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Abstract 

We consider problems where solutions - called equilibria - emerge as fixed points of 
an extremal mapping. Examples include convex programming, convex - concave saddle 
problems, many noncooperative games, and quasi - monotone variational inequalities. 
Using Bregman functions we develop proximal - like algorithms for finding equilbria. At 
each iteration we allow numerical errors or approximate solutions. 

Key words: Proximal minimization, mathematical programming, Bregman 
functions. 



EQUILIBRIUM PROGRAMMING USING 
PROXIMAL-LIKE ALGORITHMS 

Sjur Didrik F l h  
Economics Department, Bergen University, 5007 Noway 

1. INTRODUCTION Numerous problems in optimization and economics reducc 

to find a vector x* satisfying the fxed point condition 

x* E argmin{F(x*,x): x E X}. (1.1) 

Herc X is a nonempty closed convex subset of some Euclidean space E, and the 

bivaiate function F: XxX + R is convex in its second coordinate. E is endowed 

with the standard inner product <-;>, generating the customary norm 11.11. 

Our purpose is to solve (1.1). Usually this is a well defined task since solutions - 

henceforth named equilibria - are indeed available under general conditions: 

Proposition 1 (Existence of equilibrium). Suppose X is nonempcj compact convex, 

and F(x,y) is jointiv lower semicontinuous, separately continuous in x and convex in 

y .  Dlen ( 1.1) admits at least one solution. 

Proof. The correspondence X 3 x + argmin{F(x,y) : y E X) has noncmpty convcx 

values and closed graph. Hence by Kakutani's theorem there exists a fixed point. v 

For computational reasons we shall restrict attention to a certain class of equiliht-iu~n 

nrnhlcms. 



Definition Problem (1.1) is said to be of saddle type iffor ever?) equilibriutn x* nrld 

x E X we have 

F(x, x*) I F(x, x). (1.2) 

Problems fitting format (1.1) and satisfying (1.2) abound, as illustrated by important 

examples in Section 2. A prominent case included there, namely monotone variational 

inequalities, helps to put the subsequent development in perspective. Indeed, given a 

mapping X 3 x -+ m(x) E E, let F(x,y) = <m(x),y - x>. Then x* solves (1.1) 

w <m(x*), x - x*> L 0, V x  E X. Moreover, (1.2) would follow from the 

monotonicity: <m(x) - m(x*), x - x*> 2 0. Granted this last property, it is well known 

that proximal point algorithms (Rockafellar 1976), (Giiler 1991) give good 

convergence, but they are often hard to execute. 

This motivates us to consider here new versions of proximal-like algorithms, 

especially adapted to the unifying framework (1.1). Section 3 states the said 

algorithms, all inspired by the the iteration xk+l E argmin{F($,x) : x E X ) .  In line 

with recent devlopments of Censor & Zenios (1992), Eckstein (1993), Chen & Teboulle 

(1993), Bertsekas & Tseng (1994) we shall accomodate Bregman functions and tolerate 

approximate evaluations. A main novelty is the procedure where regularization is done 

twice at every stage: first to predict the next iterate, thereafter to update the current 

point. Section 4 contains the convergence analysis. 

2. EXAMPLES This section offers a list of problems all fitting format (1.1). We 

begin with 

Convex minimization Let F(x,y) = f(y) with f:X -+ R convex. Then x* solves 

(1.1) w x* E argmin {f(x): x E X). In this instance (1.2) is automatically satisfied. v 

Convex-concave saddle problems Let X = XlxXz be a product of two nonempty 

closed convex sets, F(x, y) = L(yi,x2) - L(x1,yz) with x = (x1,x2) , y = (yi,y2) , and L 

convex-concave. Then x* solves (1.1) e x* is a saddle point of L. The saddle 

property (1.2) holds in this case as well. v 

Noncooperative games with convex costs Generalizing the saddle problem, let 

individual i E I, (I finite), incur convex cost fi(x-i, xi) in own decision xi E Xi , the 

latter set being nonempty closed convex. Here x-i is s h o r ~  notation for actions taken 

by i's iivals. Let X :=nXi and F(x, y) := Cifi(x-i, yi). Then x* solves (1 .1 )  x* is 



a Nash equilibrium. Property (1.2) is somewhat stringent in this case. In particular, it 

holds when F(x,x) - F(x,y) is convex in x. For a discussion see Fl im & 

Ruszczynski (1994), Antipin & FlAm (1994). v 

Variational inequalities Let X 3 x + G(x) be a correspondence with nonempty 

compact convex values. When F(x,y) := sup(<g, y - x> : g E G(x) }, we get that x* 

solves (1.1) e 3 g* E G(x*) such that <g*, x - x*> 2 0, Vx E X. Here condition 

(1.2) holds if G is quasi-monotone at equilibrium x* in the sense that for all x E X 

Successive approximations Related to variational inequalities is the following 

optimization procedure. Let f:X + R be convex and differentiable. Then, with 

F(x,y) = f(x) + <f'(x), y - x>, we have that x* solves (1.1) e x* E 

argmin {f(x): x E X). In this instance (1.2) is automatically satisfied. 

Likewise, if X 3 x + G(x) is differentiable with G'(x) positive semidefinite, and 

F(x,y) = <G(x), y -x> + <y-x,G'(x)(y-x>/2, then x* solves (1.1) e <G(x*), x - 

x*> 2 0, v x  E X. v 

3. ALGORITHMS This section proposes two procedures to solve (1.1). Both are 

ammendments of 

xk+l E argmin{F(xk, x) : x E X}. (3.1) 

Our motivation stems from three deficiencies of (3.1). Firstly, it is unreasonable - at 

least in practice - to insist that argmin in (3.1) be computed exactly at every stage k. 

Rather one should tolerate some error ~k 2 0. Secondly, the argmin operation - 

whether executed exactly or not - may cause instabilities. In particular, this happens 

often when F(x,y) is affine in y. (See the above examples on variational inequalities). 

Thirdly, (3.1) reflects some myopia in minimizing at the current outcome xk in lieu of 

at some predicted point, henceforth denoted xk+. 

These considerations lead us to replace (3.1) by more stable and flexible 

algorithms. For their statement we need to recall the notion of a Bregman funcrion. 



Definition Let S be an open convex subset of the ambient Euclidean space E. Then 

w :clS + R is baptized a Bregmn function with zone S and "distance" 

D(x,y) := W(X) - W(Y) - CW '(Y). x - Y> 

ifthe following conditions hold: 

(i) yt is continuously differentiable on S; ' 

(ii) w is strictly convex continuous on clS; 

(iii) for any number r E R andpoints x E clS, y E S the two level sets 
{x E clS: D(x,y) l r} und {y E S: D(x,y) 2 r} 

are both bounded; I 

(iv) S 3 yk + y a D(y, yq + 0; 

(v) if {xk) and { yk) are bounded sequences such that yk + y E clS and ~(xk ,yk)  

+ 0, then xk + y. 

Examples of such functions are given by Censor &Zenios (1992), Teboulle (1992), 

Eckstein (1993), Chen & Teboulle (1993). Generalizations are found in Kiwiel (1994a). 

(Of particular importance and convenience is the instance w = 11-112/2, yielding D(x,y) 

= llx-~11212). Since X is bounded condition (iii) is not needed in the sequel. Now, 

with this notion in hand, employing a fixed Bregman function y~ we shall consider 

iterative procedures of the type 

xk+l E ~k -argmin{ akF(xk+,x) + D(x,x~) : x E x), (3.2) 

the initial point x0 E X being arbitrary. An explanation of (3.2) is in order. The 

parameter ~k 2 0 there is an error tolerance. For asymptotic accuracy we invariably 

posit that 

Zk ~ ~ 1 ' 2  < + -. (3.3) 

The other parameter a k  > 0 in (3.2) is a matter of relative free choice. It should be 

bounded away from 0 and +-. More will be said about appropriate specifications 

later. The penalty term 

D(x,xk) = ~ ( x )  - ~ ( x k )  - <W '(xk), x - xk> 

in (3.2), being the "distance" associated to a fixed Bregmun function y with zone S 

3 X, is intended to lend some inertia and stability to the adjustment process. Finally, 

the vector xk+ in (3.2) stands for a "prediction" or approximation of xk+l  to be 

defined in two alternative manners. One simply requires xk+ = xk+ l .  The other 

makes for a special step to find xk+, going as follows 



Algorithms of the sort (3.2-4), or akin to this procedure, have been studied recently 

by Antipin & Flim (1994), Bertsekas & Tseng (1994), Kiwiel (1994b), Chen & 

Teboulle (1993), Eckstein (1993). However, none of these accomodate as much 

generality as done fiere. Typically these studies focus on convex minimization, or 

make the choice ~k = 0, or employ y~ = 11-112/2. Our purpose is to lift these 

restrictions. I 

4. CONVERGENCE Throughout the rest we assume that the hypotheses of 

Proposition 1 and condition (1.2) are all in vigour. Also, we posit that the Bregman 

function y~ has a zone S containing X, with Lispschitz continuous gradient. 

Specifically, there exists some constant L > 0, such that for any error tolerance E used 

in the sequel it holds 

IIyJ '(x) - yJ '(y)ll I Lllx - yll. (4.1 ) 

whenever x E X and dist(y, X) I &IQ. Three auxiliary results are needed. 

Lemma 1 Suppose a function f is finite-valued convex near some nonempty closed 

convex subset X of the ambient Euclidean space. For fixed 5 E X, and el-ror 

tolerance E 2 0 let 

x+ E E-argmin{f(~) + D(x, 5) : x E X) .  

Then, for some 6 E [o, E] and all x E X, 

Proof. The E-optimality of x+ implies that 

where &-a denotes the &-subdifferential operator, and IX is the convex indicator of X 

(i.e., IX equals 0 on X, and + - elsewhere). By Hiriart-Urruty & Lemarechal 

(1991, Thm. XI 3.1.1) there exist "subgradients" 

with E,  , ~ 2 ,  ~3 2 0 such that 



EI+ E2+ E3 = E and 0 = sl + s;! + s3. 

Now, sl E ~ ~ - d f ( x + )  implies 

f(x) 2 f(x+) + <sl, x - x+> - ~1 for all x E X. 

Adding the three-point identitity (see,Chen & Teboulle 1993) 

to the above subgradient inequality, we obtain 

In turn, s2 E E2-aD(-,6)(x+) implies s2 = S2 - v '(6) for Some S2 E E2-ay '(x+). 

By the Bronsted-Rockafellar theorem (see Hiriart-Urmty & Lemarechal 1993, Thm. XI, 

4.2.1) there exists y E B ( x + , E ~ ~ / ~  ) such that IIv '(y) - S211 l ~ 2 ~ ~ ~ .  Drawing upon 

these facts and (4.2) we have 

so, using <s3, x - x+> 5 ~ 3 ,  it follows that <sl+ v '(x+) - y~ '(E,), x - x+> 

2 -(IIy '(x+ ) - lq '(y )ll+ llv '(y ) - S211)llx - x+ll - <s3, x - x+> 

Using this last inequality in (4.3) the desired conclusion follows immediately with 8= 
~1+E3 and ~2 = E - 8.v 

Lemma 2 Suppose a firnction f is finite-valued convex near some nonenlpty closed 

convex subset X of the ambient Euclidean space. Then 

X* E argmin{f(x) + D(x,x*) : x E X}  w x* E argrnin{f(x) : x E XI .  



Proof. a By Lemma 1, f(x) + D(x,x*) 2 f(x*) + D(x*,x*) + D(x,x*) for all x E X, 

whence f(x) 2 f(x*) for all x E X. Conversely, when f(x) 2 l'(x*) for all x E X, i l 

holds that f(x) + D(x,x*) 2 f(x*) + D(x*,x*) for all x E X. v 

Lemma 3 Suppose {ak},{bk}, {ck} are sequences of nonnegative numbers such that 

Zkbk <+ 00, and 
ak+l I *+ bk- Ck. 

Then {ak} converges, and Zkck < + OQ. 

Proof. From a~ + ZkCKck I ao+ ZkcKbk it follows that {ak} is bounded and &ck 
<+ -. Let a be any cluster point of {ak}. The inequality a, 5 a ~ +  ZeKbk valid 

for all K > K, implies that {ak} has no cluster point > a, whence {ak} converges. v 

Theorem 1 (Convergence under "correct" predictions). For arbitrary initial x0 E X, 

the process (3.2) with xk+ = xk+l converges to equilibrium. 

Proof. For any equilibrium x* Lemma 1 yields akF(xk+l,x*) + D(x*,xk) 2 

for some tik E [o,E~]. Invoking now the saddle property F(X~+',X*) I F(xk+l,xk+l ) 

we have 

D(x*,xk) 2 D(x*,xk+l) + D(xk+' ,xk) - - I~x*- xk+'1l 

Using here (3.3), the boundedness of X, and Lemma 3 it obtains from the last inequality 

that D(x* ,x~)  converges, and CkD(xk+l,xk)< +OQ . In particular, D(xk+l,xk) + 0. Let 

x* be an acumulation point of {xk}. Then, for some subsequence K, limk, K xk = 

limk, K xk+l = x*, and limk, K a k  = a > 0 Passing to the limit along this 

subsequence in (3.2) we obtain 

which by Lemma 2 is equivalent to (1.1). Thus {xk} clusters to an equilibrium x*, 

and {D(x*,xk)} converges to zero. It follows that the entire sequence {xk} converges 

to x*. v 



When F(x,y) is subdifferentiable in y near X, M(x) := dyF(x,x) + w x ) ,  &k = 0, 

and I+J = 11-11212, the procedure of Thm.1 is tantamount to the exact proximal point 

algorithm of Rockafellar (1976). To wit, the iteration in Thm. 1 then comes in the 

form xk+l = (I + akM)-l(xk), recently generalized by Eckstein (1993). The 

requirement xk+ = xk+l in Thm. 1, may make however, for laborious iterations 

(3.2). Essentially, the difficulty stems from the fact that (1.1) has two related features, 

namely: prediction in the first variable and optimization in the second. (3.4) serves to 

separate these two aspect from each other. For success in these matters we need some 

smoothness of F, and the parameters a k  must not be too large. Specifically, we  

assume there exists a constant A > 0 such that on X we have 

This seemingly strange condition simplifies, when y = 11-11212, to 

which holds when X is compact and F is continuously differentiable. 

Theorem 2 (Convergence under regularized predictions). Suppose { a k A }  is 

contained in a closed subinterval of ]0,1[ with A satisfying (4.4). Then for arbitrary 

initial x0 E X, the process (3.2- 4) converges to equilibrium. 

Proof. Applying Lemma 1 to situation (3.4) we get akF(xk,xk+') + D(xk+l ,xk) 2 

The same Lemma 1 applied to (3.2) yields, when x* is any equilibrium, 

Adding these two inequalities we have 



Now invoke the saddle property F(xk+,x*) < F(xk+,xk+) and the Lipschitz condition 

(4.4) to have 2akA{D(xk+,xk)D(xk+l ,xk+) } 2 

Combining the two last strings of inequalities we get 

This yields - by (3.3), the boundedness of X, and Lemma 3 - that D(x*,xk) converges 

and 
Ck {D(xk+ ,xk)l12 - akhD(~k+1,~k+)112} 2+ [ 1 - ( c~~A)~ ] (D (x~+ '  ,xk+) <+ m. 

It follows that D(xk+,xk) + 0 and D(xk+l,xk+) + 0. Let x* be an acumulation point of 
{xk 1. Then, for some subsequence K, limk, xk = l h k E  K xk+ = limk, ~ x k + l  = x*, 

and l imkEKak = a > 0. Passing to the limit along this subsequence in (3.2) we 

obtain 

x* E argmin{aF(x*, x) + D(x,x*) : x E X}  

which by Lemma 2 is equivalent to (1.1). Thus {xk} clusters to an equilibrium x*, 

and {D(x*,xk)} converges to zero. It follows that the entire sequence {xk} converges 

to x*. v 

Clearly, in (3.4) one might use a sequence {ek+} of errors different from { E ~ }  but also 

satisfying (3.3). 

When f is convex differentiable on X, ~k = 0, and F(x,y) = &(x),y - x>, the steps 

of Thm. 2 assume the form: <f'(xk+),x - xk+l> 2 0 for all x E X, reminiscent of the 

extragradient method of Korpelevich (1976). 

It appears interesting to incorporate variational convergence of functions Fk + F, and 

sets Xk + X, as done by Alart & Lemaire (1991). However, this falls outside the 

scope of this paper. 
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