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Summary 

We prove convergence with probability one of a multivariate Markov stochastic approximation 
procedure of the Robbins - Monro type with several roots. The argument exploits convergence 
of the corresponding system of ordinary differential equations to  its stationary points. If the 
points are either linearly stable or linearly unstable, we prove convergence with probability 1 of 
the procedure to  a random vector whose distribution concentrates on the set of stable stationary 
points. This generalizes for procedures with several roots the approach suggested by L. Ljung 
for processes with a single root. 

Along with stochastic approximation processes as such, the result can be applied to  general- 
ized urn schemes and stochastic models of technological and economic dynamics based on them, 
in particular, evolutionary games with incomplete information. 

Key words: stochastic approximation procedure with several roots, strong convergence, 
Bendixon theorem, cycle, phase polygon, generalized urn scheme, evolutionary game. 
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Functions 

Yuri M. Kaniovski 

1 Motivation and formulation of the problem 

Suppose we are interested in finding a root of a (Lipschitz) continuous m-dimensional regression 

function g'(0 given on Rm. We cannot observe g'(-) itself, but only 

independent in t observations of g'(.) together with deterministic f i t ( . )  and random Zt(- )  noise. 

It is assumed that the random noise has zero mean, i.e. EZ~(S)  = 6, finite variance, i.e. 

E J I Z ~ ( Z ) ~ ~ ~  5 C, and there is a measurable with respect to  B2, mapping Z(t, . , -)  such that 

Zt(2)  = G ( t ,  5, e ) .  Here I I 1 I stands for the Euclidean norm in Rm, Bl designates the 0-algebra 

of Bore1 sets in R ~ .  Also e, t 2 1, is a sequence of independent m-dimensional random vectors 

on a probability space { R , 3 ,  P). The deterministic noise with respect to  Om is a sequence of 

measurable two-dimensional vector-functions. The Robbins - Monro procedure gives successive 

approximations T t ,  t > 1, for finding a root of g'(.) in the following form 

where T1 is a deterministic vector, yt stands for the step-sizes, i.e. positive numbers such that 

Since we assumed that the random noise is formed by independent random vectors, the random 

process Tt is Markov. 

Traditionally the regression function g'(-) is assumed to  have a single root. But it is a 

hypothesis to  be checked. In many cases, like generalized urn schemes [I] or evolutionary games 

with incomplete information [3,6], it does not hold. We shall study here the case when g'(-) has 

several roots. 

Usually, proving almost sure convergence for such processes, one needs a Lyapunov function 

[9]. But it is rather an exception than a rule, when the function is known. In particular, 

one hardly can expect existence of a Lyapunov function for evolutionary games [3,6]. On the 



other hand, in [6] convergence of a two-dimensional process like (1) was proved for a class of 

evolutionary games without using a Lyapunov function. The argument in [6] exploits the fact 

that asymptotically (1) behaves like the following system of ordinary differential equations 

The main problem is to show that (3) does not have cycles and phase polygons. This, due t o  

the theorem of Bendixon [4, p. 661, implies convergence of trajectories of (3) to its stationary 

points. The attractors in this case are either linearly stable or linearly unstable. An argument 

suggested in [6] allows to prove almost sure convergence of (1) to its (linearly) stable attractors. 

To prove that there are no cycles and phase polygons Dulac's criterion [4, p. 661 is used in [6]. 

Here we prove convergence with probability 1 of a general stochastic approximation procedure 

without using a Lyapunov function. We assume that the system (3) converges to  one of i ts 

stationary points. In a sense the approach proposed here can be thought as an extension of the 

one suggested by L. Ljung [7]. Studying procedures like (1) with a single root, he assumed that 

the process (1) belongs to the domain of attraction of (3) to this root. 

Now we shall introduce further hypotheses about the procedure (1). We assume that: 

A l .  There is a compact set K C Rm such that every solution of (3) originating a t  time 0 

at  a point from K remains in K for t > 0 (existence and uniqueness of the solution follow from 

the Lipschitz continuity of g'(-) that we required earlier); 

A2. The equation g'(2) = has a finite number of roots 8, g2,. . .,I!?, ijl, q , .  . . , jjs in K ;  at  

each of these points g'(.) is differentiable and the Jakobian J ( . )  has eigenvalues with negative 

real parts a t  g l ,  g2,.  . . ,8t (i.e. these points are linearly stable for (3)) and a t  least one of its 

eigenvalues has a positive real part a t  each of ijl, q,. . . , jjs (thus these points are linearly unstable 

for (3)); 

A3. There is a non-empty set of initial approximations D such that for every 2' E D and 

for every r > 0 one can find a time instant t(Z1, r )  for which 

A4. p{Zt -t q}  = 0 for every i = 1,2 , .  . . , s ;  

A5. Every trajectory of (3) belonging to  I< converges to  one of its stationary points (i.e. 

gfi,P ,..., Btor if1,? ,..., jjs) a s t - t o o .  

We shall prove that under assumptions A1 - A5, for every Z1 E D the successive approx- 

imation Zt converges with probability 1 as t -t oo to  a random vector 2' whose distribution 

concentrates on the set (81 ,  g2, .  . . , $1'. 
'Conditions when P { ~ O  = 8; )  > 0 for i = 1 , 2 , .  . . , 1  are known both for general stochastic approximation 

procedures [5] and for generalized urn processes [I]. 



Let us discuss conditions A1 - A5. A1 holds when Ii is invariant for the system (3). For 

2 x 2 evolutionary games considered in [3,6] it holds and K = [O, 11 x [0, 11. The same is true 

with K = T,,, for those of generalized urn process [I] (with balls of m + 1 colors) where the 

dynamic is given by Lipschitz functions. Here T, = {Z c' Em : xi 2 0, X I +  2 2  + . . . + x, 5 1). 

A2 is quite natural from the point of view of stability theory (so-called "the stability in the 

first approximationv). The assumption concerning unstable roots is coupled with A4, since only 

for linearly unstable roots one can apply the results on non-attainability [1,8,9,10]. What we 

really need is that stable roots are isolated and that all others (which might not necessarily be 

singleton) are attained with zero probability. Assumption A3 holds for the evolutionary games 

mentioned above and for generalized urn processes (since all trajectories belong correspondingly 

to  [0, :I.] x [ O , 1 ]  or T,,, with certainty). For a general stochastic approximation procedure one 

can use a projection (truncation) mechanism [7] or some global (i.e. for Rm \ K)  criterion of 

strong convergence to K based on a Lyapunov function [9]. The most fundamental question 

concerns convergence if (3) to the stationary points, i.e. A5. In the case of R ~ ,  the Bendixon 

theorem [4, p. 661 implies that,  if one can exclude cycles and phase polygons, trajectories of (3) 

converge to stationary points. The simplest result for excluding cycles and phase polygons is 

Dulac's criterion [4, p. 661: 

preserves its sign in Ii, where h(.) stands for a continuously differentiable in Ii scalar function. 

In requires continuous differentiability of g'(0 in K. For higher dimensions we do not know 

anything as universal as the Bendixon theorem and Dulac's criterion. But for a particular 

system one can possibly suggest a specific criterion for ensuring convergence of trajectories to 

stationary points. 

Now we shall prove convergence with probability 1 of stochastic approximation procedure 

( I -) .  

2 Strong convergence of stochastic approximation procedures 

The main result of this paper is given by the following theorem. 

Theorem 1 Assume that conditions A1 - A5 hold true for a stochastic approximation process 

(1) with a Lipschitz regression function i ( - ) .  Then 2?t converges with probability 1 for every 

f 1  E D to a random vector i0 whose distribution is concentrated on the set {gl, g2,. . . ,811 of 

stable roots of $(.) in Ii. 



Proof. Since the random noise has uniformly bounded variance, the martingale convergence 

theorem implies that 

exists with probability 1. Designate by flo the joint event that it exists and xt does not 

converge to  q, i = 1,2 , .  . . , s .  Owing to  A4, P{Ro} = 1. Fix T > 0 and z1 E D. Set 

R, = {zt E K ,  t 2 t ( z l ,  T)} nQ0. Due to  A3, one has 

Fix an elementary outcome w from 0,. Then the stochastic sequence (I.) converts to the following 

deterministic sequence 

where dt and zt stand for the realizations of Xt and y t [ f i t ( X t )  + Z t ( z t ) ] .  Since w E Ro, the 

above infinite series containing Z t ( z t )  converges. Hence, due to  (2), one has 

lim 1 1  x8'11 = 0. 
t+cn 

What has to be shown that {Zt} converges to  one of @, i = 1,2 , .  . . , l .  Since T in (4) can 

be arbitrary small, this implies that with probability 1 the limit of zt exists and its support 

coincides with { B f  , g2,. . . ,871. 

Assume to the contrary that there exists a subsequence of {Zt) converging to  a point different 
4 

from 8" i = 1,2 , .  . . , l .  We shall show that this assumption leads to  a contradiction. 

Suppose there is a subsequence {n,} such that z?'p + Z as p -+ CCJ and 2 4 (8, g2,. . . ,871. 
For all positive integers n and all real t > 0 set 

P ( t )  = $  where X y t  < t  < x y t .  

Let Z(Z, .) stand for the solution of the system of ordinary differential equations (3) satisfying 

the initial condition Z(Z, 0) = Z. Using that g'(0 is a Lipschitz function, one can show (see, for 

example, [2], p.p. 230-231) that for every finite T > 0 

lim sup Ilx-~(t) - ?(Z, t)II = 0. 
p-'cn t€[O,T] 

We assumed that trajectories of (3) converge to  its stationary points. Due to A4 and construction 

of the event R,, we can exclude the unstable points from this set. Without loss of generality let 

us consider the case when limt+cn Z(Z, t)  = 8'. 
We conclude that there is a subsequence {m,} such that n, < mp < np+l and x-p -, ef as 



Due to  condition A2 max(ReX1(@), Re&?(@))  = A(@) < 0, where Xi(@) stand for eigenval- 

ues of J($). For every X E (0, -A(@)) a lemma of Lyapunov [9, p.1731 guarantees existence of 

a symmetric positive definite matrix Cx such that 

(CX J(@)?, Z) 5 -X(CxZ, Z), (8) 

where (-, .) stands for the Euclidean scalar product in Rm and 5 i s  an arbitrary vector. Introduce 

a new scalar product ( a ,  = (Cx-, .). Designate by 1 1 .  I l c  the corresponding norm. (This norm 

is equivalent t o  II-II). We shall use it from now on. Owing to  inequality (8), there exists EO such 

that 115 - $ 1 1 ~  5 EO implies 

Fix t > 0 such that E < min(cO, 1.2 - @ l l c )  There is a subsequence { Ip )  such that 1, = 

max n > mP : n < n P + ~  and lli? - e" / I c  5 E. Selecting a subsequence of {I,) if necessary, we 

-l can assume that 5'p + Z(E) as p + o;), where I la(€) - 0 I l c  = E. Fix small enough E' > 0 and 

define a subsequence {jp) such that j, = max n > 1, : n < np+l and IIFn - Z1pllc 5 E'. Then 

from (5) 

where 

;=Ip 

Using the Lipschitz property of ij(.), one obtains from (10) 

and 

where L stands for the Lipschitz constant and 

Due to  equivalence of the norms, from (6) i t  follows that,  for small enough t' and all sufficiently 

large p, there are positive constants cl and c;! such that 

Using (6), (9) - ( l l ) ,  we obtain, for large enough p, 



where o,(l) + 0 as p + oo. Passing to the limit as p + oo we conclude that 

2 2  I 2  lim sup )12jp - 41:: 5 E 2 [ 1  - CIXE1  f L C2(E ) ] -k ~ E L C ~ ( E ~ ) ~ .  
P+W 

Consequently, if E' is so small that c2[1 - C ~ X E '  + L 2 ~ ; ( ~ 1 ) 2 ]  + ~ E L c ~ ( E ' ) ~  < c2, then 

lim sup 1 1 ~ j p  - $ 1 1 ~  < E. 
P+W 

However, j, > I, and I, is the last time instant before n,+l when the sequence is inside the 

E-neighborhood of 81. Hence Zjp must lie outside the E-neighborhood of i l ,  that is, 

lim inf 1 1Zjp - 871 l C  2 E. 
P+W 

This contradiction shows that there is no subsequence of ( 2 )  converging to a limit different 
-. 

from O ' ,  i = 1 ,2 , .  . . ,1. 

The theorem is proved. 

3 Conclusions 

Possible development of the approach given here lies in two directions. One consists in developing 
particular conditions ensuring convergence of trajectories of ordinary differential equations to 
its stationary points. As we mentioned before, for two-dimensional systems this reduces to 
finding conditions which cancel cycles and phase polygons. Another consists in considering non- 
Markov procedures. We did not exploit in our argument explicitly that the noise is formed by 
independent random vectors. The only place where we used this assumption implicitly is A4. 
This is since we do not know any unattainability conditions for non-Markov procedures. 
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