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Abstract

While most approaches to the idea of “complexity” attempt to handle this concept as
an inherent property of the system under observation, this article considers complexity to
be a property of the relationship between a system and its observer. It is drguétet
concept of complexity must be used to measure the reliability attached by an individual to
the classification model that he or she adopted in order to extract 'events' from empirical
experiences. Complexity cannot be defined without previously modelling the individual's
cognitive processes.

By assuming the knowledge of the mental categoriesviiigh an individual
perceives reality, a quantitative measure of complexity is defined, andhowenthat its
numerical value can be used to evaluate alternative patterns of behaviour. In particular,
complexity is able to account for the features of decision-making in situatibee
empirical reality continuously generates facts of novel kind, as it is usual in the social
sciences.

Finally, a comparison is drawn with theories of complexiiffused in physics,
computer science and biology. Although most of these theories consider complexity an
inherent property of the system under observation, it is argued that they can be seen as an
approximation of the view on complexity presented here.



1. Sdf-Referentiality

The Cretan philosopheEpimenides(VI century B.C.)left, among others, a
fragment where helaimsthat "All Cretans ardiars". Thisstatement originated what is
known today as 'thEpimenidegparadox’: If whatEpimenides claims igue, thatis, if all
Cretanslie, then Epimenide$oo, who is a Cretan, iying. Thus, Cretansell the truth.
But if Cretans tell the truth, so does Epimenides. Hence, all Cretans lie.

That of Epimenides is onlyhe first of a long series of self-referential paradoxes
invented alonghe centuries. Alfred Whitehead andertrand Russellpointed to their
common structure,which formally consists of aset containing some elementbat are
defined with reference to the set itself.

Whitehead and Russell (1910,37) note that, if onelaims that acollection of
propositions contains a proposition statih@t 'all propositions are either true fafse’,
such a statement coutmbt belegitimate unless "all propositions” referred to saaiready
definite collection; which is not possible, since a staterabaut "all propositions” igself a
new proposition, which can also be false.

This article exploreshe analogy between self-referentiality in formal systems and
self-referentiality in human societies, addims that self-referentiality isthe core of the
concept ofcomplexity: Only wherthe difficulty to describe a system diie to the presence
of a self-referentialparadox we areallowed to speak ofcomplexity’, rather than of
‘complication’.  Clearly, thistatement isiot compatible with viewing complexity as an
intrinsic property of asystem, like mass or volume. r#itherimpliesthatcomplexity arises
from the interaction betweensgstem and itebserver, when this interaction is subat it
is in principle impossibléor the observer to contemplaa# the possible reactions of the
system to the actions he can undertake on it.

As F.J. Varela pointed ouglready atthe level of molecularorganisationself-
referentiality is what distinguishéising organisms from inanimatebjects (Varela 1979).
In the aggregates dfighly sophisticatediving organisms that human societiese, self-
reference arises in a straightforwavey fromthe very factthat themembers of a society
have imaginative capabilitieabout its possible arrangements.  Tpessibility of the
emergence of new arrangements of society can genenatalzer of self-referentidbops,
and consequently logical indeterminacy. ohder to keep the matter tractable, we will limit



our analysis tothe complexity which can arisbetween a generic ‘social system’ and its
‘observer’, where one single self-referential loop can occur.

Instead ofdefining the “complexity” the system shoulghossess, let us focus on the
adjective 'complex’ the observer of a systeayattach to it: Let usaythat a sociasystem
is viewed as “complex” by itebserver, when its reactions depend on whatsystem
“imagines”the observer igmagining. Aprocess of th&ind "I think that youthink that |
think that ..." isclearly a self-referentidbop. It also suggesthat besideshe complexity
of a system seen by itdserver, wanight speak of theomplexity ofthe observefseen”
by the system as well.

R.E. Lucas' famous statemealbout thempossibility touse econometric models to
evaluate theeffects of alternative economic policiésucas 1976) can be seen@eiving
from the recognition of theomplexnature of the interaction between a Government and
the economy it is supposed to control. In fact, what Lucas claims is that the reaction of the
economic system tthe Government’s actions depends on what economic aigeagsie
about thepossible actions othe Governmentwhich in turn depends on what the
Governmenimaginesabout thepossible reactions ahe othereconomic agents, and so on
endlessly like in all self-referential loops.

The logical limits engendered by self-referentlabps become clear when they are
analysed withirthe framework oformal logic, where self-referentidops are exploited in
Godel's theoremwhich states that irany formal systenthere are true propositions that
cannot be proven. However, considering self-referentiality within the framework of logic is
not only important because in this way we cgtness thdogical limits of decision-making,
but also because inables us tounderstand how aelf-referential paradox can be
overcome, and at what cost.

J.P.Dupuy observeshat, in order to overcome the paradoxes causel@adision-
making by self-referentialitythe crucial point to keep imind is that any indecidability
problem refers to a particular formal system, sifareany propositionwhich cannot be
provenwithin some formal systenthere exists anothdbrmal system where it can be
proven (Dupuy 1982).

Formal systems differ ithe propositionghey take asaxioms, just likescientific
theoriesdiffer about whatshould be regarded as invarigmbperties, and morgenerally
aboutwhich are the relevant aspectsrefility. Since a particulandecidability problem



disappears if onfrfames reality inanother way, thevay out consists of re-definingvhat
must be regarded as “axioms”, as well as the “rules of the game” they must obey.

Lucas takes justhis way out of the self-referentialparadox posed bgconomic
policy when he wisheshat the Government and thether economic agentsake joint
decisions in accordance tbe principles of neoclassical econonticeory, so thatheir
effectsare foreseeable, in the sertbat thereexists an agreement betweahthe actors
regarding their behaviours (Lucas 1976). In fact, ¢hisesponds to choose ‘@xioms”
the neoclassical economic “laws”, and fix the way they must beused in social
interactions. However, Lucas’ choicenst unique, since irpractice nothing prevents
economic agents tcestablish agreementgvhich do not strictly obey neoclassical
prescriptions.

In any case self-referentialoops force decision-makers to acknowledge thaits
and to reshape thdecisionprocess. In the framewonwhich will be used in the
subsequent sections, re-shaping teeision process willmean to re-definghe mental
categories by which the observer of a system perceives it.

This is a problem which wilhot betackled in this article. Instead, we will concern
ourselves with the perception of theits to decision-makingcaused by self-referential
loops, i.e. with the perception of the “complexity” of a system.

Section 2 contains theasic assumptions concernitige cognitive processesyhich
underlie the measure otomplexity presented in section 3. Sectionasalyses the
implications of this measure of complexitgr decisiontheory, while sections 5 and 6
investigatethe links with other concepts ofomplexity, used irdisciplinesother than the

social ones.

2. Assumptions about the Cognitive Processes

The view of complexity as groperty of therelationship between a system and its
observer igriginally due to R. Rosen (Rosen 1985), who argues that an obsee®a
system as ‘complex’ when he hawre than one single description of it, and these
descriptions cannot be reducedasly one. The point isi0t to havesome alternative
models ofthe same system, each with a certain probabilityutm out to bethe right one;



rather, asystem is seen as “complex” by its observer widese, to the presence ofsalf-
referential loop, the observer can never compile a finite list of the behathesystemwill
exhibit.
In this situation, it isnot possible to negledhe distinction betweerthe system’s
behaviour, which can exhibit unpredictable and néeafures, and thmentalcategories by
which the observer perceivehis very behaviourcategorieswhich must berelatively
invariant with respect to it.  Whenlealing with complex systems, "eventsinnot be
considered as objects existing by themselvethénempirical reality;rather,they are the
product of theclassifying activity ofthe human mind. Individuals first have to decide
which phenomenare repetitions of amaller number of abstractly defined 'events’, before
applying inferentialmethods to discover statistical or deterministic laafser that, the
individuals might reviseéhe adoptediefinition of events, depending dhe extent tovhich
these laws fit reality. For example, F.H. Knight pointed out that it is up to the entrepreneur
to form categories of investment types, befesdculating anything like a probability
distribution of successes and failures (Knight 1921).
Complexity can be quantified upon description ofrtientalcategorieemployed by
an individual, ofthe relationships occurring between them, andhef extent tovhich they
are appropriate to provide an orientation to ititdvidual's decision-making. Iorder to
provide a clear framework for this task, let us first of all define a few key-concepts:
action The behaviour of amndividual towards the rest of the sociaystem. An
individual’'s actions can undergo unpredictable qualitativanges; in this respect, they
are basically different from Savage’s “acts” (Savage 1954).

result The reaction of theocial system to an individualaction on it. Like actions,
results can undergo unpredictable qualitative changesaranthusbasically different
from Savage’s “consequences” (Savage 1954).

empirical fact An ‘empirical fact’ is a pairing of an action and ofrasult. Being
composed of actions and results, atsopirical facts can undergainpredictable
gualitative changes (e.g. emergence of new ideas, new technologies, etc.).

mental category Mental categories have the purposenablethe individual to distinguish
actions and results according to the featwiigh are relevant to thproblems he has
to face; they can be conceived as “containapgiropriate taclassifythe facts of the
real world. However, G. Lakoff pointeut that mental categories cannot be

conceived as containers operating according to sami&rity criteriafixed once and



for all; rather, the categories the mind forms depend on the empirical facts it receives as
input, and the shape of these mental categories may not even be precisely siafiaed,
the boundaries between them canfbezy. Furthermore, althougmost mental
categories are organised around a prototypeall the members of @ategory need to
be similarone another; rathethey sometimes have sorsnilarity with only some of
the other members of the category, not with all of them (Lakoff 1987).
event An 'event' is a pairing of an action category and a result category: events are thus the
product of theclassifying activity of human mindhey are notgivens inthe empirical
reality. We sayhat thesame evenbccurredtwo times, if andonly if two empirical
facts occurredwhich differed only infeatureswhich werefelt to be irrelevantor the
decision problems at hand, so that they could be classified in the same mental category.
mental model P.N. Johnson-Laird showethat human behaviour can bmore easily
explained assuminthat the nnd constucts mental models of realityather than by
assuming the existence of a “mental logic” (Johnson-Laird 1983). Such mental models
do not produce the correbehaviour in any possible situatiobut in most of the
situations theindividual usually encounters. If we refer to thieasic ideas of
connectionism (Hebb 1949; von Hayek 1952), we can think meatagories as
implemented by paths in which information flows in closed loops, and mental models as
connections between these categories (Hagals “map” the set of themental
categories, and “model” the set of the connections between them).
At this point, let us make the following assumptions about the systms wanill
consider, and about the cognitive processes of their members:
Al
Let usconsider the point of view of a singleividual towards the rest of th&ocial
system. This is the simplest application of the system-observer scheme; eventual extensions
to more detailedanalyseswould require: 1) Consideration of observers, liikens or
governments, composed bany individuals; 2Consideration of the agents composing the
social system, and of their points of view as observers of whatdéftye as “social
system” in their turn.
Our individual-observer interacts with the social system by undertaking ‘actions’ and
obtaining ‘results’ which canundergo unpredictable qualitative changes wiihe;
therefore, no “set of the states of the worltin be specified. = Othe otherhand,



description of thendividual's mentalcategories allows tgpecifythe “set of the states of
the mind” by which the world is understood.

A. 2

As time goesby, the individual who observes the sociaystemmay change the
categories he uses to understand reality, creating sub-categoriesdafidingthe criteria
by which actions and results am@ssigned to existingategories. However, geems
reasonable to assuntleat the categories byhich the individual understands the world
change on a slower time scale tlitha worlditself: otherwise it would be hard tionagine
how theindividual could detecthanges of the externadality. For simplifying purposes,
let us make this assumption in its extreme form, assumingttieahental categories by
which the individual perceive reality do not change at all.

Let A = {Al,Az,K A I} be thefinite set of mental categoriesavailable to the
individual-observer to classifthe actions he undertakes; let us dertbtam by anindex
i=1,2K 1. Let® = {Rl, R,,K RJ} be thefinite set ofmentalcategoriesavailable to

the individual-observer to classifthe results he obtains; let denotethem by anindex
j=1,2,K J. The othernndividuals ororganisations ofndividuals whichconstitute the
social systenmay havedifferent categories; however, when information is transfefroed
the socialsystem tothe individual who is observing it, this information is categorised
according to the individual’s criteria.

A.3

The individual issndowed with anemory of finite length lwhere he stores the data
relative tothe actions he undertocknd to the results he obtained during the last L
interactions with thesocial system. Theéniteness of memory dimension, as well as the
finiteness ofthe number of categories of actions and of results, is an assumption of
“bounded rationality” (Simon 1964, 1972).

The data contained in th@memory can beaised to measure thgrobabilities of

obtaining a result belonging tategory j, provided an actidrelonging tocategory i has
been undertakenp{Ai - R].} . Let us als@ssumehatsome utility function is defined on

the setsd and®. Then, as far as thiadividual deemsthat his mentalcategories
appropriately describéhe world, traditionaldecision theory applies, and some objective
function(e.g. expectedtility) can be calculated. Up to thp®int, theonly difference with



established decision theofg.g. Savage 1954) is that thagdities are defined on mental
categories, rather than on objects of the empirical reality.

However, at each interaction between thdividual and the sociakystem he
observes, information relative the undertaken action and the obtained result enters his
memory; athe same timethe information referring tdhe oldest pair action-resudiits it.

In this way,the contents of the categories of actions and results changémnatheven if
the categories themselves do not change.

A 4

Mental categories are shaped by #rmapirical experience along witthe mental
model connecting them, order toprovide theindividual with an orientation in decision-
making. This orientation consists of specifying which are the categories of results expected
from actions belonging to a certain category. In more formal terms, wsagtdrat mental
categories are sudhat some connections between them is expecteattoir much more
often than the others, ardat theseconnections are what we call ‘model of the world’:

0A, @0 2: pfA -~ R:R OR}>> pf{A - R:R OR}, where § are
probabilitiesthe individual isconfident will hold in the futurewhile they donot necessarily
coincide with the probabilities measured in the past.

A.5

For simplicity, let us assumé¢hat thenumber ofcategories of actions equals the
number ofcategories of results, antlat themodel ofthe world consists of one-to-one

correspondences between them. Fig.(1) shows such a model of the world:

A R
1 1
A R
2 2
A R
[ J
Fig. 1

This model ofthe worldsays tothe individual that if he undertakes an actibelonging to
categoryA ,, a result belonging toategoryR, is the“normal” outcome (e.g. the expected
return of aninvestment belonging to sontategory). Let usall such a simple model of
the world the ‘fundamental description’.



A.6
Whencorrespondences other than those offtimelamental descriptionccur (e.g.
A, causes R, theindividual maythink that this is just a casahich seldomoccurs, but

already considered e distribution of thqe)robabilitiesp{Ai - R].} . This wouldindeed

be theonly possibility if elementargvents werebjectively defined in @ontext where the
identification of possible empirical facts is self-evident, as traditional decision theory does.

But in the context we areonsidering, there is also tpessibilitythat ourindividual
thinks that themental categories and themodel ofthe world he isusing, are no longer
appropriate taiscriminatethe relevant featureghich areemerging irthe empirical reality.
Thatis, the individual maythink that actionsand results underwent such deep qualitative
changes in their featurethat the categories used d¢lassifythem are no longeable to lay
stress on the relevant features and to neglecirttlevant ones. In this situation, the
occurrence of correspondences between categories of actions and of atmilthan
those of thdundamental description can beerpreted as a consequence of the generation
of qualitatively newempirical facts (e.g. in the case ahvestment decision-making, new
goodsand new technologiesiay besuchthat theusualreturn prospects do ndiold).
Consequently, a measure of the tightness of the correspondences between categories of
actions and categories of results can be taken as a measure of complexity.

A7

Individuals calculatéhe probabilities p{Ai - R].} usingall the data at disposal in

their memories, because in this part of the evaluation of empirical informatiolaytetyess

on the similarities among empiricalfacts. But asfar as theycast doubts on the
appropriateness of thdassification criteria underlyintheseprobability distribution, they
use the most recent dataly, since onljthese dat@ontain thenovel featureshat emerge

in the empirical reality.

Let usassumethat, if M is thenumber ofthe most recentnemory positions the
individual uses to deteatventual novel features of reality, it 8l <<L. Looking at the
most recenempiricalfacts, theindividual observes whetheany correspondences between
action categories and result categories occungtich are not thosespecified by the
fundamental description. If this happened, he measures a complexity greater than zero.

10



3. Computation of Complexity

Let us now expose thdetails ofthe computation otomplexity fromthe most
recent M action-result pairs thedividual stored inhis memory. It isvorth to note that,
although the computation abmplexity will take the form of amalgorithm, Church thesis is
not implied: as a number afesearchers already pointedit (Smolensky 1986; Harnad
1990; Mitchell andHofstadter 1990algorithmic computation on abstragtmbols defined
by the human mind inorder to perform high level tasks isperfectly compatible with
categorisation, generalisation and induction at the basic level.

Let usassumehat thefundamental description is always at handh@mind of the
individual, no mattewhether the pair§A,R) constituting it are present fiis memory, or
not. If, in themind of the individual, some connections between action categories and
result categories are recordedich are not those of thiendamental description, then the
correspondences between action categories and result categbiobsthe individual
knows might be for example those depicted in fig.(2):

Fig. 2

Let usrecall Rosen’s definition of complexityeported at thebeginning of the
previous section: an observer sees a systegoaglex' when he hanore than onaingle
description of it. Let usdefine as ‘description of realityany set of correspondences
between action categories and result categoriedatahe“fundamental description” we
chose asmodel ofthe world” isonly one of themanypossible descriptions of realitjor
simplicity, we assumethat themodel ofthe world coincides withthe simplest possible
description).  Then, complexity igreater than zeraevhen, by selecting some of the
correspondences betweptentalcategories that are present in flist M locations of the
individual's memory, more than one single description can be constructed. Thus,

11



complexity can be measured hpw tightly the A-R relations contained in tHest M
memory locations are intertwined.

Note incidentallythat what matters for the computationcoimplexity, is whether a
pair (A ,R) is present at least otiene amongthe last Mdata of theindividual’'s memory,
while it does not mattewhether a pair is present orte/o, three times, or more.This is a
very importanfpoint, because it showlat what matters is whether timelividual has been
surprised by the emergence of sonowel feature of realitywhile it does not matter how
many times this very same novel feature occurred.

In order tomeasure the tightness of weaves of kimel shown in fig.(2) we will
resort to a work of RAtkin (1975, 1981), whicluses algebraitopology to represent the
hierarchical relations betwedme individuals of asociety. Since algebraiopology isalso
a fundament of Category Theory (Rosen 1991), it makes sersgmptp Atkin’s studies to
the context of théierarchies of actionategories and of result categories inrafividual's
mind. The hierarchies investigated herein actualbyder triviality, having just asingle
level of categories of actions and a single level of categories of results.

To see the world asomplex,thatis, to consideptherdescriptionsapart fom the
fundamentalone asequally possible, meanthat atleast one action category. Aas
correspondences with more than one result category. Let us denbtariol? the sets of

action categories and respectively of result categories, and let us denbtethsy subset of
(& constituted by the categories of results that are in corresponaithca;, and by A
the subset ofl constituted by the categories of actions that are in corresponaiéhdg;.
In more formal terms, theindividual introduces a relatiod betweend and® suchthat

(Ai ,R].) A when A is in correspondence with a subsefioivhich contains R
A 'simplicial complex’ K A((JE,)\) is an object we introduce with the purpose to

represenigeometrically this relatiol between setsl and®. It is made of sanany
simplices aghere areslements ofd ; vertices ofsimplex A are theelements off which
belong to subsef, (see appendix A). If thenly connections between categories of
actions and categories of results are those ofutigamental descriptiorsimplicesare not
connected to one another. In contrast, if theraaks@other connections, &asttwo of

the corresponding simplices have at least one vertex in common.

12



Furthermore, let us represent relatian also by an incidence matriA of

dimensions * Jwhose generic elemehf, can take the values:

O if AOd and RJ R,
e ]
00 otherwise

(1)

ij

Let us nowconsider thedual relationA”, defined invertinghe roles of setd and
®: now (Rj,Ai) ON when to R corresponds a subset éf containing A.  Dual
relation A’ can be represented by tldeial simplicial complex K @(ﬂ,)\m), which has

incidence matrix A'.  The reason for introducing treual smplicial complex isthat

element (i,i") of matrix AA"T equals thewumber of verticeshatsimplices A and A, of

simplicial complex Kd(ﬂﬂ,)\), have in common. Then, element (i,i") of mat"®A™ minus

one, is thelimension othe eventuatommon face betweeimplicesA, and A,. If such
a number is negative, then simplicAs and A;. have no common point.

Let us define the followingX Mmatrix:
L := AAT - 117 (2)

wherel denotes a A1 vector of ones. Thdimension ofthe eventuatommon face
between simplicesA; and A.. is then equal to element, lof matrixL .

Two simplices having ngoint in commonmay nonetheless have common points

with other simplices, which in turn do have common points. s#yghatsimplices A, and
A. are 'g-connectedh Kﬂ(ﬂe,)\) if there exists &hain of simplices{Ahl A KA n}
such that q = min{lihl,lhlhz,/\ ’lrw} > 0.

Let Q be thedimension ofthe simplex of KA(OB,)\) which hasthe largest

dimension. We capartition the set osimplicescomposing K A((B,)\) in the following

way: for any q, G q< Q, by inspection of matrbt one obtainswhich simplices are

connected at any level g.

13



Let us introduce a 'structure vectqy' of dimensions(Q+1) x1, and let us denote
its g-th component by,. In general, foeny level ofconnection q there is sonmeimber
of disjoint classes of simplices, suittat thesimplices belonging to a claase connected at
that level: the g-th component of structure vectpris thenumber of disjoint classes of
simplices connected at level g.

Simplices connected atlevel g are obviously connected atlevel q-1, too.
However, in order to avoid repetitions, we do cmtsider a class aimplicesconnected at
level g to bealso a class adimplicesconnected alevels g1, g-2, etc. Foexample,

let simplices A and A be connected dével q=2, and letsimplex A, be connected at
level q=1 with A,. Then, {Al,AZ} is a class of simplicesonnected at ¢ 2 and

{Al,A 2 A 3} is a class of simplices connecteddpt 1; however,{Al,Az} is not a class
of simplices connected at level=¢).

The measure ofomplexity of a simplicial complex is a measuretloé extent to
which it is connected. Thus, let us considenly the case where thsimplices of a
simplicial complexare at least connected lavel q=0, i.e. each of them has at least a

common point with anotheimplex. Otherwise, i.e. ide(ﬂB,)\) is made opartshaving

no point in common, let us agreetake ascomplexity of Kﬂ(ﬂB,)\) the largest among the

complexities of its parts.

An evaluation otthe complexity of Atkin's simplicial complexes can be found in J.
Casti (Casti 1989, p.410). Hereptopose aslight modification of this measurgnce
Casti’'s formula, for lowvalues of complexity, caattach thesame value to very different

simplicial complexes:

o
>
1]

(3)

Mo
—

[N

+
L

Qo
il
o
0
Ko}

otherwise

()
=
I
OOoOoOooOoood
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This measure of complexity merowhenthe simplicialcomplex reduces tsingle
simplices, each of them beipgst a point. On thether hand, the largestalue which
complexity carattain depends on thmumber ofcategories of actions and of resuitich
is also the largegtossible number of simplicesnd respectively of their vertices. Thus we

can write

0<cK) <c,, () (4)

In order tocalculate the contribution toomplexity of a singleaction classified in
category A, let us calculate thdifference betweethe complexity ofthe original simplicial
complex andthe complexity ofthe simplicialcomplex obtained by removinipe simplex
corresponding to A Denoting theséwo simplicialcomplexes by K 4 and K

A-{A}’
the contribution to complexity of an action classified inig\
U U
U
cA.) = ¢ - K O (5)
() = oy o4-{A}D
Note that,while for simplicial complex KJ@ it is 1=J, for smplicial complex
Kﬂf{A} itis 1=(J-1). Note alsahat thesum ofthe c(A, ), in general, isiot equal

to the complexity of the original simplicial complex.
Appendix A contains a numeric example of calculationtred complexity of a

simplicial complex.

4. Influence of Complexity Evaluation on Decision-M aking

The purpose dthis section is to connettte theory oicomplexityexposed above to
the established decision theory, and to point to some possible fields of application.
Complexity measures the confidence ofradividual intheway he decided tdefine

events by neglecting some featurewipiricalfacts, while stressingothers. Oncevents

15



aredefined, usual decision theory applies, and some objective function musixbeised.
Let us assumethat the most simpl®bjective function, subjective expectedility, is
appropriate to evaluate thaecision problem as it is defined liie existing mental
categories, and let us examine how complexity influences decision-making.

To this aim,let us derive fronthe complexity attached to a single action category
(5) a ‘degree ofconfidence’ inthe appropriateness of a single action category to the
decision problem at hand.

We wantthis degree o€onfidence to increase when complexigcreases, andce

versa Furthermore, we require that it rangethin [0,1], so that wecantake account of

it by simply multiplying it for the expected utility. Consequently, let us dehiredegree of

confidencew attached to action category As follows:

oa) = 1- a2y (6)

The objective function the individual attempts to maximise thus becomes

J

3A) = [w(A)]k(m Z p(Rj|A) u(Rj) - u(A) (7)

where exponentk(A) have a twofold meaning:

1) The importancehat anindividual attaches to the degree @dnfidence depends on his
personal attitudes, agell as onthe type ofdecision problem. For example, investment
decisions are much more risky than purchase decisions dahe supermarket;
consequently, economists speak of tlaimal spirits" of entrepreneurspot of
consumers (Keynes 1936).

2) The degree otonfidence should haveppositeeffects onthe individual's decisions
when it refers to a reswltorse than the one foreseen by thedamental description,
and when it refers to a result better thidne one foreseen by thindamental
description. In thdirst case, wherthe degree otonfidence is <1 theobjective
function should decreaseiile in the second casayhenthe degree otonfidence is

<1 the objective function should increase.
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Let us denote byR . the category of resulighich isassociated to category of actions
A in the fundamental description. Given the disutility associated with A, ilutility
function has onR a value abovéunder) the average, the degreeafifidence should
be suchthat thevalue of objective function is lower (higher) thanthout taking
account of it.
From these considerations itismediate to derivéhe following expressiorfor the
exponent of the degree of confidence:

U(RF) - uA)
zRiDm[u(Rj) - L(A)]/card R

k(A) = Z(A)EA) =TA) (8)

whereZ(A) takes account of thiadividual’s attitude towards the degree adnfidence on
action category A, whil& A) takes account of the possibility the(fA) can be referred to a
result with utility above or under the average.

It is important to remarkhat objective function(7) differs fromthe onesusually
used in decisiotheory,since its argumentare mentalcategories of actions and of results
instead of “acts” and “consequencegien once and fomll (like in Savage 1954). This
meansthat preferences are supposed to defined onthe mental structures bywhich
individuals perceive objects, rather than on the objects themselves.

As long as themodel ofthe world and theunderlying mentacategories are not
guestioned, theffect ofthe degree ofonfidence ighat ofintroducing suddejumps in the
individual's behaviour, whichoccur at themoments where correspondences between
categoriesyhich aredifferent fromthose of thdundamental descriptiorenter or exit the
first M memorylocations. In these momentise degrees o€onfidence inthe action
categories can change abruptly to diffedegreesmaking suddenly soma&ction category
preferable to the others.

However, an even more important consequenceédoision theory ishe effect of
large values of the overall complexity (3), which refers to the whole representatealityf
of an individual. When complexity is higthe mental model andhe underlying mental
categories daot provide anymore an orientation in a world whose qualitative features
continuously change. The individual must re-formulate his mental categones| as the
model ofthe worlddefined upon them; this can leadttw decision topostponedecision-
making untilthe problem will be framed in a mogroperway. Howeverthis articledoes
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not deal withthe modellisation ofhow mentalcategories andhental models othe world
evolve over time, but only with the recognition of the need to re-formulate them.

A comparison can be drawn wittlassifier systems (Hollan#i975, 1986), if we
accept a reductiveiew of mentalcategories as collections of objedtsat share some
common properties. Thenlassifiers can b&ken as rudimentamnentalcategories, the
connections betweedassifiers induced by thefstrengths” as connections between the
mentalcategoriesvhich constitute thenodel ofthe world, and the genetadgorithm as the
process of category re-formulation. As longtlis metaphor holds, we casay that
complexity evaluation haghe purpose to decideshen the geneticalgorithm must be
activated. However, it is important to stress theijke classifier systemthe model
presented in this article neither neededpecifythe set of thenput charactersvhich carry
information fromthe empirical reality,nor thelength ofthe strings of these characters.
This is an important point, since if the set of possible ispatacters and tHength of their
strings isfixed once and foall, the set of thgossible “novelties” which can be discovered
is fixed once and for all, too.

Another comparison can be drawn with R. Heiner’'s rentlaak anindividual may
prefer to exclude some action “a” from his repertoire, if he is not always atlilctominate
the information which should trigger “a” from the rest of the information, and if undertaking
“a” on the wrong occasion causesubstantial loss (Heine©83). Even ifonly in the
most recent work Heineindirectly refers to mentatategories, instead of to actions
specifiedonce and foall (Heiner 1986), it i®videntthatexcluding “a” fromthe set of the
possible actions is a particular case of reformulatioh@mentalcategoriesinderlying the
decision process.  However, Heindnmself (Heiner 1986,p.67) pointsout that the
probabilitythat theindividual is able tgrocess correctly thaformation he receivesyhich
has a crucial importance s theory, carmonly be evaluatedex postby the experimenter
which observes decision-making; it cannot be evaluatetdxyecision-makehimself while
he is taking a decision. Qhe contrary, theomplexity andthe degree otonfidence
defined in this articleaim to describethe decisionprocess fronthe point of view of the
decision-maker himself.

Situations where self-referentildlops generat@ovel featureccur very often in
the so@l sciences; whenever novel features emerge, it makes seatadio a degree of
confidence tothe probability distribution ofthe categories of the resukghich can be
obtained from the action which one undertakes.
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The theory developed above was referred to the rather abstract situatisocal a

system observed by a singtelividual; in reality,agents that observe and attempt to control

social systemsre more often organisations iotlividuals. Many scholars in cognitive

science however (Bateson 1972; Hutchins 1995), dinessmilarity between thenind of a

single individualand the“collective mind” of an organisation of individuals. \feint now

to situations where it is useful to considee complexity andthe degree otonfidence

defined above, with the understanding that the theory applies to collective agents as well:

1) Self-referentiality irthe relationship between a Government dhd rest ofsociety has

been already discussed §{1), although the argument wdisnited to the economic
domain. The case is actualtguch more general, ‘powerbeing according to N.
Luhmannthe capability toreducecomplexity by restrictinghe set ofalternatives of the
subordinates (Luhmann 1975). the terms othis essaythe power of a&Government
resides in itsability to overcome decisioimpasses by castirthe problem in terms such
that aunique solution appeafsasible. If decisionare taken before some consensus is
reached, thewrelikely to be ineffectivethus, on some occasions a Government might
prefer to postpone decision-making.

2) The evaluation othe environmental impact of human activities is open to weany

interpretations,since it depends on a huge number of variabiemy of them not
directly observable. A self-referentlabp arises between scientists ahé societythey
are part ofwith the consequendéat scientists tend to stick on a consenabsut the
values of some critical magnitudes as they had been estimatie beginning of
environmental research (vater Sluijs, van Eijndhoven, Wynnand Shackleyl997).
Practical users often attatitile confidence tothe environmental predictions scientists
produce; forexample, insurance companies often refuse to stipplalieies against
catastrophienvironmental risks, othe ground that scientificalstimates araot reliable
enough (Kunreuther 1996). This kind of behaviour camXt@ained bythe need to
reformulate themental categories thelecision problem igast into, postponing any
decision until this task has been accomplished.

3) A firm’s behaviour depends on what competfims do. Due to theself-referential

loops between &rm and theindustrial system it ipart of, strategiaecision-making
often cannot beinivocally determined. If dirm is uncertainabout the categories by
which it interprets informatiorabout currentechnologies and customers’ needs, the
suddenjumps ofthe degree otonfidence defined abovyeroduce ahigh variability in
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decision-makingthat reminds ofthe “animal spirits” J.M. Keynes’ spoke of(Keynes
1936); in extreme situations, theck of confidence ithe model ofthe worldmay lead
to the decision to postpone any decision. Appendix B discusses this example in detail.

5. Relationship to Complexity in Classical Physics and in Computer Science

The objects studied bglassical physics belong to a class of particulanhyple
systems; essentially, macroscopic bodies moving accordintpedaws of Newtonian
mechanics and thermodynamic systems. Scientifidition established ainivocal
identification of elements whichfor specific aims, can beonsidered as theltimate
constituents of these systems. What these constitutive eledengse théelementary
events' one is concerned wifk.g. positions and velocities of moving bodies); in this
context, consideration of the observer's cognitive processes is usually omitted.

Consequently, theelationship between system and observetrivgal; scientific
inquiry can focus upon properties of thgstem which can beonsidered to be "objective".
Computerscience alsdinds itself in a similar situation, sind@ée definition of the set of
symbols acomputer willmanipulate is equivalent tthe definition of some “elementary
events” all the others are constructed by.

Since in this situatiothe observer considerssat ofexhaustive eventthe system
can produce, theintuitive idea of complexity as "capacity of a system to surprise its
observer'(or similar statements), can be expressegdrbabilisticterms. It turnout that,
in this contextthe traditional concept of ‘entropy’ is a good starting point fomiening
one would intuitively attach to the term ‘complexity’, although th@seconcepts cannot be
taken as equivalent.

In fact, let ugrecallthat theimmediate meaning of thermodynaneaictropy is to be a
measure of the “disorder” of a system: "disorderfininitive terms, is supposed to be more
"complex" than'order"”, at least up to the point where disorder is so ldrgieonegives up
the hope to understand its laws. Information entropy, ituits measures the “disorder”
of the information arriving athe end of a&communication channel; it ihus a measure of
“lack of information”, which is another meaning one would intuitively attach to

“‘complexity”. Furthermore, L.Brillouin showed thatthermodynamic entropy and
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information entropyare closely linked, since it i:ot possible to decreasene without
increasingthe other: in order t@btain less “disordered” informaticsbout asystem, we
must increase the “disorder” of the system itself (Brillouin 1956).

Entropy is alsdinked tothe concept of ‘computationedmplexity’ of a sequence of
characters, introduced by R.J. Solomon@d@®64), A.N. Kolmogorov (1965) and G.C.
Chaitin (1966). The computation@lomplexity of a sequence aharacters Ygiven a
sequence of characters U, is timnimal length of the programh which computes Y
knowing U: computational complexity maximalwhenthere is ncsimpler way to describe
Y than listing all its characters, because there are no regular patterits vimich is
equivalent to say that the sequence is “disordered”, or that its entropy is maximal.

On the otheihand, even if wdimit our concern to thesystems studied byassical
physics,entropy isnot acompletely satisfactory measuretbé meaning wewould like to
attach to the termicomplexity”, since some completelyisordered systems we canly
describe by means of statistiealerages, like e.g. thmolecules of ajas, are nantuitively
perceived to be “complex”. Rather, it seemsthat maximal complexity should lie
somewhere betweerero and maximal entropy, in the zone wheresgystem is neither so
completelyordered that itan be described by simple deterministic lamzs, socompletely
disordered that itan be described by simple stochastic laws. Irzthie, thesystemdoes
exhibit some structure, which an observer finds very “complex” to describe.

Some measures abmplexity have beeproposed, that takeninimum value when
entropy is eitheminimal or maximal,and take maximal value in betweenmost widely
accepted magnitudese ‘logical depth’ proposed by C.H. Bennett (1988) astatistical
complexity’ proposed by J.P Crutchfield and K. Young (1989) (see also Crutchfield 1994).

The point | make in this article ihat thesemeasures of complexity, although
correct for the contextey have beethought for, are of no use in the so@alences, for
the basicreason thathey assumgéhe knowledge of th&elementary eventsthe system can
exhibit. Inthe socialsciences this circumstanceniegated, and it is necessary to consider
the mentalcategories byvhich information is perceived, ante different “events”which
are defined when categories are shaped.

The model presented ithe previous sections doe®t contrastwith the ideas
underlying Bennett's or Crutchfield’s measures of complexity. Rather, it can be used to re-

interpret the idea that complexity is maximal when entropy is neither zero, nor maximal.
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In fact, the crucial point of the whole theoryaaimplexitypresented in this article is
that theindividual who isobserving a system needs a simple @tidble model of it; when
entropy increasesver a certairimit, he will re-definethe categories byhich he is trying
to understand theystem, switchingg.g. from adeterministic microscopic description to a
stochastic macroscopic description.Using the new categories.g. the macroscopic
magnitudes thermodynamics defines, it is easy to desthibsystem by a simple and
reliable model; imther words, thesystemdoes not appedcomplex” anymore, once the
mental categories to understand it have been changed. In this way, wezéave
complexity atthe two extremes ofzero entropyand maximal entropy; on the contrary,
complexity is maximal when entropy has already increased up to quite a high level, while the
mental categories are still the initial ones.

Note that a distinctive feature of the “subjectieghcept oicomplexitypresented in
this article isthat it implies that complexity variesghrough discontinuougimps.  Minor
jumpsoccurwhenever correspondences between categeviaesh aredifferent fromthose
of the fundamental descriptiorenter or exit thefirst M locations of the individual's
memory. Moreover,muchmore dramatigumps occurwhen new mentatategories are
defined (e.g. at the passage fromdaterministic microscopic description to a stochastic
macroscopic description ofghysicalsystem). Imanycase, whereas “objective” measures
of complexity, like logicaldepth or statisticacomplexity, vary with continuity, the
“subjective” approach presented in this article accounts for abrupt changesadiviaial’s
attitude towards the system he is observing.

6. Relationship to Complexity in Biology

The firstattempt todefine complexity in biology ishat of H. Atlan (1972), who
proposed an extension of information theory (Shannon 1949; Khinchin 1957) which rests on
the nonconventional assumptidhat, in a tansmission systente receiver doesot know
all the words that the sour@an emit. This assumption has non-trivial implicatitorsa
transmission system whiatses a redundant codification: if random disturbanoedify the
original words transforming them into some &fe words that in a redundacddification
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are not used, theeceiver is no longer able to distinguisbtween the words generated by
the random disturbances, and the words actually emitted by the source.

In this way, Atlan can interpret evolutionithin the framework ofinformation
theory, with DNA’s nucleic acids aghe characters emitted by the source sofme
transmission systente living species athe "words", or sequences of these characters (i.e.
sequences of nucleic acids of a given length), genetic mutatioiine affect of anoisy
channebetween source and receiver aimglly, the naturaenvironment ashe receiver of
such a transmission system. @irse this is aroughschematisation whicloes not take
any account of thevery many environmental constrainthat influencethe passagérom
phenotype to genotype; howeverpimnciple itwould be possible ttake account of these
constraints byassumingthat some “words” cannot be produced, withay reed to
change the conceptual framework.

The interesting remark that, given a certairword length (length othe amino acid
sequences), random mutations can create“species” only athe expense of th&ords
the redundantodification had left unused.For a wordlength fixed onceand forall, the
more new words (new species) are generated, the more difficult evolution becomes.

Atlan captureghis property of evolutionarglynamics by means tfie mean mutual
information betweesource and receiver. dhytwo distant parts of aystemare taken as
‘source’ and ‘receiver’ and their behaviourdsalysed by means of informatidheory,
mean mutual information measutesw related these parts are, in semsdhat itmeasures
how similarly they behave. It is thus somehow a measuthestructures that are present
in the system, and for this reasomany scholars working in information theotgke mean
mutual information as a measure of complefgiye Bennett 1990 for a thoroudjiscussion
of this topic).

In the context ofAtlan’s theory,mean mutual information first increases with time,
because of the generationusfeful speciethat diffuse quicklyover the whole population;
then it decreases, due to the random generatiosedéss mutantsyhich isthe most that
can happen after the redundancy of DbAification has been exploitedMaximal mean
mutual informationcorresponds to awptimal balance between replication existing
phenotypes, and experimentation with new mutants.

This is consistent withStuart Kauffman's studies of the shape of tHéitness
landscapes" where evolutidakesplace (Kauffman 1993). Ifact, Kauffmanargues that

evolution is moseffective whenthe frequency of mutations anthe shape of thétness
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landscapeare badnced in such a way as to avoid tve onehandthat thepopulation

spreads oveall the possible species, no matteow fit they are, and on thether fand to

avoid that thewhole population concentrates on some spdtias arefar from being the
fittest ones. Such a balanced situation, bordering chaos on one sadendn the other,
is denoted byKauffman as a 'complexdne. In other words &complex" situation,
according taKauffman, isone where mutations dmcur, butheyare nottoo many, which

corresponds to the maximum of mean mutual information in Atlan.

The concept o€omplexity defined in this article can bennected to these theories
of complexity.

From the point ofview of an individualobservingthe biological system, mutations
are noveltiesthat may cause themodel ofthe world not to function anymore, thereby
increasing the complexity by which the world is seen. Complexity, as it has been defined in
this article, increases by discrete amounts whenever emergingraiessmake the old
mental model useless, and decreases abruptly whettevenental categories are re-
formulated, and a new model of the world is constructed.

In Atlan’s theory, mean mutual informatiorreproducesthis pattern, although
without the abrupt upward and downwajamps that characterise the measure of
complexitypresented in this article.However, inAtlan’s theorymean mutual information
actually increases by discrete amousnty time anew word is created, even this aspect
has not been emphasised by Atlan himself.

The difference derives frothe circumstancthat in bology, like in classicaphysics
but unlike in the so@l sciences, it is possible to identifpme ultimate particles (nucleic
acids), from whose combinatiaal possible novelties can lgenerated. This allows to
construct a theory afomplexity whichappears as “objective” dse ones used irlassical
physicsand in computer science, amdhich measures complexity by means a$maooth
function that does not take account of the obsrver’s cognitive processes.

On the othehand, Atlan’s hypothesis actually introduces a subjeetspect in the
theory, by allowing the receiver of a transmission system to evaheitédormation carried
by “new” words;the surprise caused by new worgsiinds tothe misfunctioning of the
model ofthe world caused byovel features of reality. Like ithe socialsciences, in
Atlan’s theory“complexity” is the observer’slifficulty to understand theystembut like in
classical physics, this complexity can be quantiigithout resorting to the description of
what happens in the observersnd. Under this regect, tobiology can be ascribed a
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status which is somehow intermediate betweéhat of classical physicsand that of
computer science on one hand, and the status of the social sciences on the other.
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Appendix A

Let relationA be given by the following incidence matrix:

A R R R R
1 2 3 4
A1 1 0 1 1
A2 0 1 1 0
A 1 0 1 0
3
A 1 1 1 1
4

Here A is the two-dimensional simplex afertices R, R, R; A, is the one-dimensional
simplex of vertices Rand R, and so on. The simplicial complex can be drawn as follows:

R
2

R R
1 3

The tethraedron shown in this picture is simpley its faces being simplices;AA, and Aq.
Matrix L is:

L =AA"-11" =

Mmo11W1 010 O1110 @20 2 10
_S)lldag)lo%_%ll%_g)llda
A 0101 1110 d11i0 2 13 17
H118H3 oo0oHd H11H B o1 8

In this case itis &2. In order to build structure vectpmwe note that:
at g=2 there is a single class of simplit{d&l,A 3} , sothatqg, =1;
at g=1 there is a single class of simplit{e,%l,A 2 A A 4} , sothatg; =1;
at g=0 thereis a single class of simplic{e,%l,A 5 A 4} , sothatgy =1.
Thus, structurevector is q'= [1 1 1] . At this point it is trivial to calculateomplexity,
obtaining ¢(K) = 6.
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Appendix B

Let us consider a firm’s investment decision in a situation where new technologies continuously
emergeandlet us modethe firm’s cognitive apparatus byo categories ofctionsandtwo categories of
results:

A _ is thecategory othe actions implyindow investments, generally carried out by the firm with its own

means; these actions usually do not lead to produetimhprofit expansion, butather to their
stagnation or fall.

A, is thecategory of those actions implyifdgrge investments, generalpossible onlythrough bank
financing; actions of this kind are undertaksscause one expects frdilem a much better result
than from actions of categoA_.

R_ is the category of mediocre results normally expected from actidyppeofA _, while obtaining a result
of type R_ from an action of typé , means the failure of the investment.

R, is thecategory of goodesults one expects from actionstgpe A, while receiving a result of
categoryR, from an action of typd\ _ is a particularly favourable and unexpected event.

Let us assume¢hat pastexperience be sudfat it isreasonable to classify actiongo “actions
implying low investments'and “actions implyinghigh investments” pecausehis leads to a simplmodel
of the world: low investments caused lgain, highinvestments causddgh gain. If thisdloesnot happen
anymore, managersnay think the cause are some relevant qualitative changes of the production
technologies, whichare not captured by thextremelyrough categorieshigh investments’and “low
investments”. Four configurations are possible:

A+ R+ A+ R+
A R A R
(a) (b)

A+ R+ A+ R+
A R A R
(c) (d)

In case(a), only the connectionsoreseen byhe fundamental description occurreshd the firm
casts no doubt updh In the otheicasesthe model ofthe world is not verified: incase (b) oufirm has
doubts abouthe usefulness ofhe probability distribution ofsuccessand failures when it undertakes an
action of categorA , , in case (c) when it undertakes an action of cateforywhile in case (d) doubts are
present whatever the firm does.

Degrees of confidence, in these four cases, take the following values:

F(A) = 1  Ho(A)

case (a): %0(A+) . case (b): O A+) - 0
B(A) =0  Bw(A) =05
case (C): §9(A+) . case (d): O A.) =05
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Case (a) is trivial: the firnmasfull confidence inthe classification criteria of empiricécts it is
using,only the probability distribution okuccesseandfailures influences its decision, traditiorggcision
theory applies.

In cases (bpnd(c) the firmchooses amction of a kind which ivery much influenced by the
degree of confidence, rather than by the probability distribution.
Case (d) is apparently like (ahecause in both casedl what matters therobability distribution of
successes and failures. Yet the difference is that in case (d) a process of category re-formulation is likely to
set in, possibly together with the decision to postpone any decision.
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