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Abstract 

We formulate a decision model for the risk management of hazardous processes as an optimiza- 
tion problem of a point process. The essential features of the model are: long-term (process 
lifetime) objective function which is a risk-averse utility function, a dynamic risk model (marked 
point process model) representing the stochastic process of events observable or unobservable to 
the decision-maker and a long-term control variable guiding the selection of optimal solutions 
for short-term problems. 

The model is demonstrated by a case study of a hazardous process with reparable safety 
systems, such as a nuclear power plant. The short-term decision problem of the case study is 
whether it is sometimes beneficial to temporarily shut the process down in order to cut, off the 
high risk periods. The long-term decision problem is to optimize a long-term control variable 
that determines which decision alternative is preferred in a case of increased risk in the process: 
(1) to  shut the process down during the repair time or (2) to  continue the operation. Several 
long-term strategies are analysed and compared. As a solution approach for the optimization 
problem, we use the stochastic quasi-gradient procedure. 
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1 Introduction 

We consider processes which may lead to  catastrophic consequences with a low probability. 
Examples of such processes are nuclear power plants, chemical plants, transportation of haz- 
ardous materials, air traffic, seafaring. We can also mention similarity to such processes as 
environmental degradation although our discussion is in the context of technological processes. 

To control hazardous processes is a problem of risk management. Problems in risk management 
mostly arise from the complexity of the process, and several approaches are usually applied to 
confront complexity (Wahlstrom 1992), such as inherently safety design of the systems, safety 
regulations, quality control, safety analyses and operating experience feedback. We would like 
to build a model which incorporates the short-term operational risk management with the long- 
term safety objectives. Therefore we consider risk management to be a process where several 
interrelated problems are solved driven by various events which brings new information about 
the process. 

By safety related operational problems we mean, for instance, questions like what to do when 
failures degrade the safety level of the process, and how to schedule the surveillance of the safety 
systems. Risk management must daily solve this kind of problems even if the process is in a 
good condition, because, particularly then, safety is one decision criterion compared with the 
economical consequences of the decision. In a way, safety management searches all the time for 
a balance between safety and economy. For instance, in the nuclear safety context the so called 
ALARA principle - as low as reasonably achieved - is applied when decisions are made about 
how far the risks should be minimized. What is then a "reasonably" low risk level is a decision 
problem. 

Of course, if some disturbances or incidents occur in the process, safety becomes the pri- 
mary concern for the management since without rapid actions an accident may happen or the 
consequences of the accident may become catastrophic. This area of risk management, called 
emergency or accident management, is usually controlled by procedures. However, a process is 
typically most of the time in normal conditions and this is also our application area. 

The problems have different time spans. We can divide problems into two categories: (1) 
long-term problems, and (2) short-term problems. In long-term problems, the decision-maker 
(DM)  wants to  improve the system by making permanent changes in the design, procedures 
or other practices. In short-term problems, temporary safety related problems are solved. A 
typical example is to  decide whether to  shut down the operation of the plant in a case of a failed 
condition in safety related systems. 

Traditionally, decision analysis has been applied in individual problems, particularly in long- 
term problems. Short-term problems are a newer application area. The need arises from the 
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fact that  complex systems can be threatened by unexpected events whose uniqueness requires 
taking actions that  are different from the procedures (Peroggi and Wallace 1994). If decision 
analysis is applied, the structure of the decision model must be prepared in advance. However, 
the basic issue of accepting large losses with small ÿ rob ability remains in all cases. 

The solving of individual problems does not necessarily lead to  a satisfactory result since the 
problems are interrelated j!. i ,-3:-lnlex way. p~ccisiz-: t v 2 s  and '~~f i l lence diag;ams are too s ;n~p le  
because, for instance, the order in which events can lake place is stochastic. Further, the risk 
aversion towards accidental outcomes should be accounted for. This can be expressed by a utility 
function. However, then the outcome function is not anymore linear. It means that ,  from the 
long-term perspective, the operating history not only affects the probability of the future events, 
but i t  also affects the value of future prospects. In order to  maximize the long-term objective 
function, we need a global (long-term) control over the short-term decision making. 

The aim of this paper is t o  model the risk management process as sequential decision making 
in a stochastic environment. In our approach, we interpret the controls as decision rules for the 
management. Mathematically, the problem is t o  find an  optimal control for a point process. 
Optimization of such processes can be performed analytically only in very simple cases. Ap- 
propriate search procedures for this type of problem have been promoted a t  the International 
Institute for Applied Systems Analysis (IIASA), see e.g. (Ermoliev and Wets 1988). The  re- 
search is presently towards dealing with "surprises", abrupt transition jumps (Ermoliev et.al. 
1995, Oortmarssen and Ermoliev 1994), which occur in our applications, too. Therefore we take 
advantage of the results of this research, and we apply the stochastic quasi-gradient method as 
one solution approach. 

Another aim of this paper is to  introduce a utility function that  represents the risk aversion of 
the decision-maker. By manipulating the shape of the utility function, we can study how different 
probabilistic decision criteria in the long-term level are reflected in short-term decision making. 
To our knowledge, long-term probabilistic criteria and short-term risk based operational rules 
have not been linked this way before. Perhaps, reasons for this have been the lack of dynamical 
decision models for risk management of hazardous processes and the lack of appropriate search 
procedures. Now, facilitated with a point process model of the system and the stochastic quasi- 
gradient algorithm, we can develop a decision analytic approach to  integrate the probabilistic 
safety assessment (PSA) into risk management. This is the novelty of our paper. 

Tlle stochastic optimization methods have already been applied in the risk management context 
t o  evaluate optimal test intervals and inspection strategies (see e.g. Pulkkinen and Uryas'ev 
1990). In those decision models, the problem is to  monitor the ageing of hazardous processes. 
We will study reparable safety systems which have a cyclic reliability dynamic. In other words, 
ageing deteriorates the components of the system but once in a while the components are 
maintained, repaired or replaced, which improves the reliability of the systems. In our case 
study, the main problem is whether it is sometimes beneficial t o  temporarily shut down the 
process in order t o  cut off the high risk periods. 

The paper is organized as follows. In Section 2, we describe the general structure of the 
model. In Section 3, we demonstrate the approach by a case study. In Section 4, we discuss the 
applicability of the model and extensions of the case study. 

2 General description of the model 

In this section, we formulate a decision model for risk management. First we give an overview of 
the model, and then, in the following subsections, we explain the details of the model. Table 1 
summarizes our notations. 

Figure 1 il lustrates the t ime axis of the process. The sequence To, T I , .  . . denotes randomly 
occurring events or predetermined time epochs, when operational decisions can be made. The  
sequence Zo, Z1, .  . . denotes marks corresponding t o  the nature of the events. In other words, we 
obtain various kinds of information about the process at  discrete time epochs. The information 



Table 1: Notation index. 
sample space 
outcome in a set R 
a-algebra of R 
mark of the nth event 
time of the nth event 
licensing time of the process 
a marked point 
the terminal point of the process 
set of marks 
set of initiating event categories 
a-algebra of E 
set of observable marks 
set of termination marks 
counting process of marks z E El 
full/observed process history 
a sample path of the full process history 
space of process histories 
accident hazard rate of category y accident at t 
monitored accident hazard rate 
nominal accident hazard rate 
baseline accident hazard rate 
inherent accident hazard rate 
initiating event intensity of category z E E0 
conditional probability of consequence y when z takes place at t 
nominal safety system failure probability 
control 
set of control variables 
decision option 
space of decision options depending on the mark 2, 
process lifetime outcomes 
outcomes up to t 
costs of an accident 
cost rate function 
discrete cost function 
process availability 
cumulative operation time of the process up to t 
repair time of a failed component 
degradation degree of the system 
utility function 
short-term decision function 



optimal decisions at the events 
C 

/ \ 
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terminal event: 
(1) final shutdown or 
(2) an accident 

Figure 1: Marked point process of events and decisions. 

can be a failure or degradation in the process or it can be a shock t o  the process like loss of the 
external power of a technical system or an earthquake. The terminal event of the process (T, 2 )  
can be either the final shutdown of the process or an accident. Not all events require problem 
solving, and there can be latent events which are not observed. 

For short-term risk management, an optimal solution a, is chosen by maximizing a decision 
function 

a, = arg max ~ ( a ,  HT,, x) ,  
a € A ( Z , )  

where A(Z,) denotes the set of decision options depending on the problem Z,, V ( . )  is the 
decision function, HT, = {(T,,Zi) ;Ti  5 Tn,Ti E E )  is the observed history up to  Tn and 
x E X is the vector of long-term control variables such as parameters of the decision model 
and indicator variables when to  make decisions. The definition of the control variables is the 
essential modelling problem of this formulation. 

The lifetime profits depend on the history of events and past decisions. The profit function 
can be divided into time intervals according to  the decision making epochs as follows, 

where P( . )  is the profit rate function (profits or costs per time unit), K ( . )  represents profits or 
costs associated with discrete time points and n is the index of the terminal event. The long- 
term decision problem is t o  adjust the control variables so that the expected life time profits are 
maximized, i.e., 

maximize F ( x )  = E,[J(x, w)] 

subject to x E X. 

The above formula assumes that the decision-maker (DM) is risk neutral. However, it would 
be more reasonable t o  assume that  the DM is risk averse, i.e., great losses are avoided more than 
the expected value formula would suggest. Therefore we introduce a utility function to  account 
the DM'S preferences over uncertain outcomes. Thus the objective function is 

maximize F ( x )  = E, [u( J ( x ,  w))] 

subject to  x E X. 

In the above formulation, we have incorporated the long-term decision problem related t o  
the control variable x E X with the short-term decision problem of choosing between decision 
options a E A(Z,), n > 1. 

The optimization of (1) is a complicated task. The objective function may be discontinuous 
with respect to  the argument x ,  and generally the expected value F ( x )  cannot be evaluated 
analytically. Particularly in our applications the computational difficulties are due to  feedback 
mechanisms and due to  the non-linear utility function. However, by simulation of sample paths of 
the process history w, for some x a simulated life time utility u (J (x ,  w))  is obtained. Applying the 
stochastic quasi-gradient algorithm, we can approach the solution of the optimization problem. 



2.1 A marked point process model 

A marked point process {(T,, 2,); n = 1 ,2 , .  . .) is an ordered sequence of time points Tn and 
marks Zn E E associated with the time points. The  marked point process framework allows 
us t o  model processes where relevant information consists of various type of discrete events. 
A counting process .Nt(EI )  counts the number of marked points (T,., ZTlj with marks in a set 
El E Z up to  t ime t ,  I.e., 

N t ( E l )  is thus a step function taking a jump of size 1 when a mark belonging t o  El occurs. In 
the particular case where El is a singleton, say El = {t), t E E, we denote the counting process 

by Nt(2). 
The  history process Ht is formed by marked points up t o  time t 

and ]It- is defined in the same way except that  the inequality is strict: T, < t .  IIt takes values 
in the space H which is a subset of [0, m) x E. 

The 2-specific hazard rate or intensity a t  t given the history Ht-  can be written as 

where it has been assumed that  the corresponding measure is absolutely continuous with respect 
to  the Lebesgue measure. More generally, if absolute continuity cannot be assured, we can use 
a hazard measure dA t ( t )  with the interpretation 

2.1.1 Decomposition of process histories 

The marked point process model represents only the most important part  of the actual process 
history, forming a "landmark process". From an observer's point of view, the landmark process 
may contain marked points that  remain latent, unobserved, a t  least for a while. In our case 
study, there are no latent events. However, we take this possibility into account for future 
extensions of the problem, and in order t o  apply similar denotations when sampling partial 
process histories in the stochastic quasi-gradient algorithm. 

Let Ht denote the observed pre-t process history data,  

where E is the set of observable marks. Each observed history Ht is fully determined by the 
underlying full marked point process history Ht. Consequently, the observed hazard rate can be 
expressed as an expected hazard rate as follows 

where P ( l i t -  E dh I Ht-) is the conditional probability that  the full process history Ht- is in 
the elemental volume dh  of H ,  given the observed, strict pre-t process history. A sample path 
of the full process is denoted by h = {(t,, 2,); n 2 I ) ,  and the corresponding pre-t histories by 
ht = {(t,, 2,); tn < t )  and ht- = {(t,, 2,); tn < t ) .  



2.1.2 Terminal event 

We denote the mark corresponding to the terminal event by (T, Z ) ,  i.e., 

(T,z)  = { (T ,Z )  I T  = min(Tn,Zn),Zn E E , Z  = Z,), 
Tn 

where E is the set of termination marks. The terminal event can be an accident or the final 
shutdown of the process. We assume that the operation time of the process is limited by a 
licensing time T ~ .  If no accident happens, then T = T ~ .  

2.2 Accident hazard 

The accident hazard is estimated by the model of the process, in this paper called the risk model. 
Our concept for the risk model is based on the event tree-fault model used in a probabilistic 
safety assessment (PSA) for the risk analysis of the operation of a nuclear power plant. The 
model could as well represent other processes where the course of an accident is caused by 
randomly occurring system disturbances and subsequent failures of the safety barriers. The 
accident process is thus a compound process of an initiating event process and a safety system 
process. In the nuclear power plant context, the accident is a core damage. 

Traditionally, PSA models have been static, expressing average conditions at the systems. A 
static risk model may be applicable for long-term problems, but it is insufficient for our purposes. 
Therefore, we apply a dynamic risk model based on the marked point process framework (Arjas 
and Holmberg 1995). We also introduce the basic risk measures of the static risk model since 
they have a practical meaning as reference risk levels, when the long-term safety objectives are 
considered. 

2.2.1 Dynamic risk model 

A dynamic risk model expresses the momentary risk as a consequence of the actual conditions 
of safety related equipment in the plant. The instantaneous accident hazard rate is the basic 
risk measure. We denote it by 

where z E E0 indexes the initiating event categories, Xt(z) is the initiating event intensity of 
category z, and ct(z,y)  the conditional probability that consequence y results in when z takes 
place at time t.  The instantaneous accident hazard rate is obtained by using initiating event 
intensities as well as component unavailabilities based on the up-to-date operating experience 
of the system. 

In the risk monitoring, the accident hazard rate is evaluated dynamically based on the observed 
history Ht- 

where P(Ht -  E d h  I f i t -)  is the conditional probability that the full process history Ht-  is in 
the differential volume d h  of H, given the observed, strict pre-t process history. it(y) is called 
the monitored accident hazard rate. 

2.2.2 Static risk measures 

In the PSA context, we can define three static risk measures: nominal, baseline and inherent 
accident hazard rate (Holmberg et al. 1993). The nominal accident hazard rate represents the 
average accident hazard rate of the system. It is obtained by the use of nominal or time-average 
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Figure 2: Different accident hazard rates. 
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denote the nominal accident hazard rate by 

nominal 
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where Xn(z) is the nominal initiating event intensity of category z, and cn(z, y) is the nominal 
conditional probability that consequence (accident category) y results when z takes place. 

The momentary variations in the instantaneous accident hazard rate are mainly caused by 
two kinds of events. Firstly, there are evident failures or other evident events like maintenance 
of the systems which temporarily increases the monitored accident hazard rate, i t ( y ) .  If the 
evident unavailabilities are excluded from the nominal accident hazard rate, a baseline accident 
hazard rate, Xb(y), is obtained. Normally (not nominally), the risk level of the process should 
be close to the baseline hazard rate, particularly, if the failures in the safety systems are not 
very frequent. Therefore the baseline accident hazard rate is an applicable reference risk level, 
for instance, for the evaluation of the unavailabilities allowed by the Technical Specifications of 
a nuclear power plant (IAEA 1993). 

The second category of events causing variation in the instantaneous accident hazard rate is 
latent failures. Some of the latent failures can be detected by surveillance tests. The inherent 
accident hazard rate, XO(y), corresponds to conditions of the safety systems where no component 
is unavailable due to maintenance or repair (as in the baseline accident hazard rate), and standby 
components have recently been tested without any failure indications. It represents the "lowest 
theoreticaliy achievable" accident hazard rate with the current design of the systems. 

Different hazard rates are illustrated in Figure 2. The saw-teeth shape of the instantaneous 
accident hazard rate is due to the contribution of latent failures which increases the hazard rate 
between test epochs. Most of the time, the instantaneous accident hazard rate varies around 
the baseline, it can never go below the inherent level, and when significant failures are detected, 
it rises above the nominal level. 

2.3 Controls 

Three types of control of point processes can be distinguished: optimal stopping, intensity control 
and impulsive control (Bremaud 1981). Optimal stopping means the possibility to determine 
the terminal point of the system. After that the system will neither give profits nor cause costs. 



Optimal stopping time may be restricted by the licensing time of the system. We assume that 
there is a licensing time T~ which cannot be exceeded. 

In the intensity control, the intensity of some events like failures can be modulated a t  some 
expense. The intensities can be affected e.g. by changing the components of the system. In our 
formulation, the intensity control is a long-term problem. 

In the impiilsi c con4,1.01, the del:isic~- 71,; ker can add ~r >lase points of thc process. The 
decision-maker can add points by determining beforehand time points when some actions are to 
be taken, such as surveillance tests. Then by choosing the decision option at a time epoch, the 
decision-maker attaches a mark to the process history. We will consider two kinds of impulsive 
controls: temporary shutdowns of the process and surveillance tests. An impulsive control can 
be sometimes interpreted as an intensity control, too. 

2.4 Lifetime profit function 

The profit function has two parts: (1) profit rate function as long as the system is operated and 
(2)  various kinds of discrete costs depending on the events and decisions made. We assume that 
all profits and costs can be represented in a monetary scale, as if other types of losses or benefits 
can be exchanged into monetary units. 

In this paper, we assume a constant rate of incomes, P > 0, if the system is operated and one 
accident category with the costs - M  < 0. The lifetime profits depend on how long time the 
system has been operated and whether an accident happened or not. Let T be the terminal 
time of the operation (formula (3) ) .  Then the lifetime profits are 

J(x,  w) = { "T(~)  if no accident happens 
PSr(w) - M if an accident happens, 

where St(w) < t is the cumulative operation time of the process. Note that J (x ,w)  is positive i f  
no accident happens, and it can be negative only if an accident happens. 

Depending on the required realism of the model, the profit function can be made more accurate. 
One question is, whether costs or incomes should be discounted. We do not discount the rate of 
incomes or the costs of an accident since, for instance, in the nuclear power plant context and 
from the power company point of view, the rate of incomes depends on the price of electricity 
and the costs of an accident is at least the price of a new nuclear power plant (that is the smallest 
accident category we are considering). 

2.5 Utility function 

The utility function represents the DM'S preferences over uncertain outcomes. The maximum 
costs associated with the accident correspond to the utility 0, i.e., u(-M) = 0. The best possible 
outcome depends on the terminal time. 

The form of the utility function is crucial for the rest of the decision analysis. We provide 
here one approach to formulate i t .  It is based on the acceptance of the present safety level 
of the process as if the safety authority and the responsible company had implicitly agreed on 
the utility function in the licensing phase of the process. On the other hand, as is well known, 
accepted risk levels vary between different hazards in the society. Therefore, the utility function 
used in the operation of a nuclear power plant is probably not applicable in another context. 
The key assumption is that the risk management applies the same utility function for all decision 
making concerning the process they are responsible for. 

We consider a differential time unit and compare the shutdown option to the operation of 
the process. The utility function should be such that in normal conditions the operation is 
preferred to shutdown. Assuming that the lifetime profits so far are J1, the expected utility of 
the shutdown option as is 

E[u I as] = u(Jt) .  



Given the accident hazard rate A ,  the operation alternative corresponds to the lottery aC : 
(e-xdt, Jt + Pdt; 1 - e-Xdt, Jt - M). The expected utility of the operation over a differential time 
unit dt is 

E[u 1 a"] = (1  - e- X d t ) u ( ~ t  -- M) + e - X d t u ( ~ t  + pdt). 

Requiring as 4 a", i.e. E[u 1 as] < E[u I aC], we obtain an inequality 

u(Jt + pdt)  - u(Jt) > u ( ~ t  + pdt) - u(J1 - M ) .  
1 - e-xdt 

When dt -+ 0, 
P 
-u1(Jt) > u(Jt)  - u(Jt  - M ) .  
X 

The condition (9) can also be obtained in another way by considering the optimal terminal 
time. Let x be the decided terminal time and w (unknown) time of the accident. The outcome 
of the operation is 

If X is the constant accident hazard rate, then the expected utility is 

E [u(J(x ,  w))] = J X  Xe-"u(ax - M )  dt + eChu(,0x). 
0 

The derivative of this expression is 

d 
- ~ [ u ( J ( x ,  w))] = ~ e - ~ ~ u ( p x  - M )  - ~ e - ~ ~ u ( ~ x )  + e-Xxpu'(px). 
dx 

Requiring that the derivative is positive for all x > 0, i.e. the optimal solution is x' = oo, we 
obtain the condition (9). 

Below we study two classes of utility functions which can be used for describing risk aversion: 
power function and exponential function. In the case study, we will use the exponential function. 

2.5.1 Power function 

One common suggestion (see e.g. IAEA (1989)) for a utility function in the risk management 
context is a power function 

where y is the outcome and cr is a risk aversion factor. Note that we have scaled here the function 
to fit to  our outcome space. If cr = 1 we have a linear function, and the DM is risk neutral. If 
a = 2, then the utility function is consistent with the recommendations by the Dutch authorities 
for the management of major hazards (Anon. 1989). Following (9), we obtain a condition 

If cr = 1 (risk neutral case), then the condition for the preference of the operation is 

independently of Jt. If cr = 2 (Dutch authority case), then the condition for the preference of 
the operation is 



2.5.2 Exponential utility function 

The exponential utility function has the form 

where a is ;L shapc: parameter. The greater cu is, the more risk averse is the DM. For the 
exponential utility function, we obtain the condition 

which does not depend on J t .  Given an upper limit for the accident hazard rate A*, (15) provides 
an upper limit for a. On the other hand, we can note that,  if A* > ,DIM is accepted (c.f. (12)), 
then the operation is accepted for all a > 0. The interpretation of A* is that it is a certain 
maximum allowed accident hazard rate. Whenever the risk increases above a certain level, the 
process should be shut down. However, the shutdown of the process itself includes a discrete 
risk which should be accounted. This is taken into account in the case study. 

We think that an exponential function might be an appropriate choice of the utility function 
even for practical applications. The question is how a or A* should be defined. Perhaps A* is 
given by the safety authority and the responsible management then chooses an acceptable utility 
function. After the selection of the utility function, the management tries to operate the system 
within the allowed "safety margin" in an optimal way. 

3 Analysis of a reparable safety system 

The case study is a test problem by which we can compare the stochastic quasi-gradient method 
with analytical results. Once the results are confirmed, the case can easily be extended to a 
more realistic one. Even though the system is simple, we think that it is rather illustrative 
concerning dynamical safety evaluation of the operation of a nuclear power plant. We point out 
that the results and conclusions depend on the chosen model pal-ameters and the chosen forrns 
of the cost and utility functions. The methodological part is more invariant. 

We consider a process with one initiating event category and a safety system with two redun- 
dant components. An accident takes place if an initiating event occurs and both the components 
fail. We have only one accident category, so we omit the accident category variable y in our 
denotations. 

Randomly occurring shocks degrade the other component of the safety system causing an 
increase of the accident hazard rate. Effectively, it means that the probability of the safety 
system failure, term c ( t ,  z I h )  in (5), increases. When the degraded condition is detected, the 
reparation of the system is started in order to restore the normal condition of the safety systems. 

We consider the problem of a temporary shutdown of the process for the reparation period, 
i.e., for the period of increased risk. The approach can be extended to other short-term decision 
making problems as will be discussed. Figure 3 shows an example realization of the process 
from the point of view of process availability, safety system failure probability and monitored 
accident hazard rate. When the process is operated, the production is at a 100% level, and when 
it is shut down it is at a 0% level. The decisions concerning temporary shutdowns are made 
when a mark '1' occurs. If the shutdown is chosen, then a mark '4' is attached to the same time 
epoch. There are two failure epochs in this realization. The first is the continued operation. 
The second is that the process is shut down. The variables ti and t ;  denote the repair times 
and 7 ,  and 7 2  are some measures of the degradation degrees of the safety system. An initiating 
event marked by '0' takes place between the two failures, but it does not result in an accident. 
Table 2 summarizes the possible marks in the process history. 



1 A t ,  monitored accident hazard rate 

1 et, safety system failure probability 
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marks, see Table 2 

100% 

0% 

Figurc 3: An example realization of the process availability and the safety system failure prob- 
ability. 

Table 2: Marks of the example process history. 
Mark Explanation 

5 1 2 0 (L4) (275) t 

process availability 

al = aC a2 = as 

0 initiating event 
1 degrading failure of the component 
2 repair of the degraded component ends 
4 planned (temporary) shutdown of the process 
5 s t a r t u ~  of the Drocess from the shutdown state 

I 

I I I . 



failure of the 

safety system 

AND 

-1 -- -- 
1 

failure of the 

primary safety system i error Pz 

failure 

Figure 4: Fault tree of the safety system. 

3.1 Process description 

3.1.1 Safety system failure probability 

We introduce a safety system whose probability of failure varies between 0 < ct < I .  In normal 
conditions, the system failure probability is very low, and the operation of the process is then 
acceptable. Occasionally, a part  of the safety system is degraded, which increases the failure 
probability t o  a rather high level. In order to  have this kind of cyclic reliability performance, 
we consider the following system. 

The safety system consists of a primary safety system and a back-up operator action. The 
operator action has a constant failure probability denoted by pz. Figure 4 shows the system 
fault tree. 

The primary safety system can be unavailable for two reasons. Firstly, there are time- 
independent, inherent causes which can make the system inoperable. The  probability of a 
failure by this kind of causes is p l .  Secondly, shocks occur with the intensity X(1). A shock 
degrades the reliability of the system by making some of i ts subsystems unavailable. The  degra- 
dation degree is random denoted by qn, 0 < qn < 1, where n is the index of the failure. The  
safety system failure probability is then 

if the system is a t  the inherent state,  

(p i  + ( 1  - ~ l ) q ~ ~ ( ~ ) ) p z  if the system is a t  a degraded state,  (16) 

We assume tha t  the degradation degrees are independent, identically distributed uniform random 
variables, i.e., qn N U(0, 1).  

The  repair times of the degrading failures are identical, independently distributed exponential 
random variables with the parameter X(2). They are independent of degradation degrees (q- 
variables). The  repair t ime and degradation degree are assumed to  be known when the failure 
is detected. 

3.1.2 Accident hazard rate 

The inherent accident hazard rate is 

X0 = X(O)PlP2. 

Since there are no latent failures, this is also the baseline accident hazard rate. The  nominal 
accident hazard rate depends on the chosen control strategy. 



Table 3: The parameters of the model in case 1. 
symbol unit explanation 
M 1 5 . 1 0 ~  FIM costs of an accident 

1000 MWe net electrical effect of the plant 
100 FIM/MWh price of electricity 

P 100 000 FIM/h rate of incomes ( z  8 lo8 FIM/a) 
A(0) 0.05 l / a  initiating event intensity 
A(1) 1.0 ] /a failure rate 
A M  100 l / a  repair rate ( z  0.0011 l /h )  
Pl 0.001 probability of a generic failure 
P2 0.1 probability of an operator error 
4 4 )  1 l o r6  probability of core damage given shutdown 
T~ 50 a licensing time 
a 2 .  10-lo l /F IM 

- 
parameter of the exponential utility function 

USD 1zFIM 4.5 
1 operating year=8000 hours 

When a failure with a degradation degree 7 takes place, the instantaneous accident hazard 
rate increases to 

1 - Pl 
A(7) = (1 + -q)AO. 

Pl 
(18) 

The ratio 

is called the risk increase factor. Originally, the risk increase factor and other risk importance 
measures have been defined for a static risk model (Vesely et al. 1983). The meaning of risk 
importance measures is to present in a relative scale how much the importance of one component 
is to the reliability of the system. 

3.2 Problem formulation 

The short-term problem is to decide whether to shut the process down in a case of failure 
of the component (mark ' l '), i.e., A(1) = {as, a"}, where as denotes the shutdown option 
and a" the continued operation option. Because there are only two decision options at each 
decision epoch, the short-term optimization problem is to compare the values of the decision 
function V(aS, Ht , -  U {(ti, I)}, x) and V(ac, Ht i -  U {(t;, I)}, x), where the arguments of the 
decision function V( - )  are the decision option, the (observed) operating history up to the failure 
epoch and a control variable x. The chosen decision can be indicated by an indicator function 

which receives value 1 i f  shutdown is considered better than continued operation. l{a,=ac} is 
defined respectively corresponding to the superiority of the continued operation option. The 
long-term decision problem is to choose x so that the expected lifetime utility is maximized. 

The model parameters, shown in Table 3, have been chosen to correspond to a 1000 MWe 
nuclear power plant. cr = 2 . 10-lo 1/FIM means according to (12) that A* > 8 - l o r3  l / a  which 
is about 1600 times higher than the inherent accident hazard rate. It is also more than the 
maximum instantaneous accident hazard rate process can ever have. 

Even this simplified case poses a complex decision problem, and it is difficult to  define a long- 
term optimal operation strategy. Therefore we approach the problem from several perspectives. 



First we will study which is in general a better strategy: t o  always shut the plant down in case 
of a failure or t o  always continue the operation. Secondly, we make a pure short-term decision 
analysis, i.e., a t  each failure epoch the decision is made without a long-term control. Then, we 
study the use of two global control variables - one limiting the instantaneous accident hazard 
rate and the other limiting the t ime of hav;r,g increased risk. 

3.3 Solution approaches 

3.3.1 Approximation of the expected utility 

If the control variable is constant, then we can approximate the expected utility by approxi- 
mating the nominal accident hazard rate and average process availability given the value of the 
control variable. Let Xn(x) be the nominal accident hazard rate (6) and ((x) the average pro- 
cess availability given the long-term control variable x. Descriptively, we can define the average 
process availability as 

where St is the cumulative operation t ime of the process. 
The outcome of the operation is then approximately 

J(x,  u )  ;; {BC(x)TL if no accident happens, 

P((X)T - M if an accident happens. 

The expected utility is 

The optimal x is found by maximizing this equation. 

3.3.2 The stochastic quasi-gradient algorithm 

An analytic or even approximative expression of the expected life t ime utility can be evaluated 
only in very simple cases. The stochastic quasigradient algorithm is a general method to  ap- 
proach the optimal solution by sampling process histories and choosing the next solution based 
on the calculated sample gradient. The sample gradient can be evaluated in many ways, and the 
selection of the appropriate approach is case-dependent affecting the speed of the convergence. 
In this paper, we have not compared various approaches, but we have only chosen one applicable 
way in order t o  demonstrate the approach. 

In the stochastic quasi-gradient algorithm, the next solution in the sequence of trial solutions, 
xO, XI ,  x 2 , .  . ., xS E X, is obtained by 

whcre I Ix( .)  is the orthoprojection operation on the convex set X, pS is a step size and ts is a 
stochastic quasi-gradient satisfying the following property 

i.e., the conditional expectation of the vector tS is "equal" t o  the gradient of the performance 
function F ( x )  a t  the point xS. Since the stochastic quasi-gradient method is based on the 
sampling of process histories, i t  is useful t o  speed up the sampling by taking some expectations. 
I11 some cases, we can even smooth the sample performance function so tha t  we can analytically 
calculate the gradient for each sample. However, in our problem context, we can seldom rely 



on this possibility, and the sample performance function remains discontinuous. Then, the 
interchange of expectation and difference operators may not be valid, and the gradient must be 
approximated in other ways (see e.g. Ermoliev et al. 1995). Below we outline the formulas used 
in the optimization algorithm of this paper. 

The discontinuities of ' 7 )  are caused by the cumulative operation time and the accident time. 
A conditicl;!sul p7- , lance funclic-hn; is achieved, by the i: iraduction of a a-algebra 3 "  belongng 
to the a-algebra 2- of the probability space (P ,  3 , R )  where all random variables are specified. 
We choose an accumulating a-algebra generated by the monitored history of the safety system 
H;, i.e., 

3; = u(H;), 

where 
H; = {(Tn,Zn) 1 Tn 5 t ,Zn  = 17274,5}. 

8; includes neither the initiating event marks nor the marks indicating accidents. 
The sampled process history is divided into intervals according to the failure epochs 

ti = {t 1 dNt(1) = 1, Nt(1) = i}, to = 0, tNTL(,) = T~ 

A conditional expected utility is evaluated for each failure interval [t i ,  t i+l], i = 0 ,1 , .  . . account- 
ing the probability that an accident happens during the interval. The conditioning is made 
with respect to  the safety system history up to failure epoch ti including the knowledge of the 
degradation degree and the repair time. 

The sample performance function can be expressed as a sum 

where 

Jt'" E[u I Jjl- U {(t i ,  ( l ,a i (x ) ) ) ,  (T i  Z)}]dp(T = s I Hi-  U {(t i ,  ( l , a i ( ~ ) ) ) } ) ,  (23) 
s=t, 

i = 1 , .  . . , N T ~ ( l )  - 1, 

and 

This formulation allows to  also consider other than discrete decision spaces, like the selection of 
the next test epoch. The division of the safety system history into time intervals just has to  be 
done accordingly. 

Implementing the exponential utility function (14) and the knowledge about the process de- 
scribed in Section 3.1., we can write the exact equations of the fi terms, (23)-(25). Let 



Then fo is 

and f i (x) is 

where c(4) is the probability of the accident given a shutdown, t3 the repair time of the failure 
j ,  qj the degradation degree, and 

 hi(^, X)  = 11,,=,3} [ ~ ( 4 ) ( 1 -  e-YbT) + (1 - c(4))g(A0, ti+' - (t; + t'), T ) ]  + 
l i a , = a ~ }  [ g ( ~ ( q i ) ,  t r ,  T) + e-h(n ' ) t rg (~O,  ti+l - (ti + t r ) ,  T + t r) ]  , (29) 

i = 1 , .  . . , N T ~ ( l )  - 1, 

and 
h N 7 ~  (')(T, x) .:: e a(-b~+M) 

7 

is the expected utility given the failure during the interval [ti, ti+']. We assume that the prob- 
ability of an accident given the shutdown, c(4), is independent of the condition of the safety 
systems, which generally is not true. However, we made this assumption only in order to simplify 
analytical evaluations. 

For a chosen xS and a simulated process history wS, we calculate the sample performance 
f^"(xs, ws). Since the function is discontinuous with respect to x, we use a finite-difference gradi- 
ent approximation. We can, for instance, choose a new value 2S randomly in the neighborhood 
of xs, and calculate a new sample performance for 2". On the other hand, we can use the results 
from the previous iterations, xS-', . . . , xs-lc. 

In this study, we utilize the knowledge that x controls the number of shutdowns. We find the 
closest xS < x and x: > x that changes the number of shutdowns by one. By calculating the 

variated sample performances fS(x?,  us )  and fs(x;, ws), we can approximate the gradient by 

If x is a vector, then the direction of the variation can be chosen randomly. 
In this study, we use a decreasing step size 

A proper po is found by experimenting. Too large po causes fluctuation and too small po makes 
the convergence slow. 

The optimal expected utility can be estimated cumulatively by 

3.4 Comparison of the two extreme strategies 

The two extreme strategies are: (1) to always operate the process regardless of the condition 
of the safety system or (2) to  always shut down when a failure occurs regardless of the severity 
of the failure or the repair time. By defining the global control variable x E {as, a"), and the 
short-term decision function as 

1 i f a = x  
V(a, x) = 

0 otherwise, 

the long-term decision problem has been formulated. 



3.4.1 Always shut the process down during the repair time 

The control variable x = a"a1ways a shutdown) yields an  average process availability 

The ~loxninal accident hazard rate is 

By (20), the expected lifetime utility is E[u(JTL)  ( x = as] E 0.999944. 

3.4.2 Always continue the operation during the repair time 

The control variable x = aC (always operation) yields an  average process availability ((aC) = 
100%. 

The safety system has two possible states: (0) inherent state and (1) degraded state.  Since the 
system behave like a two-state Markov chain, the steady-state probabilities are straightforwardly 
P,(O) = X(2)/(X(1) + X(2)) and P,(l) = 1 - P,(O). The nominal failure probability of the 
safety system cn can be derived as follows 

The nominal accident hazard rate is then 

The expected lifetime utility is E [u (JTL)  I x = aC] = 0.999798 which is less than E[u(JTL)  1 x = 
as]. 

3.5 Pure short-term decision analysis 

Nest we make decisions purely on a short-term basis without a long-term control. At the t ime 
epoch t a component failure occurs, i.e., N t ( l )  = Nt-(1) + 1. Let tT denote the estimated repair 
t ime of the failure and 77 the degradation degree. We apply the decision function 

V(a,  J t ,  t', V)  = E [ ~ ( J t + t r )  I a], a E A(1). 

where Jt are the cumulative costs. 
The  shutdown decision option corresponds to  the lottery as  : (c(4), Jt - M; 1 - c(4), Jt). The  

expected utility of a\il l be 

Given the instantaneous accident hazard rate X(q), the continued operation alternative corre- 
sponds to  the lottery a C  : (1  - e-'(dtr, Jt - M; e-'(dtr, Jt + Pt'), where 2' is the repair time. 
The expected utility will be 

The difference between the expected utilities is 

The sign does not depend on Jt. 
We can notice that  according t o  the parameters of Table 3, it is most unlikely tha t  the shutdown 

would be a preferrable option. Therefore we can assume that  the plant is never shut down in 
case of a component failure as in the strategy of Section 3.4.2. The expected lifetime utility 
E[u(JTL) ]  % 0.99979. This is not an optimal strategy in the long run. 



inherent state 

Figure 5 :  State diagram of the safety system. 

3.6 Limited instantaneous accident hazard rate 

If we limit the instantaneous accident hazard rate, we can apply as a decision function an 
indicator function 

which receives value 1 for one of the decision options and 0 for the other one. The control 
variable x expresses here the maximum allowed risk increase factor with respect to  the inherent 
accident hazard rate X0 (c.f. (19)). 

3.6.1 Approximative analytical solution 

A dynamic representation of the safety system can be given by a state diagram which has three 
states shown in Figure 5 .  State 0 corresponds to the inherent conditions between the end of last 
repair and the next failure. The probability of the failure of the safety system is then a t  the 
inherent level ct = c0 = plpz. 

When a failure occurs, there are two possible transitions depending on whether the process is 
shut down or not. State 4 represents the shutdown option and state 1 the continued operation 
option. The transition rates from states 1 and 4 back to 0 are the same, i.e., the repair rate 

X(2). 
Since qn -.i U(0, I ) ,  the probability that the failure (mark 1) increases the accident hazard rate 

above the level xXO is 

- xpl , x E [ I ,  1000]. P(PI  + (1-p l )qn > XPI) = - 
1 - P l  

Therefore the hazard rate of the shutdown marks (4) is 

1 - XPl X(4 I x) = X(1)------ 
1 - P I  ' 

and the hazard rate of entering into degraded conditions without a shutdown is 

X1(l I x) = X(1) Pl( l  - x) 
1 - P I  ' 

We denote the steady-state probabilities by P,(O), P,(1 / x) ,  and P,(4 I x). The steady-state 
probability of being at the inherent state is 

P ~ ( 0 )  = 
X(1) + X(2)' 

and in a degraded state 



s, step 

Figure 6: Optimization of the limit of the risk increase factor by the stochastic quasi-gradient 
algori t hm. 

Then the nominal safety system failure probability (when the process is operated) is 

where 

The nominal accident hazard rate is 

when the process is operated and 0 when it is shut down. 
We have t o  take into account the production losses due to  shut down periods. The average 

availability of the process is 

Thc expected utility can now be evaluated by (20). The  derivative of this function is somewhat 
complicated, but the maximum can easily be found numerically. The  optimal solution is x* z 26 
yielding nominal accident hazard rate Xn(x*) z 5.99 - l / a ,  process availability ('(x*) = 
99.03%, and expected lifetime utility E[u(JTL)  I x*] z 0,9999445 which is a little bit better 
than the extreme strategy to  always shut down for repair times. 

3.6.2 Stochastic quasi-gradient algorithm 

Figure 6 shows one run of a stochastic quasi-gradient procedure. After 1000 steps, the expected 
utility has increased to  E [u (JT t )  I x*] z 0,999944. The  value of the optimal control still keeps 
changing. At s = 1000, i t  is xlooO z 24. The results are quite comparable with our approximative 
results. 



3.7 Limited repair time 

In order to avoid long periods of being in a degraded condition, we apply as a decision function 
an indicator function 

The control variable x expresses here the maximum allowed repair time. 
It should be noted that,  in practice, very short temporary shutdowns are not possible, and the 

model should be made more realistic by accounting the minimum possible shutdown period. 

3.7.1 Approximative analytical solution 

The conditional repair time, given that it is shorter than x, is 

and, given that it is longer than x, is 

Since the probability of getting into an increased risk state given a failure is 1 - X(2)x, we have 
the following relation of the steady-state probabilities, 

Note that P,(O) is the same as before. Since P,(1 I x)  + P,(4 I x) = 1 - P,(O), we have 

and 

~ , ( 4  1 x)  = 1 - ('(x) = 1 - e-'(') X(1) 
( I +  A(2)x)X(l)  + X(2). 

The rate of a shutdown is 
X(4 I x)  = ~ ( l ) e - ' ( ~ ) " ,  

and the rate of degraded conditions is 

Since the degradation degrees are independent of repair times and they are not controlled in 
any way, we have 

1 P,(l l x)  qn(x) = - 
2 Pm(1 I x)  + Pm(2)' 

The nominal accident hazard rate can be calculated using (35) for cn(O I x)  and then (36) for 
Xn(x). 

The optimal solution is x* M 3.7 h yielding nominal accident hazard rate Xn(x*) M 5.98 . 
l op6  l / a ,  process availability ('(x*) M 99.01%, and expected lifetime utility E [ u ( J T t )  ( x*] M 

0.999945 which is about the same as with the limited instantaneous accident hazard rate strategy. 
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Figure 7: Optimization of the repair t ime limit by the stochastic quasi-gradient algorithm. 

Table 4: Summary of the results. 
Control : E [ u ( J ~ ~ >  1 x*] x* P(accident) ((x*) ' 
Always shut down 0.9999444 as 2.97 99.01% 
Always continue operation 0.999797 aC 1.5 .  100% 
Limited risk increase factor 0.999945 26 '/ 24 2.97. 99.04% 
Limited repair t ime 0.999945 3.6 / 4.0 2.96. 99.01% 

approximative optimum 
estimated by the stochastic quasi-gradient method 

3.7.2 Stochastic quasi-gradient algorithm 

Figure 7 shows one run of our stochastic quasi-gradient procedure. As in the optimization of 
the risk increase factor l imit, the expected utility has increased to  E[u(JTL)  1 x*] M 0,999944 
after 1000 steps, and the value of the optimal control still keeps changing. At s = 1000, i t  is 
xlooO M 4. The results are quite comparable with our approximative results. 

3.8 Summary of the  analysis 

The results are summarized in Table 4. The global optimum seems to  be close t o  the strategy of 
always shutt ing down the process during the repair time. The stochastic quasi-gradient approach 
and approximative, analytical equations provide similar results. 

\\'e can notice that  the objective function is flat around the optimum, which makes it difficult 
to  find and determine the optimal solution. However, we do not need t o  know the exact answer. 
In practice a risk model includes a lot of uncertainties, and it is sufficient for us t o  know where 
approximately the optimal solution is. 

Presumably, a combination of the risk increase factor limit and repair t ime limit would improve 
the result. I t  could also be beneficial t o  have a time-dependent control variable. On the other 
hand, the simplicity of the decision rules is always a preferable feature, and the risk increase 
factor limit as well as the repair time limit are simple decision rules. 



4 Discussion 

The problem formulation presented in this paper provides a general approach to  model decision 
problems related t o  stochastic processes. The model incorporates a short-term decision analysis 
into the optimization of a long-term objective function. Therefore, the two-level decision model 
can be applied t .  :codeling i ) r o h l ~ , . n ~ ~  of risk managi7- .,I) *t ich, from theii - rv  - r I T ,  ~ ~ r ~ i s t  
of a complex mixture of inter-related problems. In this model, the event speci;~ c,hort-term) 
decision functions are functions of the operating history and long-term control variables. 

To find an optimal control for the stochastic process model is a computationally demanding 
problem. M'e have not studied various possibilities for doing i t ,  but we suggest the use of 
stochastic quasi-gradient procedures. 

In order t o  represent the risk aversion for large accidents, we have introduced a utility function 
in the decision model. After that ,  the objective function is no longer linear with respect t o  profits 
from the operation of the process. Our case study demonstrates tha t  the strategy of optimizing 
problems individually, based on up-to-date knowledge without a long-term control, does not 
lead to  an optimum. 

We defined the utility function based on the acceptance of the accident hazard rate. It  is a 
kind of operative boundary condition for the process. The exponential utility function turns out 
to  be convenient with this approach, because by defining the acceptable hazard rate we get a 
condition for acceptable values of the parameter of the exponential utility function. 

The next question is the definition of the cost function. This will be different if i t  is for 
the responsible company or the society. In the case of technological processes, we find i t  more 
natural t o  adopt the company's point of view. A difficulty remains in how to  count the costs 
and profits over the process lifetime. 

From the methodological viewpoint, t o  deal with several accident categories should not cause 
any troubles. I t ,  however, affects the formulation of the utility function. In addition, we could 
take into account other than monetary outcomes and apply a multi-criteria utility function. 

In the case study, we control the allowed downtimes of components important for safety. In 
practice, the limits of allowed downtimes for safety systems a t  nuclear power plants usually 
depend on the degree of lost redundancy. They are deterministic rules. Risk-based rules are 
applied only a t  few plants, e.g., a t  Heysham 2 in the United Kingdom (Horne 1991). At present, 
the development of dynamic risk models, called living PSA, for nuclear power plants (Johanson 
and Holmberg 1994), have initiated the discussion of risk-based rules. Most of the suggested 
risk-based rules limit only the nominal or instantaneous accident hazard rates (see e.g. IAEA 
1991, IAEA 1993). Our decision analytic approach is based on a utility function over the plant 
lifetime profits and costs. 

Next, the case study could be extended by assuming values for the unknown model parameters. 
We can define prior distributions for them and update the distributions based on the operating 
experience. We could apply the same kind of decision rules as in this study, but maybe i t  would 
be wiser t o  incorporate the operating experience in the short-term decision function. We could 
also study the optimization of the test intervals by assuming tha t  the degradation failures occur 
latently. The  latent failures could be detected by surveillance tests. In order t o  optimize the 
test interval, we should add the costs of testing the profit function. At each test or end of repair 
epoch, we have a decision problem of choosing the next test epoch. Then the short-term decision 
space, A(&),  is continuous. 

For future research, the feasibility of our approach could be studied with a proper risk model. 
The  complexity (size) of the risk model will probably not cause limitations since it is rather 
easy t o  build a simulation model that  generates sample process histories. The  cornputational 
complexity depends on the number and type of decision problems we try t o  solve simultane- 
ously. The  problem of temporary shutdowns alone is simple, but linking this task to  the test 
interval optimization or even t o  design modification problems may be too difficult for analytical 
approaches. 
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