contracts.

We will concetrate here on one-stage decision problems (i.e. just one deci-
sion has to be made), bearing however in mind that most practical decisions
are multi-stage (we have to decide now, but we know that there are future time
moments allowing us to take corrective actions). For instance, asset-liability
management problems of pension funds are always of the multi-stage type,
since the fund is supposed to operate for a long period, in which inflows and
outflows occur and investment or deinvestment decisions have to be taken in
regular time intervals.

We may distinguish between binary decisions (where we may choose just
between two alternatives), discrete decisions (where we have to select the
decision from a finite set) or continuous decisions (where the decision space
1s a continuum).

Let us consider a binary decision problem first.

Suppose that our future costs are described by a random variable Y.
(Profits are considered as negative costs). If somebody offers a contract such
that this random variable Y changes into another random variable Z; for the
price of py, we are faced with the problem, whether to take this offer or not.
We may and will include the price py into the cost variable, and consider
Z = Zy + po as the new costs.

What is required for the decision process is a preference relation. which
allows us to decide between Y and Z.

Let Fy resp. Fz be the distribution functions of Y resp. Z. These dis-



tribution functions may be decomposed into the absolutely continuous parts
with densities fy resp. fz and the discrete parts.
We visualize probability distributions on the real line in the following man-

ner: The discrete part is shown by bars with a dot on top and the continuous
part is represented by its density function.
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The discrete part (left) and the continuous part (right) of a distribution.

Here are some examples of cost-reshaping contracts:

(1)

A lottery
For a fixed price Y = pg, one may buy a ticket which offers a random
win Z, distributed according to some discrete probability distribution.

| Ts
|

0 0
The price of the ticket (left) and the distribution of wins (right)

Trpically, the expectation E(Z) is smaller than the price py. Although Z
is riskier, it has a smaller expectation, Thus the lottery has a negative
risk premium E(Z) — po < 0. It seems completely irrational to buy
lottery ticket. In fact, firms should never play lotteries. since it is
irrational to do. For individuals, there is a psychological argument,
namely the regret principle (see section 3), which may be adopted as
excuse for irrationality.

An insurance contract

Random costs Y are taken over by the insurer for a fixed price Z = py.
Typically the insurer gets a risk premium (safety loading) po—E(Y") > 0.
From the insurer’s side, the contract looks like a lottery with positive

risk premium, a lottery which is worthwile to play.




(iii)

(1v)

0 | 0

The distribution of the random claim Y (left) and the (deterministic)

insurance premium (right)

An insurance with deductible

For a premium of pg, random costs Y are taken over by the msurer,
if they exceed a prespecified amount zp (the deductible). Thus by this
contract, the customer changes his cost distribution from Y to Z =
min(Y, z9) + po.

|
0 0

The distribution of the total damage Y (left) and the cost distribution

Z of the insured customer (right)

Reinsurance

Let Y be the total outpayments of an insurance company in one period.
Suppose that the company has a reinsurance contract. swhich allows to
claim (Y — m)* from the reinsurer (a¢* equals «, if « is positive and
0 otherwise). This contract changes Y to Z = Y — (Y — m)* + po.
Proportional reinsurance (m = 0) and stop-loss reinsurance (v = 1) are
special cases.



0 0

The cost distribution without (Y :left) and with (Z :right) a
reinsurance contract.

(v) Options
The (European put) option contract allows the owner of a share to sell
this share at some future time instant 7' for the price of c. if he wants.
Suppose that ¥~ denotes the price of this share at time T" and let py be
the price of the option. Then the decision maker has to decide between
}" (not to buy the option) and Z = max(Y,¢) — pp (to buy the option).
Notice that ¥ and Z are profits and not costs in this example.

(vi) Swaps, Caps, Floors and Collars
The swap contract allows to make and exchange between a fixed-interest
loan and a variable-interest loan. It is a kind of insurance contract.
(faps, floors and collars are contracts, which put limits to the interests
of a variable-interest loan. They are kinds of reinsurance contracts.

The basic research questions for risk-reshaping contracts are:

(i) The estimation problem: How can we estimate the distributions of
Y and Z from data?

(i) The decision making problem: How should an individual agent
calculate his preferences for Y or Z and make his decisions?

(iii) The pricing problem: How should a company fix the price of a
contract, which offers to reshape Y to Z7?

We discuss these questions in the following sections.

2 Modeling and estimation

The basic problem of decision making under uncertainity is the statistical
problem of estimating the distribution of the random costs Y (and likewise




of Z). Without information about the distributions (risk assessment) no
decision is possible.

The quality of the estimates depends on the available data, their quality
and the accuracy of the model. In the simplest case like in property insur-
ance, independent, identically distributed observations Y1,Y5,....Y, of the
individual claims can be observed and the unknown claim distribution Fy-
can be estimated by the empirical d.f.

n
Fy(t) = 32 I(Y; < t)
iz
or smoothed variants of 1t. It is important to stress that [y is only an
approximation of Fy and there is always an estimation error present. This
error is often ignored and the decisions are made as if Fy would be the true
Fy-. The estimation error can be quantified by formulas for confidence regions.
like the Dvoretzky-IXiefer-Wolfowitz inequality

P{sup |Fy (1) — Fr(t)] > ¢} < 58exp(—ne?)
1

or other exponential inequalities (see Shorack and Wellner [7]).
Let Fy.. be a the confidence region for Fy

Fre = {Fy s sup [y () = Fe(1)] < o}

A decision to prefer Z over Y (i.e. to prefer Fz over ﬁy] is robust of level €.
if all elements of Fy, are preferrable over all elements of F ..

Very often. i.i.d. data for Y are not available, but the distribution of ¥ has
to be inferred in an indirect manner. Consider e.g. the problem of deciding
whether or not to swap a variable interest loan with a collar (interest rates are
variable only within prespecified limits). To determine the distribution. we
have to have a stochastic model of the interest rates. Let (1);) be the stochastic
process describing the interest rates. Z is some (complicated) function of the
whole trajectory (1;)o<i<T. We estimate the distribution of (1) first by fitting
a parametric model to the past observed data. Assuming stationarity of the
process or at least of its trend, we get a stochastic model for the future interest
process. Finally, the distribution of the derived quantity Z is estimated —
typically by simulation, very rarely by analytical considerations.

As before, the estimation error is not negligible and must be quantified
by confidence regions to get robust decisions.

In cases of extreme lack of information, estimation by statistical methods
is replaced by expert opinions. This very subjective method requires that
the expert lists the set of possible scenarios together with an assignment of
probabilities to each of them.




3 Decision making

In this section, we discuss principles of assigning preferences to decision al-
ternatives under uncertainity.

3.1 Risk functions

Deterministic values are comparable, since there is only one reasonable way of
ordering the real line: If one can get the same good for less money. evervhody
will take the better offer. But how to compare random distributions?

Individuals have different perceptions of risk, they exhibit differences in
their risk aversion. Economists have accounted for this by itroducing differ-
ent types of preference relations, most based on axiomatic priciples. like the
widely used utility indices introduced by Arrow and Pratt.

We adopt here a pragmatic way. We call any function, which maps distri-
bution functions to the real line a risk function and allow to make comparisons
and preference relations on the basis of these functions. A large collection
of risk functions has been proposed, the decision maker has to choose one of
them or to invent a new one.

Let R(Y') denote a risk function associated the random cost variable Y.
We suppose that R(Y") depends only on the distribution Fy- of Y.

Here are some examples for risk functions:

e Linear risk functions

These are characterized by the fact that thev linear in the distribution
function: If Y is a cost distribution which satisfies

v Y1 with probability a
| Y2 with probability 1 — a

then R(Y") = aR(Y1)+(1—a)R(Y?) for linear risk functions. Examples
are the Arrow-Pratt type risk functions
RQ):MWY»:/meﬂﬁm
where U is some utility function; the value at risk
RO =BV HY 2 1) = [ v Ry (o)
where I{} is the indicator function, i.e.

, 1 Y >4
”}2”:{0 ity < ¢

S




and t be some fixed threshold amount (for instance three times the
expectation of Y').
Related risk functions are the excess ratio

R(Y) = E@fﬁ)}«; )z )

and the erceedance probability
R(Y)=P{Y >t} =1- F(1).

Notice that for the same threshold value ¢, the exceedance probability

is always smaller than the excess ratio, since by Stephensons inequality
E(Y I{Y > 8})
Iy >1) °

E(Y).

Quadratic risk functions

These are quadratic in the distribution function Fy . e.g. the Markowit:
value

R(Y) = E(Y )46 Var (Y) = / v dFy(v)+g / /[1’—11)2 APy (u) dFy ().

Here and in the following, ¢ denotes the factor of risk aversion.

Expectation/dispersion risk functions

R{Y) = E(Y) 4+ AE[g(Y — E(Y'))]

where ¢ 1s some convex function with ¢(0) = 0. Examples are:
The upper semivariance

Vart(Y) = E[(} — ]E(Y))Jr]2
and the lower semivariance

Var™ (V) = E[(Y — E(Y ])_]2.
Quantile function based risk functions:

These are linear in the quantile function Qy(¢) = Fy7'(#). e.g. Yaari's
index

R(Y) = /O'x'g(Fy(u))du — /01 g(u) dOy (u)

for some monotone function g¢.




Preference relations can be built on the basis of risk functions: Let R =
(Ro....,Rg) be a set of r isk functions. For two random variables Y and Z
we may define the preference relation

R

Y <2

iff
Rl(y) < RI(Z)

Re(Y) < Ri(2)

Risk functions and preference structures reflect the individual situation of
the decision maler, his risk aversion and objectives of behavior.

3.2 Decision problems

Let Z,,....Z finitely many alternatives. If we single out one appropriate
risk function Ry, the decision is to take the alternative with minimal Rg.

Sometimes the decision maker has to decide about a parameter (or pa-
rameter vector) x. For instance, he may decide, which part of his loan he
wants to swap to variable interest and which part to keep fixed interest.

Such a continuum of alternatives leads to a (nonlinear, constrained) opti-
mization problem:

Let the set of alternatives be (Z;;2 € X). Let Ry. Ry..... R, be a set
of risk functions. One of them, namely Ry serves as objective function, the
others are constraint functions.

The decision problem under uncertainity reads

Minimize Ro(f(x,€))

subject to

Ral(f(x,6)) < by

Ril(f(2,€)) < by
T € X.

Example. Portfolio optimization.

Suppose that we can buy any mix of & different assets. each with random
return Z;. Suppose that we measure the risk with the Markowitz function. but
want to keep the probability of an extreme loss bounded by some prespecified
quantity. The problem reads then

10




Maximise E(z, Z) + ... + @1 Zx) — 6 Var (121 + ... + 21 Z4)

subject to

x4+ ...+, =8B the budget
P{e1Z,+ ...t 22, <t} <a the bound for extreme losses
i Z 0.

This is a nonlinear optimization problem, with quadratic objective. The
first constraint is linear, the second is typically highly nonlinear. The solution
of this problem is done by standard nonlinear optimization techniques.

3.3 Regret

Suppose that the random costs are of the form Z, = f(x, &), where € is
some random variable, which describes the uncertain future. If we would be
clearvoyant and know the future £ in advance, we could choose the decision
v in dependence of £ and obtain the minimally possible costs min,¢= f(r. €).
The difference to f(x,£) 1s the regret function

F(2,6) = f(z,€) ~ min f(, ).

If we replace the original costs Z, be the regret values Z, = f'(.l‘,{'] and solve
the decision problem for Z, we obtain a different solution (the regret solution)
in general. Notice that the regret values are psychological values rather than
costs and that the regret solution is a more emotional than rational decision.

Example. Suppose that a lottery offers a ticket for the price of 1 Euro.
offering a 1% chance of winning 80 Euro. Let x; be the action "buy a ticket”™
and v, "do not buy a ticket”. Let £ = 1 mean that our ticket wins and £ = 2
that it looses. We have f(z1,1) = =79, f(21,2) = 1, f(@2, 1) = 0. f(:2.2) =
0. The regret values are f(x1,1) =0, f(z1,2) = 1, f(r2.1) = 70, f(02.2) =
0. Notice that E(Z,,) = 0.99 and E(Z,,) = 0.79, but Var(Z, ) = 0.0099
whereas \f’ar(Zyrz) = 61.79 and for small risk aversion factors, the regret
solution is to buy the ticket.

4 Pricing

In the foregoing sections we have discussed the reshaping problem from the
viewpoint of the customer: Should he, or to what extent should he sign
a contract for risk reshaping. The problem turned out to be a stochastic
optimization problem, which is in the form of a nonlinear constrained opti-
nization problem. In this section we will adopt the viewpoiut of the offering

11



side and present some basic principles of setting up prices for such reshaping
contracts.

In principle, the situation between both sides 1s symmetric and the same
considerations, which apply to the customer apply also to the offerer. How-
ever, since the latter deals with many of such contracts. his situation is dif-
ferent. Because of repeated reshaping offers, the offering side should come up
with a pricing strategy, rather than individual decisions.

To begin with, assurne that Y represents random costs, an insurance is
going to buy. What is a reasonable price for this contract. from the insurers
point of view? It seems clear that the price p for "buying™ the costs Y™ should
not be lower than the expected costs

p(Y) > E(Y),
or, introducing the difference s(Y") = p(Y') — E(Y") as safety loading.
s3(Y) > 0.

Rather primitive, but widely used pricing strategies for safety loadings are
mtroduce

o the constant safety loading

s(Y)=0C

or
o the proportional safety loading
S(Y) =y E(Y)
where v 1s some factor. Both proposals suffer from the shortcoming that other
characteristics than the expectation of ¥ do not enter the price. [t is natural

to include at least the dispersion of Y: The higher the dispersion. the higher
should e the price.

o standard deviation safety loading
s(Y) =~ Std(Y)
or
o cariance safety loading

s(¥) =7 Var(Y)




Another pricing principle is based on utility functions: Let [7(x) be a
strictly monotone convex utility function and U~ its inverse.

o Utility safety loading

s(Y) = UTHE[U(Y)]) — E(Y')

s(Y7) is always nonnegative, since by Jensen’s inequality for all convex inte-
grable {7
E[U(Y)] = U(E[Y])

and since U is strictly monotone. Notice that in the case of a deterministic
loss variable Y = const, the safety loading is zero. A good example for such
a pricing strategy is to take /(x) = exp(az), which results in

1
p(Y) = —log E[exp(aY’)].
o
Other examples are {/(z) = 22 resulting in

p(Y) = E(Y?)

or U(x) = [(x — E(Y))*]? resulting in

s(Y) = VE[(Y —E(Y))*]?,

the upper semi standard deviation.

The just discussed pricing stategies do not at all take into account, how
many contracts are to be issued. Suppose for simplicity that we know that NV
similar contracts are issued for the price p(Y") each and that the random claims
connected with these contracts are i.1.d. random variables Y;;/ = 1,... N.
(We will later touch the point that especially for insurance against catas-
trophic risks, the independence assumption is not justified and dangerous.
Dependency has to be assumed.)

Given the distribution of ¥;, we may calculate the probability, that the
business resulting out of all the /V contracts will be a loss:

N
P{Np(Y)—ZY; < 0}. (1)

Introduce the sum Sy = Zi\il ¥; and the Laplace transform Ly-(t) = Elexp (1Y7)].
By the well known exponential inequality we have for all ¢

P{Sy > Np(Y)} < Elexp(tSy)]e”N?0) = [Ly(1)e 0 R

13




Let
=i A()e PO
a %rzl(i; Ly(t)e . (

Lo

Then
P{Sn > Np(Y)} < "

We see that the loss probability decreases geometrically with the number of

contracts N. To put it differently, if the loss probability is our objective, the

optimal price p(}") to be asked for each contract decreases with V.
Example. Suppose that the distribution of ¥ is exponential with mean

L. ie. Ly(t) = A50(1 —t), where

1 ifu<0
H(U>:{ oo ifu>0

\\e find for « given by (2) @ = p(¥)e!=?). From a ruin condition. like
= [p(¥)e!?0NN < @, the price p(Y') can be determined.

A more detailed pricing strategy takes the timing aspect of claims into
account. Suppose that again N contracts are issued, each for an independent
replication of Y7, which stands for the yearly claim distribution. The claims
appear in random moments of time and in random height. Suppose that the
claim moments follow a Poisson process I1(¢) with intensity A\ and suppose
that the instream of premium is Np(Y) per year. Define the risk process as

T(t)

X{t) = Np(Y t—ZL,

where ¥; are 1.i.d. replicates of Y7, each with expectation . Denote by W(u)
the ruin probability

W(u)=P{u+ X(t) <0 for some t > 0}.

The ruin probability is determined by N, P(Y'), A and the distribution of Y,
however explicit formulas are known only in simple cases (such as exponen-
tially distributed ¥7). A good approximation is given by the (‘ramer-Lundberg
formula

-Ru
e Rp
U(u) ~ —
y(R) — p(Y //\
where p = ”“ ! — 1 and R is the solution of p = %. Various other

1pp10\11nat1ons have been proposed, see G1andell (1992). Notice that in this
setup. the number of contracts N does not enter the ruin probability simply
because the whole model i s ouly valid for large V.

14




4.1 Pricing by trading at stock exchange

If a good is traded at the stock exchange, the price is determined by the ag-
gregate offers and demands of many economic agents. Individual constraints
and preferences are no more visible. Only divisible goods can be traded. If
the goods are of individualistic quality (like shares of individual companies)
they are considered as separate. If the are just determined by few character-
istics (like oil of specific quality class) all offers are pooled to get a unique
market price for this good.

The only characteristic of zero-coupon bonds is the time to maturity. All
zero-coupon honds with same maturity can be pooled together. Such a hond
promises for instance to pay the fixed sum z in one month from now. Its
price p, found at stock exchange, allows to calculate the one-month interest
rate 1 by the equation p = (1 4+ r)~1. It is clear that all contracts with the
same one-month maturity must lead to the same rate r. otherwise arbitrage
(free lunch) would be possible.

4.2 Pricing of derivatives by no-arbitrage law

Suppose now that the return X', which a contract offers after one month time is
not determined now, but depends on the unknown future. Two such contracts
X, and X, are only similar if the distributions of X; and X', coincide. If such
contracts were be traded at stock exchange, they would necessarily have the
same price due to the no-free-lunch argument.

For instance, suppose that the rights emerging from life insurance con-
tracts would be traded, then the life insurance contract of a 50 vear old male
person for the sum of 1000 Euro would get a certain price. which is inde-
pendent of the name of this person, although the contracts of two different
persons have different random pays, but they coincide in distribution.

At present. there is no mechanism at stock exchange for equalizing prices
for nonidentical, but stochastically identical risks. If — in some future time
- stock exchanges would start to trade such contracts. market risk aversions
would appear, which replace the todays more individualistic views.

In some very specific situations, pricing of random contracts must be even
today based on the principle of no-arbitrage. Suppose that py is the known
price of a contract, which promises to the holder to get the random sum X
in one month and suppose that A" has a two point distribution

P(X =) =my; P(X = zy) = ms.

Suppose further that Y is the value of a derivative contract which promises
the sum of y, if X = z; and the sum of yp if X' = a3, We claim that

15



today’s price py of the derivative contract is uniquely determined by py, if
we assume that every contract is divisible. The argument goes as follows:
Suppose that we design a portfolio consising of y, — y; parts of the first
contract and x;—x, parts of the derivative contract. The price of this portfolio
today is (y2 — y1)px + (21 — z2)py. If X = @, the value of the portfolio is
(y2 — y1)21 + (21 — x2)y2 = Y21 — T2y and if X = 2, then the value is the
same, namely (y2 — y1)z2 + (21 — Z2)y1 = Y221 — @2y1. Thus this portfolio
has no risk and therefore its price has to be the value at maturity divided by
(1 + r), where r is the one-month interest rate for a deterministic contract,
le.
(y2 = y1)px + (@1 — 22)py = (1 +7)(y221 — 2201).

This last equation determines the price py in a unique manner:

: Y21 — T2l1 Y2 — 41
py = (1+7) —px .
Ty — T T — I
We notice that the determination of py is independent of the probabilities
71 and 75, We notice further that no unique determination of py- is possible.

if X" may take three or more different values.

5 Dependency

Independence of stochastic effects is often assumed for simplicity. However.
realistic models must incorporate dependency structures. One important ex-
ample is the claim structure for insurance companies. Both the time instants
and the heights of the claims may be dependent, since thev may he conse-
quences of the same cause. Dependencies may drastically change the values
of the risk functions and the ignorance may lead to wrong decisions.
Example. We come back to the insurance example of section 3. We
suppose that N contracts are issued for the price p(}') each and that the
costs connected with each contract are Y;. We consider the value at risk for
the threshold ¢t = Np(Y), i.e. E(XX, ViI{ZN, ¥; > Np(Y)}). Suppose that
Y: are exponentially distributed with mean 1. We consider two cases:
(1) the Y; are independent; (2) the Y; are identical.

(1) We calculate the value at risk as

—Nu

~ NN—le—r 50 VN+I'1LN€
T——d :/ —d
/zvp(Y) v (N —-1)! ’ p(vy (N —1)! ¢

which is an incomplete I-function which goes to zero as N teud to
infinity. We conclude: Every new contract decreases the risk for the
company. (Recall that this was already stated at the end of section 3).

16




(2) In the complete dependent situation the value at risk is

E(NYI{NY > Np(Y)})) =N | ze " dx
p(Y)
which increases with increasing N. We conclude that for highly de-
pendent risks (for instance risks emerging from natural catastrophes),
every new contract increases the risk of the insurer.

6 Conclusion

Modern instruments of financial engineering allow to reshape uncertain finan-
cial positions. Both parties, the one which is offering a reshaping contract
and the other which is accepting the offer have to consider a highly complex
stochastic optimization problem. This problem has several aspects. a proba-
bility aspect for modelling of stochastic processes, a statistical aspect for the
estimation of parameters and distributions from data, a modelling aspect.
since the appropriate risk functions must be chosen and an optimization as-
pect. namely the solution of the underlying nonlinear optimization problem
for determinig the optimal action.

For all these parts there exist well developed methods, but a more inte-
grative view 1s necessary. Integrative research questions are:

(1) How does the estimation error influence the quality of the decision?
(i) How does the misspeficication error influence the quality of the decision?

(ii1) What is a good compromise between realistic model and computable
decision problem?

(iv) What numerical optimization method is appropriate for what problem?

We hope that further research will give some insights into these questions.
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