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Abstract 

In this paper we formulate and study a minimax control problem for a class of parabolic 
systems with controlled Dirichlet boundary conditions and uncertain distributed pertur- 
bations under pointwise control and state constraints. We prove an existence theorem 
for minimax solutions and develop effective penalized procedures to approximate state 
constraints. Based on a careful variational analysis, we establish convergence results and 
optimality conditions for approximating problems that allow us to characterize subopti- 
mal solutions to the original minimax problem with hard constraints. Then passing to 
the limit in approximations, we prove necessary opt imality conditions for the minimax 
problem considered under proper constraint qualification conditions. 

Keywords: Parabolic equations, uncertain disturbances, Dirichlet boundary controls, 
minimax criterion, state constraints, approximations, constraint qualification, and 
variational inequalities. 



Minimax Control of Constrained 
Parabolic Systems 

Boris S. Mordukhovich and Kaixia Zhang 

1 Introduction 

This paper is devoted to the study of a minimax optimal control problem for a class of 
distributed-parameter parabolic systems with uncertain disturbances (perturbations) and 
boundary controls. Our motivations partially come from applications to robust control of 
constrained parabolic systems with uncertainty conditions; see [18-20, 221. It is natural 
that uncertain disturbances frequently occur in many control systems operating in real-life 
settings, although we are not familiar with any results in the literature directly related to 
the minimax control problem under consideration. 

From a mathematical viewpoint, we consider a control problem for linear parabolic 
systems with uncertain disturbances, state constraints, and bounded controllers in the 
Dirichlet boundary conditions. The objective is to compensate undesirable effects of sys- 
tem disturbances through boundary control actions such that a nonlinear cost functional 
achieves its minimum for the worst (maximal) disturbances. The optimization problem 
under consideration appears to be essentially nonsmooth and requires special methods for 
its variational analysis. To provide such an analysis in this paper we systematically use 
smooth approximation procedures. 

The main results of the paper include an existence theorem and necessary conditions 
for evaluating both the worst distributed perturbations and optimal boundary controllers 
under pointwise ("hard") control and state constraints. Actually we split the original min- 
imax problem into two interrelated optimal control problems for distributed perturbations 
and boundary controllers with moving state constraints. Then we approximate state con- 
straints in each of these problems by effective penalizations involving C"-approximations 
of maximal monotone operators. We establish strong convergence results for such pro- 
cesses and obtain characterizations of optimal solutions to the approximating problems. 
Finally imposing proper constraint qualifications, we come up to necessary optimality con- 
ditions for the worst perturbations and optimal controllers in the original state-constrained 
minimax problem. Some results and special cases have been presented in [21, 231. 

This paper is organized as follows. In Section 2 we formulate the minimax control 
problem for our study taking into account a semigroup model for parabolic equations 
with the Dirichlet boundary conditions. We define an optimal solution to the minimax 
problem as a saddle point for a certain integral functional. To obtain necessary optimality 
conditions for the minimax problem we split it into two separate (but interconnected) 
optimization problems for disturbance and control functions. The first one involves a 
system with uncertain disturbances and homogeneous boundary conditions. The second 
problem deals with optimization of boundary controllers in the absence of disturbances. 
Both systems are subject to moving state constraints that depend on space and time 
variables and reflect the nature of the minimax problem. 



In Section 3 we present some important properties of mild solutions to parabolic 
systems with the Dirichlet boundary conditions and related continuity/regularity results 
that are crucial in our approach. Using these properties, we prove an existence theorem 
for optimal solutions (saddle points) to the minimax control problem under consideration. 

In Section 4 we treat uncertain disturbances as distributed controllers in an auxil- 
iary optimal control problem with bounded control functions and pointwise state con- 
straints. To remove the latter constraints we use a penalization procedure involving C"- 
approximations of multivalued maximal monotone operators with nonregular functions in 
approximating cost functionals. Empoying such a procedure and a detailed variational 
analysis of the approximating problems, we obtain strong convergence results and nec- 
essary suboptimality conditions to characterize the worst perturbations in the original 
minimax problem. Some constructions and results of this section are related to those in 
Barbu [2], Bonnans and Tiba [7], Friedman [ll], He [12], and Neittaanmaki and Tiba [24, 
251 in the framework of parabolic variational inequalities with bounded operators. 

In Section 5 we study the Dirichlet boundary control problem with control and state 
constraints corresponding to the second subsystem under the worst disturbances. There 
are many publications devoted to various boundary control problems for parabolic sys- 
tems; see, e.g., Balakrishnan [I], Barbu 121, Fattorini and Murphy 19, 101, Lasiecka and 
Triggiani 113, 141, Lions [15], Mackenroth [17], Troltzsch [28], Washburn [29], and refer- 
ences therein. The main complications in our case arise from the presence of pointwise 
state constraints simultaneously with hard constraints on measurable (L*) control func- 
tions acting within the Dirichlet boundary conditions. It is well known that the latter 
conditions provide the lowest regularity properties of solutions and are related to un- 
bounded operators in the framework of variational inequalities. The Dirichlet boundary 
control case turns out to be the most challenging and less developed; cf. 12, 9, 13, 141 
and references therein. Variational analysis of such problems is more difficult in compar- 
ison with the case of control functions acting through the Neumann boundary conditions 
which ensure higher regularity properties of the corresponding solutions. 

To develop such an analysis in the case of nonregular Dirichlet boundary controllers 
we use properties of mild solutions studied in Section 3 and effective smooth approxima- 
tion procedures. In Section 5 we prove the strong convergence of approximations ensuring 
suboptimality of optimal controllers to the approximating problems in the original prob- 
lem with state constraints. Then we provide a variational analysis of the approximating 
problems with hard constraints only on Dirichlet boundary controllers. In this line we ob- 
tain necessary optimality conditions for the approximating problems that can be writ ten 
in the form of bang-bang principle. 

In the final Section 6 we impose proper constraint qualifications that allow us to 
pass to the limit in the necessary optimality conditions for the approximating problems 
and characterize both worst disturbances and optimal controllers to the original minimax 
control problem with state constraints. These constraint qualifications fit the nature of the 
minimax problem under consideration being different from the classical Slater interiority 
condition. Developing the limiting procedure, we obtain necessary optimality conditions 
for the original state-constrained problem that involve measure-type Lagrange multipliers. 

Our notation is basically standard; cf. [2, 15, 261. Recall that L* always denotes the 
dual (adjoint) operator to a linear operator L between Banach spaces. 



2 Problem Formulation and Splitting 

We consider the following system 

under the pointwise constraints: 

where R c R~ is a bounded open set with sufficiently smooth boundary r and each of 
the intervals [a, b] , [c, dl, and [ p ,  v] contains 0. 

Let X := L2(R; R), U := L2( r ;  R), and W := L2(R; R) be, respectively, spaces of 
states, controls, and disturbances. (In what follows we remove R from the latter and 
similar space notation for real-valued functions). Denote by 

the set of admissible controls where LP(0, T; U )  is the space of U-valued functions u(.) = 
u(- ,  [) on [0, TI with the norm 

Similarly we define the set of admissible disturbances 

Wad := {W E ~ ' ( 0 ,  T; W)  ( c 5 w(t, x)  5 d a.e. ( t ,  x)  E Q). 

A pair (u, w) E Uad x Wad is called a feasible solution to system (2.1) i f  the corresponding 
trajectory y satisfies the state constraints (2.2). We always assume that problem (2.1)- 
(2.4) admits at least one feasible pair (u, w). 

Although Wad c LaJ(Q) and Uad c LaJ(C), we prefer to use the standard norms of 
the spaces L2(0, T; W)  and LP(0, T; U) for finite p suficiently big; see Section 3 for more 
detials. The reason is that we would like to take advantages of the diflerentiability of the 
latter norms away from the origin to perform our variational analysis. 

Throughout the paper we impose the following hypotheses: 

N a  a 
(HI)  A = - x -(aij(x)-) + ao(x) is a strongly uniformly symmetric elliptic 

i , j=l  ax; ax j  
operator on R with real-valued smooth coefficients aij(x) = aji(x) and 

ao(x) 2 0 satisfying 
N N 

C aij(x)bFj 2 Po x C:, Po > 0, VX E R and . . , FN) E R ~ .  
i,j=l i=l 

(H2) f E Lm(Q) and yo(x) E Hi(R) n H2(R) with a I yo(x) 5 b a.e. x E R.  

(H3) B : ~ ' ( 0 ,  T; W) -+ L2(0, T; X )  is a bounded linear operator 



One can always assume that the operator -A generates a strongly continuous analytic 
semigroup S(-) on X satisfying the exponential estimate 

for some constants w > 0 and M1 > 0 where 1 1  1 1  denotes the standard operator norm from 
X to X. Otherwise one can introduce the stable translation A = A + GI  that possesses 
these properties; see, e.g., [26]. 

Note that since w E L2(0, T ;  W)  and u E LP(0, T; U), system (2.1) may not have strong 
or classical solutions for some (u, w) E Uad x Wad; cf., [2, 15, 261. In this case, principal 
difficulties come from discontinuous boundary controls in the Dirichlet conditions. Taking 
advantages of the semigroup approach to parabolic equations, we are going to use for our 
analysis a concept of mild solutions to Dirichlet boundary problems. 

Let us consider the Dirichlet map D defined by y = Du where y satisfies 

It is well known (see, e.g., [13-151) that the operator 

is linear and continuous. 

2.1. Definition. A continuous function y : [0, TI -+ X is said to be a mild solution of 
system (2.1) corresponding to (u, w) E LP(0, T ;  U) x L2 (0, T ;  W)  if for all t E [0, TI one 
has 

where D is the Dirichlet operator defined in (2.6) with S E (0,1/4]. 

We refer the reader to [ l, 13, 14, 291 for various properties and applications of mild 
solutions. It is essential for this paper that the assumptions made ensure the existence 
and uniqueness of a mild solution to (2.1) for any w E L2(0, T ;  W) and u E LP(0, T ;  U) 
with big p. 

Let us observe that while the X-valued function y(t) in (2.7) is continuous by def- 
inition, the real-valued function y( t ,x)  of two variables is merely measurable (due to 
X = L2(fl)) that distinguishes mild solutions from other concepts of solutions to parabolic 
equations. The mild solution approach allows us to deal with nonregular (measurable) 
data of parabolic equations and the Dirichlet boundary conditions considered in the pa- 
per. On the other hand, the absence of continuity creates substantial difficulties that we 
are going to overcome in what follows. 

We also note that S in Definition 2.1 may be any fixed number from the interval (0,1/4] 
(usually S < 114). Although the first equality in representation (2.7) does not depend on 
S at all, this number explicitely appears in some estimations below that are the better 
the closer S is to zero. 

Now let us introduce the cost functional 



where y is a trajectory (mild solution) for system (2.1) generated by u and w. We always 
suppose that functional (2.8) is well defined and finite for all admissible processes in (2.1)-- 
(2.4). Some additional assumptions on integrands g, q ,  and h will be imposed in Sections 
3-5. 

In this paper we study a minimax control problem as follows: 

(P) find an admissible control u E Uad and a disturbance w E Wad such that 

(u, w) is a saddle point for the functional J (u ,  w) subject to system (2.1) 

and state constraints (2.2). 

This means that 

under relations (2.1) and (2.2). Such a pair (u, 6) is called an optimal solution to (P).  
For studying optimal solutions to problem (P) we are going to use the following splitting 

procedure based on the linearity of system (2.1). 
Let us split the original system (2.1) into two subsystems with separated disturbances 

and boundary controls. The first system 

has zero (homogeneous) boundary conditions and depends only on disturbances. The 
second one 

is generated by boundary controls and does not involve disturbances. It is easy to see 
that for any (u,  w) E Uad x Wad one has 

for the corresponding trajectories of systems (2.1), (2.10), and (2.1 1). 
Let y1 and y2 be, respectively, the (unique) trajectories of systems (2.10) and (2.11) 

corresponding to w and u. Consider the cost functionals 

for disturbances w and 

for boundary controls u. 
Let us define two optimization problems corresponding to the cost functionals intro- 

duced. The first one is: 

(P I )  maximize J l ( w ,  yl) in (2.13) over w E Wad subject to system (2.10) and 

the state constraints 

a - y2(t, x) ( yl(t, xj 5 b - y2(1, x) a.e. ( t ,x )  E Q. (2.15) 



The second problem is: 

(Pz)  minimize Jz(u,  yz) in (2.14) over u E Uad subject to system (2.11) and 

the state constraints 

a - Yl(t, X )  I Y Z ( ~ ,  2) I b - Y I ( ~ ,  X )  a.e. (t, X) E &. (2.16) 

The following assertion shows that the original minimax problem (P) can be splitted 
into two optimization problems (PI )  and (P2) separated on disturbar~~es and controls. 

2.2. Proposition. Let (ii, w) be an optimal solution to problem (P),  and let yl and yz be 
the corresponding trajectories of systems (2.10) and (2.11). Then w solves problem (PI )  
and ii solves problem (Pz). 

Proof. Using (2.12), one can immediately conclude that w is a feasible solution to (PI ) ,  
i.e., the corresponding trajectory yl of (2.10) satisfies the state constraints (2.15). Now 
the left-hand side of (2.9) implies, due to (2.8) and (2.13), that w is an optimal solution 
to (PI).  Arguments for ii are similar. 

Therefore, to obtain necessary conditions for a given optimal solution (ti, w) to the 
minimax problem (P),  we can consider the separate problems (PI )  for w and (P2) for 
ii with the connecting state constraints (2.15) and (2.16). Note that these constraints 
depend on (t ,  x) ,  i.e., turn out to be moving. The latter property is essential for studying 
the minimax problem under consideration. 

3 Properties of Mild Solutions and Existence 
Theorem for Minimax Problem 

In this section we present some important properties of mild solutions to system (2.1) 
and prove an existence theorem for the minimax control problem under consideration. 

Let S ( t )  be an analytic semigroup on X generated by the operator -A and satisfying 
the exponential extimate (2.5), and let D be the Dirichlet operator with the continuity 
property (2.6). In what follows we use the important estimates 

I I A ~ D I I  I Mz, IIA 3/4+65. M3 for any S E (0,1/4] 
(3.1) 

where 1 1  - 1 1  represents the corresponding operator norms. These estimates were established 
by Balakrishnan and Washburn [ l ,  291; see also Lasiecka and Triggiani [13, 141 for related 
considerat ions. 

Looking at representation (2.7) of mild solutions, one can observe that the main com- 
plications are created by the last term reflecting the Dirichlet boundary conditions. To 
study this term we consider an operator L from LP(0, T; U )  into LT(O, T; H112-'(0)) de- 
fined by the formula 

where p ,  r E [ I ,  a], 6 E (0,1/4], and E E (0,1/2]. Here HI/2-'(a) C L2(R) - X is 
the Sobolev space whost- nc,rm. I l y i l l 1 2 - e ,  being stronger than j)yijr ,-it? be defined by 

. -  ~ f ,  ii5, p. 211. Note that HO(R) = L2(R). llY111/2-E .- 



It is well known that the operator L in (3.2) may be unbounded for some p and r. 
However, this operator enjoys nice regularity/continuity properties for p sufficiently big, 
as one can see from the following assertion. Similar but somewhat different results are 
proved in [14, Theorem 2.51; see also references therein. 

3.1. Proposition. Let p > 4/& for some e E (0,1/2]. Then Lu E C([O,T]; HI/2-'(a)) 
for any u E LP(0, T ;  U). Moreover, the operator L : LP(0, T ;  U) -+ C([O, TI; H112-'(a)) is 
linear and continuous. 

Proof. Obviously L is linear. To show that L is continuous we should prove its bounded- 
ness; that is, 

It follows from (3.1) and (3.2) that for any t E [0, T] one has 

where l l p  + l /q  = 1. Since p > 4/e infers q < $-, we get 

Let us prove that Lu  E C([O, TI; H'12-'(a)), i.e., (Lu)( t)  is continuous at  any point 
to E [0, TI in the norm of H'12-'(a). Indeed, taking for definiteness t > to, one has 

(S(t - to) - I) Jfo AS(t - r )Du( t )dr .  
0 

The latter implies that 

by virtue of estimate (3.4) and the strong continuity of S(.). Moreover, from (3.4) and the 
definition of the norm in C([O, TI; H'12-'(a)) we immediately get inequality (3.3) with 

that ensures the required continuity of L. This ends the proof of the proposition. 

3.2. Corollary. Let e and p satisfy the assumptions in Proposition 3.1. Then the opera- 
tor L in (3.2) acting from LP(0, T ;  U) into C([O, TI; H'/~-'(R)) is weakly continuous. This 
implies that for any sequence u, -+ u weakly in Lp(0,T; U) one has Lu, -+ Lu weakly in 
C([O, TI; 11'/~-'(0)) as n -+ oo. 

Proof. It is well known from standard functional analysis that any linear continuous op- 
erator between normed spaces is automatically weakly continuous. Therefore, the results 



in this corollary follow directly from Proposition 3.1. 

3.3. Remark. Taking into account the results obtained above and Definition 2.1 of mild 
solutions to system (2.1), we can conclude that the strong (respectively, weak) conver- 
gence of boundary controls in LP(0,T; U) implies the strong (weak) convergence of the 
corresponding trajectories (2.7) in C([O, TI; ~ ' / ~ - " ( f l ) )  if p is sufficiently big. Observe 
that if there is no boundary term in (2.7), then any mild solution to (2.1) turns out to be 
a solution to (2.1) in the usual (strong) sense; see, e.g., [2, p. 261. In the latter case, the 
weak convergence of disturbances w, t w in LP(0, T; W) implies the strong convergence 
of the corresponding trajectories y, t y in C([O, TI; X) as n -+ co for any p 2 1; see [2, 
1 I.]. 

Now we are going to show that in the general case of mild solutions corresponding to 
the Dirichlet boundary conditions, the weak convergence of controls u, + u in LP(0, T; U )  
for big p implies the pointwise convergence of a subsequence of solutions y,(t, x)  t y(t, x) 
a.e. in Q. This fact follows from the next proposition and turns out to be crucial for 
proving the main results of the paper. 

3.4. Proposition. Let e and p satisfy the assumptions in Proposition 3.1 and let L 
be defined in (3.2). Then the weak convergence of u, + u in LP(0, T; U) implies 

Lu, + Lu strongly in L ~ ( Q )  as n -+ co. (3.5) 

Moreover, there is a subsequence of {(Lu,)(t, x)) which converges to (Lu)(t, x) a.e. in Q. 

Proof. It follows from Corollary 3.2 that 

Lu, + Lu weakly in C([O, TI; ~ ' / ~ - " ( f l ) ) .  

This infers that (Lu,)(t, . -+ (Lu)(t ,  .) weakly in H'/~-"(R) for each t and also that the 
sequence {Lu,) is bounded in C([O, TI; HI/2-"(a)). Moreover, from [16, Theorem 16.1, p. 
991 we know that the embedding of H' /~-"(R) into X is compact. So the weak convergence 
of (Lu,)(t, a )  + (Lu)(t ,  .) in H'/~-"(R) for each t and the property of compact operators 
(see, e.g., [30, Theorem 10.7.1, p. 2261) yield that (Lu,)(t, .) -+ (Lu)(t, -) strongly in X 
for each t .  Hence we obtain the following results: 

(i) (Lu,)(t, .) are uniformly bounded in X, i.e., there exists M 2 0 such that 

II(Lun)(t)ll~ i M Vt E [0, TI and n = 1, 2, .  . . ; 
(ii) (((Lu,)(t) - (Lu)(t)  llx --t 0 for every t E [0, T] as n + co. 
Let us consider a sequence of real-valued nonnegative functions $, on [0, TI defined 

Then (i) and (ii) imply, respectively, that 4, are uniformly bounded on [0, TI and &(t)  + 

0 pointwisely in [0, TI as n t co. 
Now using the Lebesgue dominated convergence theorem, we arrive at 



This means that (3.5) holds. Therefore, {(Lu,)(t,x)) contains a subsequence that con- 
verges to  (Lu)(t ,  x) for a.e. (t,  x)  € Q. 0 

The convergence/continuity results presented above are crucial to  justify approxima- 
tions and limiting procedures developed in this paper. Hereafter we always assume that 
p is sufficiently big to  ensure the convergence property in Proposition 3.4. 

To go ahead we need to impose proper assumptions on the integrands in the cost func- 
tional (2.8) that ensure semicontinuity properties of (2.8) in the corresponding topologies. 
The main assumptions are as follows: 

(H4a) g(t ,  x ,  Y) satisfies the Carathkodory condition, i.e., g(t ,  x ,  y) is measurable in 

(t,  x)  E Q for all y E R and continuous in y E R for almost all ( t ,  x)  E Q. 

Moreover, there exist a nonnegative function q(.) E L1 (Q) and a constant 

( 2 0 such that 

lg(t, x,  y)l 5 q(t, x)  + i ly  l 2  a.e. (t,  5)  E Q, VY E R. (3.6) 

(H5a) y~( t ,  x,  w) is measurable in ( t ,  x) E Q, continuous and concave in w E [c, dl, 

and for some function K(.) E L1(Q) one has 

p( t ,  x,  w) 5 ~ ( t ,  x)  a.e. ( t ,  x) E Q, Vw E [c, dl. 

(H6a) h(t ,  <,  u) is measurable in ( t ,  E) E C, continuous and convex in u E [p, u], and 

for some function ~ ( 0 )  E L1(C) one has 

h(t ,  E ,  u) 2 r ( t ,  0 a.e. ( t ,  E) E C, Vu E [P, 4- 
Let us discuss hypotheses (H4a)-(H6a). The meaning of (H4a) becomes apparent 

through the following result by Polyak [27, Theorem 21 that is frequently used in the 
sequel for furnishing limiting processes. 

3.5. Proposition. Let g(t, x,  Y) satisfy the Carathe'odory condition in (H4a). Then the 
growth condition (3.6) is necessary and suficient for the continuity of the functional 

in the strong topology of L2(Q).  

Further, let us consider hypothesis (H5a) in connection with the second integral term 
in (2.8) depending on w(.) E L2(Q) with ~ ( t ,  x)  E [c, dl a.e. in Q. It is well known that 
(H5a) ensures the upper semicontinuity of this functional in the weak topology of L2(Q) 
and, moreover, the concavity of cp(t, x,  a )  is a necessary condition for the weak upper 
semicontinuity; see, e.g., [27]. Symmetrically, the assumptions in (H6a) ensure the lower 
semicontinuity of the third integral functional in (2.8) in the weak topology of L2(C) with 
u( t ,J)  E [p, V] a.e. in C. 

Now we are ready to prove an existence theorem of optimal solutions in the minimax 
problem (P). 

3.6. Theorem. Let hypotheses (H1)-(H3) and (H4a)-(H6a) hold and let, in addition, 
the integrand g be linear in y. Then the cost functional J ( u ,  w) in (2.8) has a saddle point 
( u ,  w) on Uad x Wad subject to system (2.1). Moreover, if the corresponding trajectory of 
(2.1) satisfies the state constraints (2.2), then (ii, w) is a,n, optimal solution to the original 
minimax problem, (P). 



Proof. Let us consider the functional J (u ,  w) defined on the set Uad x Wad c LP(0, T ;  U) x 
L2(0, T ;  W)  for big p. It is easy to conclude that both Uad and Wad are convex and weakly 
compact in LP(0, T ;  U) and L2(0, T ;  W), respectively. Moreover, one can always use the 
sequential weak topologies on these spaces by virtue of their reflexivity. 

Furthermore, let us check that J is convex-concave on Uad x Wad by the convexity of 
h in u, concavity of cp in w, and linearity of g in y that implies the linear dependence of 
g in (u, w). First we show that J is weakly lower semicontinuous with respect to u in the 
space LP(0, T; U) for any fixed w E L2(0, T ;  W). 

Indeed, let u, -+ ii weakly in Lp(0, T; U) as n + co. According to the classical Mazur 
theorem, there is a sequence of convex combinations of u, that converges to ii strongly in 
LP(0, T ;  U). It follows from the norm definitions in Lp(0, T ;  U) and U = L2(C) that the 
latter sequence also converges to ii strongly in L2(C). Now employing the convexity of h 
in u and the arguments similar to [27, Theorem :I.], we obtain 

Let us consider the trajectories (mild solutions) y, and i j  of system (2.1) generated, 
respectively, by u, and ii for any fixed w. Using Propositions 3.4 and 3.5, we conclude 
that 

along a subsequence of {n). Now relationships (3.7) and (3.8) ensure that the functional 
J ( . ,  w) in (2.8) is weakly lower semicontinuous on Uad for any fixed w. 

To prove the weak upper semicontinuity of J (u ,  .) on Wad for any fixed u, we use the 
same (symmetric) arguments taking into account that the weak convergence w, + zi? 
in L2(0, T ;  W )  implies even the strong convergence in C([O, TI; X) of the corresponding 
trajectories y, + y"; see Remark 3.3. 

Therefore, the functional J (u ,  w) in (2.8) is convex and weakly lower semicontinuous in 
u on the convex and weakly compact set Uad c LP(0, T ;  U) as well as concave and weakly 
upper semicontinuous in w on the convex and weakly compact set Wad c L2(0, T ;  W). 
Now the existence of a saddle point ( u ,  w) for J on Uad x Wad subject to system (2.1) 
follows from the classical (von Neumann) minimax theorem in infinite dimensions (see, 
e.g., [3, Theorem 3.6 on p. 1621). Obviously, ( u ,  w) is an optimal solution to the original 
minimax problem (P) if the corresponding trajectory y satisfies the state constraints (2.2). 
This ends the proof of the theorem. 

3.7. Remark. Hypotheses (H4a)-(H6a) on the integrands in (2.8) are required through- 
out the paper and play a substantial role in the subsequent sections to obtain the main 
results on the convergence of approximations and their variational analysis. On the con- 
trary, a restrictive assumption about the linearity of g in y is made only in Theorem 3.6 to 
ensure the existence of a saddle point. This assuinption can be removed if one considers 
saddle points in the framework of "mixed (relaxed) strategies"; cf., e.g., Berkovitz [5] in 
the context of ODE differential games. 

4 Suboptimality Conditions for Worst 
Perturbations 

This section is concerned with the first subproblem (Pi)  formulated in Section 2. 
We can treat (Pi) as an optimal control problem with controls acting in the right-hand 



side of the parabolic equation. So one might employ optimal control theory for linear 
parabolic systems with distributed controls to find necessary optimality conditions for 
the maximal perturbations in (P). Note that the moving state constraints (2.15) involve 
the nonregular (measurable) function y2(t, x), a mild solutions to the Dirichlet problem 
(2.1 I ) ,  that creates additional complications in the problem under consideration. Now we 
are going to use an approximation method to remove the latter constraints that allows us to 
obtain strong convergence results; cf. [2, 251. After that we provide a detailed variational 
analysis of the approximating problems to derive necessary suboptimality conditions for 
the worst perturbations. 

Let cr : R + R be a multivalued maximal monotone operator of the form 

( 0  if either r < a or r > b. 

Using the Yosida approximation 

- 1 
E ( r  - (1 +€a) - ' r ) ,  r E R a n d  E > 0, 

of a ( . )  and then a Cr-mollifier in R, one can get a smooth approximation a,(.) of the 
mulitivalued operator (4.1). As noted in [2, p. 3221, we may choose cr,(r) of the following 
form: 

Then it is easy to check that 

with Iccr:(r)l 5 1 for all r E R. 
Let ('zL, W) be the given optimal solution to the minimax problem (P),  and let yl 

and y2 be the corresponding trajectories of systems (2.10) and (2.11), respectively. We 
consider the following parametric family of control problems with no state constraints that 
approximate the first subproblem (PI)  in Section 2 and depends on the given trajectory 
y2 of the Dirichlet system (2.11): 

(Pic) maximize Jic(w, yi) := [g(t, x, yl(t, x) + y:!(t, x)) + ~ ( t ,  x, w(t, x))]dtda: - a 
2 / I w  - W / / ~ 2 ( o , T ; W )  ' ( I a C ( ~ l  + ~ 2 ) l l % . ( ~ , ~ ; ~ )  

over w E Wad subject to 

( y = 0 (t, 6) E C. 



Note that w E Wad and f E Lm(Q). The classical results ensure that system (4.4) has 
a unique strong solution yl E W'*2([0, TI; X )  satisfying the estimate 

(cf. Theorem 4.6 in [2, p. 271). Let {w,) C Wad and {yln) be the corresponding sequence 
of strong solutions to system (4.4). Standard arguments show that if w, + w E Wad 
weakly in L2(0, T; W), then yl, + yl strongly in C([O, TI; X )  as n + m and yl is also a 
strong solution of (4.4) corresponding to w; cf. Remark 3.3 above. 

To justify the approximation procedure in (4.2) and (4.4), first we have to show that 
the maximization problem (PI,) admits at least one optimal solution. To prove the 
existence theorem stated below we will follow the line of the classical Weierstrass theorem 
in infinite dimensions involving properness and upper semicontinuity of a cost functional 
on a compact feasible set. The main compications in our case are connected with the 
perturbation term of the cost functional that depends on the (nonregular) mild solution 
y2 of the Dirichlet system (2.11). 

4.1. Proposition. For each yo satisfying (H2) and each E > 0 problem (PI,) has at least 
one optimal solution (w,, yl,) E Wad X W112([0, TI; X ) .  

Prook First we observe that the set of feasible solutions to problem (PI)  is nonempty 
because the pair (w, yl) is a feasible solution to (PI,) for any c > 0. Let us show that 
the cost functional J1, in (PI,) is proper, i.e., Jl,(w, yl) < m for any w E Wad and the 
corresponding trajectory yl E W'T~([O, TI; X )  of system (4.4). Clearly 

JJQ 90, X ,  ~ l ( ~ 7  X) + ~ 2 ( ~ ~  x))dtdx + JJQ ~ ( t ,  X, ~ ( t ,  x))dtdx < m 

for all such (w, yl) due to assumptions (H4a) and (H5a). Furthermore, 

Now let us analyse the last term in J1, depending on y2. Due to (2.7) and (3.1) one has 

4MzM3 max{Ip/, v)Jmes(r) 1-46 

Ily2(t>llx I t 4  for any fixed 6 E (0,114). 
1 -46  (4.6) 

To estimate JJa,(yl + ~ ~ ) 1 1 ~ 2 ( ~ , ~ ; ~ )  let us consider the sets 

RE, := {x E R I a - E < yl(t, x)  + y2(t, x)  5 a); 

Ria := {x E (y l ( t ,x)+ j j2( t ,x)  I a - € 1 ;  

:= {a: E 0 ( b I  yl ( t ,x)+y2( t ,x)  < b + € ) ;  (4-7) 
a", := {X E I y l ( t ,x )+  y2(t,x) > b + € )  

that are Lebesgue measurable with R = RE, u Ria u REb U Rib for a.e. t E [0, TI. Now 
taking into account the structure of a,(.) in (4.2), we obtain the following estimates: 



Combining this with (4.6) and the fact that yl E W1v2([0, TI; X ) ,  we arrive at 

So (4.5) and (4.8) yield 
Jlc(w,yl) < 00 vw E Wad 

that ensures the properness of the cost functional in (PI,) for any c > 0. Therefore, there 
exists a real number jl, such that 

For each problem (PI,) let us consider a maximizing sequence {w,, yln) where E is 
omitted for simplicity. iFrom the definition of supremum one has 

Recall that Wad is bounded, closed, and convex in L2(0, T; W). Thus one can extract a 
subsequence of {wn) (without relabelling) that converges weakly in L2(0, T ;  W)  to some 
function 22, E Wad. Let jjl be a (strong) solution to (4.4) corresponding to 22,. According 
to the previous discussions we have 

Yln + strongly in C([O, T ] ;X )  as n + 00. (4.10) 

Furthermore, taking into account assumptions (H4a) and (H5a) as well as concavity and 
continuity of the function - 1 )  . ( l ~ 2 ( 0 , T ; W ) ,  we conclude (cf. the proof of Theorem 3.4) that 

Then it follows from (4.10) and the continuity of (4.2) that 

By virtue of (4.9) relationships (4.11) and (4.12) ensure the equality jl, = Jlc(22,, ijl) that 
ends the proof of the proposition. 



Next we need the following technical lemma that is important to justify the required 
convergence of approximation procedures in this and the subsequent sections. 

4.2. Lemma. Let yn(t, x ) ,  n = 1,2,.  . ., and y( t ,  x )  be nonnegative functions belonging 
to the space L1 (Q) .  Given c  > 0, consider the sets 

defined for each n = 1,2,.  . .. Assume that ~ , ( t ,  x )  -+ y( t ,  x )  a.e. in Q and 

J JQn yn( t ,  x)dtdx -+ o as n -+ oo. 

Then one has 0 < y ( t , x )  I c  a.e. in Q. 

Proof. Proving by contradiction, let us suppose that the conclusion of the lemma does 
not hold. Then for each small p > 0 there exists a measurable set Q,  c Q such that 
mes(Q,) > 0 and 

y ( t , x )  > c +  p whenever ( t , ~ )  E Q p -  (4.14) 

Now taking into account the convergence yn(t, x )  -+ y( t ,  x )  a.e. in Q and using the classi- 
cal Egorov theorem, we conclude that for each E > 0 and p > 0 there exist a measurable 
set Q, c Q and an integer li' > 0 independent of ( t ,  x )  such that p - l / n  > p/2 > 
0, mes(Q \ Q,) < E ,  and 

Iyn(t ,x) - y(t ,x)I  < p/2 < p - l / n  whenever n > K and ( t , x )  E Q,. 

Let us choose E > 0 provided that mes(Q, n Q,) # 0. It follows from (4.14) that 

for any ( t ,  x )  E Q, f l  Q,, i.e., ( Q ,  n Q,) c Qn for all n > K. Then from (4.13) and 
yn ( t  , x )  > 0 one has 

1 ApnQc 
yn(t ,x)dtdx -+ 0 as n -+ oo. 

The latter im~ l ies  that 

by virtue of the uniform convergence yn(t , x )  -+ y ( t  , x )  in Q,  n Q,  as n -t oo. Due to the 
nonnegativity of y we arrive at the conclusion y( t ,  x )  = 0 a.e. in Q,  n Q, that constradicts 
(2.14). Therefore, we get 0 < y( t ,  x )  5 c  a.e. in Q and complete the proof of the lemma. 

The next theorem ensures the strong convergence of the approximation procedure in 
this section and justifies suboptimality of optimal solutions to the approximating problems 
( P I , )  in the state-constrained problem ( P I )  for the worst perturbations. 

4.3. Theorem. Let (w,  y l )  be the given optimal solution to problem ( P I )  and let 
{ (w, ,  y l , )}  be a sequence of optimal solutions to problems (P I , ) .  Then there exists a 
subsequence of (€1 along which 

we -+ w strongly i n  ~ ~ ( 0 ,  T ;  W ) ,  y l ,  -+ y1 strongly i n  C([O, TI; X ) ,  and 



Proof. Using the same weak-compactness arguments as in the proof of Proposition 4.1, 
we find a function 22, E Wad and a subsequence of {w,} (without relabelling) along which 

Moreover, there exists ijl E W112([0, TI; X )  satisfying (4.4) with w = 22, such that 

yl, + $1 strongly in C([O, TI; X )  as E -+ 0. (4.16) 

Let us show that the pair (6, ijl) is a feasible solution to problem (PI )  in Section 2. To 
furnish this, it remains to show that ijl satisfies the state constraints (2.15), i.e., 

First we note that (w, yl) is feasible to (Pi,) with cr,(yl + ij2) = 0 a.e. in Q for all E > 0. 
Due to the optimality of (w,, yl,) in this problem one has 

Using (4.18) and taking into account the structure of the cost functional in (Pi,) as well as 
assumptions (H4a) and (H5a), we conclude that the sequence { ~ ' / ~ ( l u , ( ~ ~ ,  + ? j2 ) ( (L2(0 ,T ;X) }  

is bounded. The latter yields 

Due to constructions (4.2) and (4.7) we obtain from (4.19) the limiting relationship 

Note that for almost all t E [0, TI one has (yl,(t, x) + y2(t, x) - a)4 c4 a.e. in a;, and 
(yl,(t, x)  + y2(t, x) - b)4 I c4 a.e. in atb. This implies that the first and third integrals in 
(4.20) vanish when E i 0. Now applying Lemma 4.2 to the second and fourth integrals 
in (4.20), we arrive at (4.17) and conclude that the pair (6, ijl) is feasible to (PI) .  This 
yields 

Using this fact, let us prove the desired strong convergence results of the theorem. 
First we rewrite (4.18) in the form 

and take the upper limit in the both side of (4.22). Remember that under the assumptions 
made the functional J l(w, y) in (2.13) is upper semicontinuous in thfc weak topology of 



L2(0,T; W)  and the norm topology of C([O,T];X); cf. the proof of Proposition 4.1. 
Empoying this fact together with (4.15), (4.16) and (4.21), we obtain 

The latter yields 

lirnrlIa.(~lc c+O + ~2)11$(O,~ ;X )  = 0 and lim c+O I ~ W ,  - W I I ~ ~ ( ~ , ~ ; ~ )  = 0, (4.23) 

i.e., w, + w strongly in L2(0,T; W)  and, therefore, yl, + yl strongly in C[O,T] ;X)  as 
c + 0. Finally, the value convergence in the theorem follows from (4.23) and Proposition 
3.5 due to assumptions (H4a) and (H5a). This ends the proof of the theorem. 

Now let us conduct a variational analysis of the approximating problems (PI,) to 
obtain necessary conditions for their optimal solutions (w,, yl,). Due to Theorem 4.3 and 
the splitting procedure the results obtained in this way can be treated as suboptimality 
conditions for the worst perturbations in the original problem. 

To furnish such an analysis let us impose the following additional assumptions: 

(H4b) g(t, x, y) is continuously differentiable in y for almost all ( t ,  x) E Q and 

89 
- ( t  , x, y ) is measurable in ( t  , x) for any y E R. Moreover, there is a nonnegative 
ay 
function 71 E L2(Q) and a constant C1 2 0 such that 

ag  
I-(t, 2, y)( L n ( t ,  2) + CIIYI a.e. ( t ,  x) in Q, Vy E R. 
ay 

(H5b) ~ ( t ,  x, w) is continuously differentiable in w for almost all (t,  x) E Q with 

a9 ---(t, x.w) measurable in ( t ,  x) for all w E [c, dl. Moreover, there is a nonnegative 
aw 
function rcl E L1(Q) such that 

Let us consider the following adjoint parabolic equation with homogeneous terminal- 
boundary conditions: 

ag  
A h  = --(t, 2, YIC + Y2) + 2ca:(yl, + y2)ac(ylr + y2) a.e. in Q, 

ay 
111(T,x) = 0, x E cl R, 

(4.24) 

h ( t ,  t) = 0, ( t ,  t) E C 

where cl R := R U I? and the elliptic operator A in (Hl)  is self-adjoint. Clearly, (H4b) im- 
dg plies that -(t, x, yl(t, x)+ yz(t, x)) E L2 (Q) for all yl E C([O, TI; X). Then it follows from 
ay 

Theorem 4.6 in [2, p. 271 that (4.24) has a unique strong solution ~ 1 ,  E W1v2([0, TI; X) 
satisfying q!~~, E C([O, TI; X) n L2(0, T; H,'(R) n H2(R)). 

4.4. Theorem. Let (w,, yl,) be an optimal solution to problem (PI,) and let G1, be the 
corresponding strong solution to system (4.24). Then for any w E L2(0,T; W)  such that 
w, + Ow E W a d  for all 0 E [O, 001 with some O0 > 0, one has 



Proof. Let yl,, be the strong solution of (4.4) corresponding to w, + Ow. Then one can 
easily check that yl,, + y l ,  strongly in C([O, TI ;  X )  as 0 -+ 0 and 

where zl, is a strong solution to 

Define the limits 

A1 := limsup JL g(t? X ,  Y I € W ( ~ ,  X )  + ~ 2 ( ~ 7  x ) )  - g(t? ~7 ~ l € ( ~ ,  + Y 2 ( t ?  x ) ) d t d x ,  
f3-o e 

A~ := limsup Jlg f ~ : ( ~ l r w ( t , x )  + Y ~ ( t . 5 ) )  - ca:(yl , ( t ,x)  + Y2(t, x ) ) ~ ~ ~ ~ .  
O+o e 

Applying the classical mean value theorem to the integrands above, one gets 

where el = Bl ( t ,x ) ,  B2 = B2(t, x )  E [0, : I ]  a.e. in Q. Then using (4.26), (H4b) ,  and the 
Lebesgue dominated convergence theorem, we obtain 

Thus one has 

Note that a:(.) is continuous by (4.3) with Iccr:(.;~J 5 1 and a,(yl,, + y2) + a,(y l ,  + y2) E 
L2(0,  T ;  X )  by (4.8). Then (4.26) infers 

Apparently w,+Bw t w, strongly in L2(Q)  as 13 t 0 for all w satisfying the conditions 
of the theorem. Due to assumption (H5b) and the classical mean value theorem one has 



where O3 = 03(t, x)  E [ O , l ]  a.e. in Q. So the Lebesgue dominated convergence theorem 
yields 

Employing the optimality of (w,, yl,) in problem (PI,), we get 

JI,(w, + OW, YI,,) - JI,(W,, YI,) > 
0 2 lim sup 

8 - 
8+0 

limsup Jlq (w, + ow - 2 0 ) ~  - (20, - ~ ) 2  

8 
dtdx - 

8+0 

lim sup r Jlq ~:(YI,W + G2) - a:(yi. + ~ 2 ) ~ ~ ~ ~ .  
8+0 8 

By virtue of (4.27)-(4.29) we arrive at the inequality 

Now substituting the solution $1, of (4.24) into (4.30) and integrating the latter inequality 
by parts, one obtains (4.25). This ends the proof of the theorem. 

4.5. Corollary. For each 6 > 0 the maximal perturbation w, in ~rob lem (PI,) satisfies 
the following bang-bang relations: 

where $1, is the corresponding solution to the adjoint system (4.24). 

Proof. Taking 6 = w - w, for any w E Wad, one has w, + 8 6  = (1 - B)w, + Ow E Wad for 
each 8 E [ O , l ] .  Due to (4.25) with w = 6 we obtain 

that implies the bang-bang relations. 

5 Suboptimal Control under Worst Perturbations 

In this section we study the boundary optimal control problem (P2) stated in Section 2. 
According to the splitting procedure, the optimal solutions of (P2)  allow us to find optimal 
boundary controls to  the original minimax problem (P) under the worst perturbations. 

One can see that problem (Pz)  considered is a boundary optimal control problem for 
parabolic systems with hard control constraints acting ill . h e  Dirichlet boundary con- 
ditions and moving state constraints generated by the sp1i:ting procedure. To remove 



(approximate) the latter constraints we are going to develop a penalization technique 
that provides a useful suboptimality information for the original minimax problem. 

Let a ( . )  be the maximal monotone operator defined in (4.1) and a,(.) be a smooth 
approximation of a(.) of the form (4.2). For each E > 0 we consider a parametric family 
of approximation problems for (P2) formulated as follows: 

( ~ 2 , )  minimize J2,(u, ~ 2 )  := Jlp 9(t, x, ~ l ( t ,  x) + y2(t, x))dtdx + JL h(t, E ,  u(t, + 
I l u  - ul lh(O,T;U) + ' l Ia,(~1 + ~ 2 )  ll$(O,T;x) 

over u E Uad subject to the system 

Remember that solutions to (5.1) are considered in the mild sense, i.e., there exists a 
(unique) function y2 E C([O, TI; X) satisfying 

y2(t) = Lu := - A  S( t  - r )Du( r )dr  Qt E [0, TI. J,' 
The next result justifies the existence of optimal solutions to the approximating mini- 
mization problem (P2,) for all E. 

5.1. Proposition. For each 6 > 0 problem (P2,) has at least one optimal solution pair 

( ~ € 7  32,) E u a d  X c([O, TI; X )  . 

Proof. First we note that for any E > 0 problem (P2,) has a feasible pair (u, y2) that 
generated by the given optimal solution (u, w) to  the original minimax problem (P).  Let 
(u, y2) be an arbitrary feasible pair to (P2,). It follows from assumptions (H4a) and (H6a) 
that 

To estimate the given trajectory yl for (2.10) we use (2.5) and (2.7) that easily infer 

Then employing arguments similar to the proof of Proposition 4.1, we conclude that 

Ila,(yl + Y~))ILz(o,T;x) < o;) for each E > 0. (5.4) 

Thus it follows from (5.3), (5.4) and the boundedness of Uad in LP(0, T ;  U) that 

i.e., the cost functional J2, is proper in the minimization problem (P2,) for any E > 0. 
Fixed c > 0 and taking into account the uniqueness of mild solutions (5.2) correspond- 

ing to controls u, we consider the cost functional in (P2,) on the admissible control set Uad 
equipped with the weak topology of LP(0, T ;  U). Now using Corollary 3.2, Propositions 
3.4 and 3.5 as well as the convexity of h in u and the continuity of the operator a,(.) 
in (4.21, we conclude that for big p the cost functional in (P2c) is weakly semicontinuous 



in LP(0, T; U) on the weakly compact set Uad; cf. the proof of Theorem 3.6. Thus the 
existence of optimal solutions in (P2,) follows from the classical Weierstrass theorem. 

Next let us prove the strong convergence of optimal solutions for the approximating 
problems (P2,) to the given optimal solution (G ,  y2) of the state-constrained problem (P2). 

5.2. Theorem. Let (G,  fj2) be the given optimal solution to problem (P2) and let {(u,, y2,)) 
be a sequence of optimal solutions to the approximating problems (P2,). Then there is a 
subsequence of (6)  along which 

U, + U strongly in LP(O, T; U), y2, -+ y2 strongly in C([O, TI; X ) ,  and 

J ~ € ( u , ,  ~ 2 , )  + J2(% Y2) as 6 + 0. 

Proof. From the optimality of (u,, y2,) in (P2,) and the feasibility of (u, y2) in this problem 
one has 

This implies, in particular, that there is a constant M > 0 independent of 6 such that 

Due to the weak compactness of Uad in LPCO, T; U) we can find a function 6 E Uad and 
a subsequence of {u,) along which 

u, + 6 weakly in LP(O, T ;  U) as 6 + 0. (5.7) 

Denote by $2 the mild solution of (5.1) corresponding to 6. Now using Proposition 3.4, 
we can find a subsequence of (6)  such that 

along this subsequence for p sufficiently big. Then following the procedure in the proof 
of Theorem 4.3 with the usage of (5.6) and Lemma 4.2, we conclude that 

i.e., (6, jj2) is a feasible solution to the state-constrained problem (P2). Therefore, 

Now let us pass to the limit in (5.5) as 6 -+ 0 taking into account (5.7)-(5.9) and the 
lower semicontinuity of the functional (2.14) on Uad in the weak topology of LP(0,T; U) 
(see the proof of Theorem 3.6). This yields 

The first equality in (5.10) means that u, + u as 6 -+ 0 strongly in LP(0, T; U). For 
big p the la.tter implies the strong convergence y2, + y2 in C([O, TI; X )  by virtue of 



Proposition 3.1. The value convergence in Theorem 5.2 follows from the solution conver- 
gence obtained and the second equality in (5.10). This ends the proof of the theorem. 

Next let us establish necessary optimality conditions for the approximating problems 
(P2,) under the following additional assumptions on the integrand h: 

(H6b) h(t, [, u) is continuously differentiable in u with the derivative measurable 

in ( t ,  J). Moreover, there is a nonnegative function yl E Lq(C) such that 
a h  

lz(t1[7 41 5 r l(t,C) a.e. ( t l  t )  E C, vu E [s, 4 
where l / p  + l / q  = 1. 

Let (u,, y2,) be an optimal solution to problem (P2€) for any fixed E > 0. Consider 
feasible variations of u, of the form u, + Ou E Uad with u E LP(0, T; U) where 0 E [0, Oo] 
for some Oo > 0. Denote by ~ 2 , ~  the mild solution of (5.1) corresponding to u, + Ou and 
consider a function $ : [O, Oo] -+ R defined by 

It follows from the definition that $ attains its minimum at 0 = 0. Moreover, it is easy 
to see from (5.2) and (3.3) for big p that 

Y2eu -+ 92, strongly in C([O, TI; H'/~-"(R)) as 0 -+ 0 and 
Y2€U(t, x) - ~ 2 € ( t ,  5) 

0 
= Lu VO > 0, a.e. ( t ,  x) E Q. (5.12) 

The following results provide necessary conditions for optimality of (u,, y2,) in (P2,) 
ensuring, due to Theorem 5.2, suboptimality conditions to the state-constrained problem 

(P2). 

5.3. Theorem. Let (u,, y2,) be an optimal solution to problem (P2€) and let L* : 

(C([O7 TI; XI)*  
-+ Lq(O, T ;  U )  be the adjoint operator to the operator L in (3.2). Then one has 

where u E LP(0, T; U) such that u, + Ou E Uad for  all 0 E [O,Oo] with some 00 > 0. 

Proof. Taking into account that the function $ ( a )  in (5.11) has its minimum at 0 = 0 and 
using the classical mean value theorem, we get 

0 5 lim inf - 4(0) - - 
8 1 0  0 



where 8i = ei(t, x)  E [O,1] a.e. in Q for i = 1,2,3. Observe that 6;(y2,, - y2c) + 0 strongly 
in L ~ ( Q )  as 8 + 0 for i = 1,2,3 and that a , (y l+  ~ 2 , ~ )  + a,(jjjl + y2,) E L2(0, T; X). Then 
similarly to Section 4, by using assumptions (H4b) and (H6b), Proposition 3.5, and the 
Lebesgue dominated convergence theorem, we obtain 

The latter implies (5.13) end ends the proof of the theorem. 

5.4. Corollary. For each e > 0 the optimal control u, to (P2,) satisfies the following 
bang-bang relations: 

Proof. Let u = ii - U in (5.13) for any ii E Uad. Taking = 1, one has u, + Bu = 
(1 - 8)u, + 8ii E Uad for all 8 E [O, do]. Then the bang-bang relations follow directly from 
(5.13). 

6 Necessary Optimality Conditions with State 
Constraints 

In the last part of this paper we furnish the limiting processes to  derive necessary 
optimality conditions for the original minimax control problem (P). They are based on 
passing to  the limit in the necessary optimality conditions for the approximating problems 
(PI,) and (P2,) by taking into account the splitting procedure and the strong convergence 
results proved in the previous sections. First let us summarize the approximation and 
suboptimality results obtained for the given optimal solution (u, w) to the original problem 

(P> 

6.1. Theorem Let (u, w) be an optzmal solution to the minimax control problem (P) and 
let y be the ~ .07 '7 *~~~07~d ing  mild trajectory of system (2.1). Assume that all the hypotheses 



(H1)-(H6) are fulfilled and that p is suficiently big. Then for each 6 > 0 there exist 
optimal solutions {(w,,  yl,)) and {(u,,  y2,)) to problems (PI , )  and (P I , ) ,  respectively, such 
that 

( 2 1 6 ,  w,, Y E )  = (u,, w,, Y l ,  t ~ 2 , )  -+ ( 21 ,  w,  Y )  
strongly i n  LP(O, T ;  U )  x ~ ~ ( 0 ,  T ;  W )  x C([O, T I ;  X )  as E -t oo 

and the necessary optimality conditions in Theorems 4.4 and 5.3 hold. 

Analysing the necessary conditions of Theorems 4.4 and 5.3, we can observe that to 
pass to the limit therein one needs to get a uniform bound for the term ca:(.)a,(-) .  Such 
a bound does not follow from the previous consideration without additional assumptions. 
To furnish this, let us impose the following constrained qualification conditions for the 
state constraints in the minimax problem ( P )  that take into account the nature of this 
problem through the splitting procedure of Section 2. It what follows 1 1  . 11, denotes the 
norm in Lm(Q) .  

There exist 25, E Wad and 771 > 0 such that for all ( E Lm(Q)  with ) ( ( ( Im I 1 

(CQ1) and the strong solution ijl of (2.10) corresponding to 25, one has 

There exist 6 E Uad and 772 > 0 such that for all ( E Lm(Q) with ) I ( ) ( ,  5 I 

(CQ2) and the mild solution ij2 of (2.11) corresponding to ii one has 

Note that the qualification conditions imposed are different from the classical Slater 
interiority condition in the corresponding spaces. In particular, they do not imply that the 
sets of feasible trajectories yl and y2 have nonempty interiority in the spaces W112 ( [ O ,  TI ;  X )  
and C([O, T I ;  X ) ,  respectively. We refer the reader to [4] and [25] for more discussions 
on the related qualification conditions for the case of parabolic systems with distributed 
controls. 

The next lemma provides desired uniform estimates that turn out to be crucial in the 
limiting procedures developed below. 

6.2. Lemma. Let ( G ,  w,  y ) ,  (w,, yl,), and (u,, y2€) satisfy the conditions in Theorem 6.1. 
Assume, in addition, that the qualification conditions (CQ1) and (CQ2) hold. Then there 
exists a constant C > 0 independent of 6 such that for any 6 > 0 one has the estimates 

where 1 )  . ) I 1  denotes the norm in L1(Q) .  

Proof. First let us consider inequality (4.3) and put there w = 25, - w, where 25, satisfies 
the qualification condition (CQ1). Employing the latter condition and the monotonicity 
of a,(-) in (4.2), we have 



JJQ g ( t ,  x ;  ylr + g 2 ) ( 6 1  yic)dtdx + /JQ t ,  2 x c - 2(wc - w) ) (G  - w C ) d t d x  + 
2 / / a  ~ a : ( y i ,  + g2)ac(yic + 82)qiCdldx VC E L m ( Q )  with l ICllm 5 1. 

Now it follows from assumptions ( H 4 b ) ,  ( H 5 b )  and Theorem 4.3 that there is a constant 
C > 0 independent of E such that 

JJQ fa : (y l ,  + $z)a , (y l ,  + g2)Cdtdx 5 C V E  > 0 and C E L m ( Q )  with l lCl lm 5 1. 

The latter obviously implies (6.1).  
Next let us consider inequality (5.14) and put there u = ii - u, where ii satisfies the 

qualification condition ( C Q 2 ) .  Using this condition and the monotonicity of a,(.), we 
obtain 

JJQ + Y ~ J ( Q . ( ~ I  + ~ 2 . 1 -  a.(gl + a + q 2 ~ ) ) ( g l  + y2, - gl - c2 - q2C)dtdz - 

2 ~ 2  / /q  fa:(gi + Y ~ , ) Q ,  ( j j ~  + y2,)Cdtdx 5 

2p lT IIuL(t) - ~ ( t )  / / F ~ ( /  (u ,  - u ) ( 4  - u, )d ( )d t  - 
r 

It follows from ( H 4 b ) ,  ( H 6 b )  and Theorem 5.2 that there is a constant C > 0 independent 
of E > 0 such that 

JJQ caL(jj1 + yz,).;6(jj1 + y2,)Cdtdx 5 C V E  > O and ( E L m ( Q )  with IICllm 5 1. 



The latter estimate yields (6.2) and ends the proof of the lemma. 

Along the optimal trajectory y ( t ,  x )  to the minimax problem (P) we define the set 

Q a b  := { ( t ,  X )  E Q 1 g( t ,  X )  a  or y ( t ,  X )  = b).  

where the state constraints (2.2) are active. This set plays an essential role to characterize 
limits of the functions in (6.1) and (6.2) that can be considered as elements of the space 

(Lrn(Q>>' .  
Recall [8, Theorem 16 on p. 2981 that the space ( L m ( Q ) ) *  can be identified with the 

space ba(Q)  of those bounded additive functions (generalized measures) on subsets of Q 
that vanish on sets of the Lebesgue measure zero. This means that for any A E ( L m ( Q ) ) *  
there is a unique X E ba(Q)  such that 

It what follows we will not distinguish between ( L m ( Q ) ) *  and ba(Q) ,  i.e., we identify A 
and X in (6.3). For any X E Lm(Q) ) *  we consider its support set supp X where X is not 
zero. Recall that such a support set is defined to within subsets of the Lebesgue measure 
zero on Q .  

In what follows, convergence along a generalized sequence means the convergence of 
a net in the weak* topology of the space ( L m ( Q ) ) *  where the topological and sequential 
limits are different. 

6.3. Lemma. Let all the assumptions of Lemma6.2 hold. Then there exist X i  E ( L m ( Q ) ) *  
with supp X i  c Qab,  i = 1 ,2 ,  and a  generalized sequence of { E )  along which 

2 fa : ( y i ,  + yz)a,(y i ,  + yz) + X I  weakly* in ( L m ( Q ) ) *  and (6.4)  

2 f a : ( ~ i  + Y Z ~ ) ~ , ( Y I  + yz,) + A2 weakly* in ( L m ( Q ) ) *  as  E + 0.  

Proof. We consider only the first relationship (6.4);  the proof of the second one is similar. 
For any e > 0 define a linear functional on L m ( Q )  by the formula 

Due to Lemma 6.2 one has 

that yields the boundedness of the set {A1, )  in the space ( L m ( Q ) ) * .  Employing the well- 
known result on the weak* compactness of the unit ball in a dual space, we find an element 
A1 E ( L m ( Q ) ) *  and a generalized sequence of { E )  along which 

Now considering X 1  E ba(Q)  corresponding to A1 by virtue of (6.3),  we conclude from 
(6.5)  and the definition of the weak* convergence that (6.4) holds. 

It remains to show that supp X 1  c Qab. Note that due to the state constraints (2.2) 
the set 



has measure zero. Thus assuming that supp Xl  @ Qaa, we find a set Q such that 

mes(8) > 0, x ~ ( Q )  # 0, and (6.6) 
6 c { ( t , ~ )  E Q l  a < ~1 (t, 2) + ~ 2 ( t ,  2) < b). 

The latter implies that 

Q c U , > ~ Q ~  where Qr := {(t, x) E Q ( a + r I yl(t, X) + ~ 2 ( t ,  2) 5 b - r) 

Noting that Q,, c Q,, if rl > 7-2, we get 

mes(Q n Q,) # 0 for all small r > 0. 

Moreover, for any S > 0 one can find r" > 0 such that 

mes(8 \ Qi) I mes(uT>oQT \ Q;) < 6. (6.8) 

Now employing the convergence yl, -, y in Theorem 4.3 and then using the Egorov 
theorem, we find a set Q, c Q,- n Q with mes((Q; n Q) \ Q,) < p and a subsequence of 
{yl,(t,x)) that converges to yl( t ,x) uniformly in Q,. When p > 0 is sufficiently small, 
we have from (6.7) that mes(Q,) # 0 and 

a < yl,( t ,x) + y2(t, x) < b in Q, for small t. 

Due to (4.2) the latter yields 

ta:(yi,(t, 2) + y2(t, x) )~, (y i , ( t ,  X)  + y2(t, x)) = 0 in Q, for small t .  

Observe in addition that 

Q = ( 8  n Qi) u (Q \ Qi) = Qp U ((Q n Qi) \ Qp) u (Q \ Qi). 

Now let us consider any P E Lm(Q) with supp ,B c Q. Denoting 

we have 

Since y, E L1(Q) and 6 is sufficiently small in (6.8), one gets 

Taking into account this fact, relationships (6.5), (6.9)-(611) mes((Q n Q;) \ Q,) < 
p, ,B E L ~ ( Q ) ,  and estimate (6.1), we conclude that there is a nonnegative function c(p) 
such that c(p) t 0 as p -+ 0 and 

when p is sufficiently small. Therefore, A1 (P) = 0 for all P in (6.12). This contradicts 
assumption (6.6) and ends the proof of the lemnia. D 



Now we are ready to prove necessary optimality conditions for the original minimax 
problem ( P )  with state constraints. First let us obtain results that characterize the worst 
perturbations in ( P ) .  Given y E C([O, T I ;  X )  and X 1  E (Lm(Q) ) * ,  we consider the adjoint 
system 

and define its solution $ l ( t ,  x )  in the following sense: 

The next theorem shows that, along optimal processes to ( P ) ,  there is a solution to 
(6.13) belonging to the space B V ( 0 ,  T; H - ' ( 0 ) )  of H-'(0)-valued finctions with bounded 
variation on [0, T ]  and satisfying some additional conditions. 

6.4. Theorem. Let (G,  w ,  y )  be an optimal triple in problem ( P )  under assumptions 
(H1)-(H5) and let the qualification condition (CQ1) hold. Then there exist a measure X 1  E 
(La  (Q) ) *  with supp X 1  C Qab and a trajectory $ E B V ( 0 ,  T ;  H-' (0))  n L2(0, T ;  H: (0)) n 
Lrn(O, T ;  X )  of the adjoint system (6.13) such that 

Proof. We prove this theorem by passing to the limit in the necessary optimality conditions 
of Theorem 4.4 for the approximating problems (PI , ) .  Let $1, be the strong solution to 
the adjoint system (4.24) corresponding to (u,, yl,) in Theorem 4.4. Multiplying (4.24) 
by v E W;,""(Q) and integrating the latter by parts, we get 

The strong solution $1, to (4.24) can be represented in the form 

T dg 
= - 1 S ( T  - t ) ( - ( ~ , x ,  Y I .  + j2) - 2ta:(y1, + q2)a.(yl. + y 2 ) ) d ~  Qt E [0, ICfi.17) 8 Y 

where the semigroup S(.)  generated by the operator -A has the contraction property in 
L 1 ( R ) ;  see [6]. Employing in (6.17) the latter property and estimate (6.1), we find a 
constant M > 0 independent of t and t such that 

! dg 
' l r - I I 1  + I I " " : ( Y I E  + ~ 2 ) a c ( ~ l r  + y 2 ) ) / ( 1  < M < 00 Qt E [ O ,  T I ,  t > 0, 
dY 



This means that ($1,) is bounded in C([O, TI; LL(R)). Moreover, it follows from (4.24) 
and (6.1) that the sequences {% - A&,) is bounded in LL(Q).  Employing the Sobolev 
imbedding theorem, we conclude that % is bounded in LL(O, T ;  H-'(a)). Further- 
more, based on (4.24) and the previous estimates, one gets the boundedness of in 
L2(0, T; HA(R)) and L"(0, T ;  X )  similarly to [2, Section 5.1.21 and [25, Section 4.2.11. Now 
involving standard compactness arguments, we find a function $1 E BV(0, T ;  H- l(R)) n 
L2(0, T ;  HA(R)) n L"(0, T ;  X )  and a subsequence of (without relabelling) such that 

$l,(t) + $1 (t) strongly in H-l(R),  

$1, + $1 strongly in ~ ~ ( 0 ,  T ;  Hi (R) ,  and 
$1, + $1 weakly* in L" (0, T; X )  as c + 0. 

Passing to the limit in (6.16) as c -i 0 and taking Lemma 6.3 into account, we conclude 
that satisfies the adjoint system (6.13) in the sense of (6.14). Finally, to  obtain (6.15) 
we pass to  the limit in condition (4.31) that immediately follows from (4.25). Using 
Theorem 4.3, (H3), and the convergence $1, t $1 in L2(0, T ;  X ) ,  we arrive at  (6.15) and 
end the proof of the theorem. 

6.5. Corollary. Under the assumptions of Theorem 6.4 the maximal perturbation w in 
problem (P)  satisfies the following bang-bang principle: 

a9 
~ ( t ,  2)  = c a.e. {(t, x) E Q 1 (B*$l)(t, x) + -(t, x,  ~ ( t ,  x)) < O), 

aw 

a9 w(t, x)  = d a.e. {(t, x) E Q 1 (B*$l)(t, x) + -(t, x ,  w(t, x)) > 0) 
aw 

where lCll(t,x) is the corresponding solution to the adjoint system (6.13). 

Proof. This follows directly from (6.15). 

Next we are going to obtain necessary optimality conditions for optimal boundary 
controllers in the minimax problem (P)  by passing to  the limit in the necessary optimality 
conditions for the approximating problems (P2,). To furnish this we need to show that 
the Dirichlet operator L in (3.2) is continuous from Lm(C) into Lm(R).  The following 
theorem contains this property and provides the desired optimality conditions for the 
original problem . 

6.6. Theorem. Let (u, w, ij) be an optimal triple in problem (P)  under assumptions 
(H1)-(W4), (H6) and let the qualiJication condition condition (CQ2) hold. Then there is 
a measure X2 E (Lm(Q))* with support supp X2 c Qab such that for any u E Uad one has 

Proof. Let {(u,, y2,)) be a sequence of optimal solutions to (P,) that strongly converges 
to (u,  y2) due to Theorem 5.2 and satisfies necessary optimality conditions in Theorem 
5.3. It directly follows from (5.13) that 



cf. the proof of Corollary 4.5. We need to pass to the limit in (6.20) as r + 0 (along 
a generalized sequence, without relabelling). Due to Theorem 5.2 and the well-known 
continuity of the operator C* : L2(0, T; L2(R)) + L2(0, T; L2(I')) (see, e.g., 1141) one has 

and the last term in (6.20) converges to 0 as r + 0. To get (6.19) from (6.20) it remains 
to show that for any u E Uad one has 

as r + 0 along a generalized subsequence. Taking Lemma 6.3 into account, one can con- 
clude that (6.21.) follows from the continuity of the operator C* : (La(&))* + (Lm(C))* 
in the weak* topologies of the spaces. This weak* continuity of the adjoint operator is 
a direct consequence of the strong continuity of the operator C in (3.2) considered from 
LW(C) into La(&). To justify the latter continuity we involve some results from the 
theory of generalized solutions to parabolic equations along with previous considerations. 

Let us consider a function v E L,2(C) in the Dirichlet boundary condition for (2.11). 
Employing 115, Theorem 9.11, we know that there is a unique y(v) E L2(Q), called a 
generalized solution to (2.11.), such that 

Now let v E La(C) and let y = Cv be the corresponding mild solution to (2.11). We 
are going to show that such y satisfies (6.22), i.e., coincides with the generalized solution 
to (2.11) in this case. Let us consider the given controller v as an element of the space 
LP(0, T; U) for big p and then use the fact that the space D(C)  is dense in LP(0, T; U), 
i.e., there is a sequence {v,) c D(C) with 

vn + v strongly in LP(O,T; U) as n + co. 

It is well known that for each v, E D(C) system (2.11) has a unique classical solution 
yn that automatically is a mild solution and a generalized solution to (2.11). Therefore, 
y, = C(v,) and y, satisfies (6.22) for all n = 1,2, . . .. Moreover, it follows from Proposition 
3.1 that 

Employing all these facts, one has 



where ij := m. Thus we obtain 
P - 2  

vz E {Z E H ~ ~ Q )  I ~ ( t ,  t )  = 0, ( t ,  t) E C, Z(T, X )  = 0) 

The latter means that the mild solution y = Lv is a generalized solution to (2.11) for any 
v E Lm(C). Using the uniqueness of generalized solutions and the fact that the general- 
ized solution operator is a continuous map of Lm(C) -+ Lm(Q) (see [15, pp. 205-2061), 
we conclude that the linear operator L is continuous from Lm(C) into Lm(Q). This allows 
us to pass to the limit in (6.21) and finish the proof of the theorem. 

Summarizing the results obtained, we come up to the following theorem that contains 
necessary optimality consitions for both worst disturbances and optimal controllers in the 
original minimax problem. 

6.7. Theorem. Let (13, w) be an optimal solution to the minimax problem ( P )  and 
let y be the corresponding trajectory of system (2.1). Assume that all the hypotheses 
(H1)-(H6) and the constraint qualification conditions (CQl),  (CQ2) hold. Then there 
are measures X i  E (Lm(Q))* with supp X i  c Qab, i = 1,2, an adjoint trajectory E 
BV(0, T ;  H-l(SZ)) n L2(0, T ;  Hi(R)) n LW(O, T ;  X) satisfying (6.14) such that conditions 
(6.15) and (6.19) are fulfilled and the worst disturbance w obeys the bang-bang relations 
(6.18). 
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