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Abstract 

Constraint aggregation technique is a new method for solving convex optimization prob- 
lems. This paper focuses on the examination of the efficiency of the aggregation technique. 
Some properties of the basic version of the algorithm are presented for convex optimiza- 
tion problems with linear constraints. Various parameters and advanced versions of this 
algorithm are examined on the example of the dual transportation problem. The results 
obtained allow to formulate some interesting conclusions. Special at tention is directed to 
the advantages achieved by implementation of partial aggregation idea. 
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Constraint Aggregation Principle: 
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Transportation Problem 

Rafat Rdiycki 

The paper deals with constraint aggregation technique which is a general method for 
solving convex optimization problems of the form 

min f (x) (1) 

It is assumed that the functions f : IRn H IR and hj  : IRn H IR, j = 1,. . . , m, are convex 
and X c IRn is convex and compact. Moreover it is assumed that the feasible set defined 
by (2)-(3) is non-empty what guarantees that the problem has an optimal solution. 

The problems in which both the number of constraints m and/or number of variables 
n are very large seem to be a particulary fruitful area of application of aggreagtion tech- 
nique. To such a class of problems one can include various semi-infinite programming 
problems (e.g. path planning problems in robotics), stochastic programming problems 
with constraints that have to hold with probability one, etc. 

The main idea of aggregation technique is based on the assumption that the structure 
of X is simple and the main difficulty comes from the large number of constraints (2). 
In this case, commonly used methods may fail, because of insufficient size of computer 
memory. To overcome these difficulties, the original problem is replaced by a sequence of 
problems, in which the complicating constraints (2) are represented by one (or in general 
more than one) surrogate inequality 

where sk 2 0 are iteratively modified aggregation coeficients. By an aggregation of 
original constraints a substantial simplification of (1)-(3) is achieved, because (4) inherits 
linearity or differentiability properties o f  (2). In [I] theoretical bases, the way how to 
update the aggregation coefficients and how to use the solution of the simplified problems 
to arrive at the solution of (1)-(3) is presented. Although the described method is general 
enough to solve nonsmooth convex optimization problems this paper will concentrate on 
the linear ones. 



In section 1 the basic algorithm for the simplified version of the problem having only 
linear constraints is presented. In section 2 an extension of full aggregation idea to partial 
aggregation is showed. Section 3 is devoted to examine efficiency of aggregation technique 
on the example of known linear optimization problem. Sensibility to the parameters values 
and modifications of basic algorithm is showed. 

1 The basic algorithm 

Let us consider the simplified version of the problem: 

min f (x) (5) 

where f is convex and X is bounded, convex and closed. Below the basic algorithm 
utilizing the aggregation idea for solving (5)-(7) is presented: 

Algorithm A 

1. : Find xO E X with f(xO) ) f,;,, set k = 0. 

2. : Find uk which solves 
min f (u) 

 AX^ - b, Au - b) ) 0, 

u E X. 

3. : Find 
Tk = 1/(k + l), k = 0,1,2,.  

and define 
xk+I = xk $ rk(uk - xk) 

Increase k by one and if not stop criterion go to Step 1. 

the above algorithm can be viewed as an iterative constraint aggregation method. 
The initial equality constraints (6) are replaced by a sequence of non-stationary scalar 
inequalities (9). Obviously, (9) is a relaxation of (6), so uk exists and f (uk)  ) f*. As an 
alternative stepsize r k  select ion one can assume: 

It can be proved that for Algorithm A and Q which fulfilled (13), every accumulation 
point xk is a solution of problem (5-7). The stepsizes r k  in the basic procedure can also 
be generated in a more systematic way: 

r k  = arg min 1(1 - T ) ( A X ~  - b) + T ( A U ~  - b)I2. 
0<7<1 



To show how the aggregation technique extends to linear inequality constraints, let us 
replace equality constraints (6) by a set of inequalities: 

The basic algorithm can be adapted to our modified problem by transforming (9) into 

where r+(x)  = max(0, Ax - b)). r+(x)  is simply a vector of constraint residuals for current 
solution x. Obviously, if linear equality constraints Ax = b are written as inequalities 
Ax - b 5 0 and -Ax + b 5 0, then the surrogate inequalities (9) and (16) are identical. 

2 Partial aggregation 

It is not necessary to aggregate exactly to one aggregate constraint. It is possible to 
aggregate the constraints in groups as follows. Let 

be subgroups of constraints (6), such that each row of (6) is represented at least once. 
The overlapping of such subgroups is possible. One full aggregate constraint(9) may be 
replaced by L aggregates: 

Then the optimizing stepsize (14) should be replaced by 

L 

r k  = arg min C I(1 - T ) ( A ~ X ~  - bl) + T ( A ~ U ~  - bl) 1 2 .  
0<.<1 

1=1 
(19) 

For such a formulation of aggregated problem, the convergence properties remain the 
same. In real optimization problems with many constraints, one can distinguish very 
often some blocks of constraints. Such blocks contain constraints correlated by common 
properties. Just in these cases it is justified to aggregate them into the subgroups. The 
subgroup aggregates created in this way often have interesting practical interpretation 
and may be useful in some applications. 

3 An example of application 

From the theoretical point of view, the' aggregation technique is first of all applicable to 
the convex problems with very many constraints. As an illustrative example the particular 
instance of the dual transportation problem, known as Lemarechal's problem TR48 [5], 
was assumed. Although this is a relatively small ("only" 2304 constraints) linear problem, 
it is very interesting due to the strong solving difficulties. In original version (without 



introducing additional variables) it is a nonsmooth optimization problem with a piecewise 
linear objective [4, 31. 

Problem formulation 

Let us formulate the dual of the transpotration problem: 

N 

max C siwi - C djvj 
i= 1 I N  j=1 I 

where wi, i = 1,. . . , N are unknown potentials of sources, vj, j = 1, .  . . , N are unknown 
potentials of destination nodes, a;j denotes the transportation cost from source i to des- 
tination j, s; and dj are the amounts available at source i and required at destination j, 
respectively. In TR48 problem N = 48 and n = 2N. The particular values of transporta- 
tion costs and amounts s;, i = 1, ..., N and dj, j = 1, ..., N one can find in Appendix. 

Optimum value 

638565 is the optimum value of the TR48 problem objective function. The primal and 
dual simplex method from the CPLEX callable library [6] solve the problem in 138 and 
157 iterations, respectively. 

The coinputational experiment 

The main purpose of the computational experiment was to recognize the behavior of the 
basic algortihm various modifications and comparision of its both practical and t heoret- 
ical convergences to the optimum value. Moreover, the aggregation technique has been 
tested to study its sensitivity to the values of the parameters. A number of succesive ex- 
periments were carried out to achieve better and better convergence. The algorithm has 
been implemented in C++ and the experiment has been carried out on Sun Workstation. 
The CPLEX ver.2.1 callable library was a tool to solve subproblems. Starting point was 
the common one for all tests and results from Step 1 of Algorithm A. The given number of 
iterations was the stop criterion and was fixed at 200. The below description of succeding 
computational experiment stages results from the succesion of realized tests. 

TEST A 

The first test deal with the basic method with full aggregation as described in section 1. 
It means that at each step one aggregate constraint 

with aggregation coefficients defined as residuals: 



is formed. There are not any bounds for variables in original version of the TR48 problem. 
However it appears from (7), that aggregation technique requires bounds for all variables. 
With no loss of generality we may assume that all variables of TR48 problem are not 
less than zero. Upper bounds were set to the same value M for all variables to simplify 
calculations. Full formulation of our TR48 problem version must be completed by the 
bounds: 

O < w , < h f ,  2 = 1 ,  . . . ,  N, 

o < v ~ < M ,  j = l ,  ..., N, (22) 
Such a bounding box must fulfil the assumption that it contains the optimum solution 
of the problem. This assumption is fulfilled for M 2 1656. In order to examine the 
influence of a size of bounding box on basic version (the single aggregate, harmonic 
stepsize rule (11)) of iterative algorithm efficiency three values of M were employed : 
M = 3000,10000,100000. The results are presented in Figure 1 and Figure 2. Notice 
that (20)-(22) is a maximization problem, and therefore the objective value in Figure 1 
decreases as a function of the iteration number. One can see that convergence of the basic 
algorithm is strongly related to the size of bounding box. The starting point of Algorithm 
A is calculated as a point optimized objective function (5) in a case of constraints (6) 
absence. However, condition (7) has to be still satisfied. So, it is rather obvious that 
starting point for linear objective function has to lie on the simplex defined by bounding 
box. Thus the large size of bounding box, together with relatively fast decreasing of the 
stepsize, causes weak convergence of the algorithm. The upper bound M was set at 10000 
to the further tests. 

TEST B 

The partial aggregation idea was an objective of this test. It has been tested for various 
numbers of aggregates and compared with full aggregation idea. In a single test, each 
aggregate contained the same number of constraints of original problem (20)-(22). Single 
aggregate constraint was formed by successive constraints (21) independently of existence 
practical interpretation of such an operation. It was considered that number of aggregates 
L has fulfilled the equation: 

( N  * N)modL  = 0 

If L < N then aggregate constraints (1 = 1, .  . . , L) had the form: 

0 2  N 0 2  N 
k k  k k  C C h&(w v )(wi - vj) < C C h;(w , v )aij for = 1, .  . . , L (23) 

where 
01 = (1 - l ) (NdivL) + 1 

O2 = I * (NdivL) 

In case L > N aggregate constraint 1 was created as follow: 

0 2  0 2  
k k  k k  C h$j(w , V  )((wP - vj) < C hJj(w , V  )(apj for 1 = I , .  . . , L (24) 



where 
0, = ( ( 1  - l ) m o d ( L d i v N ) )  * ( N  * N I L )  + 1 

0, = ( ( 1  - l ) m o d ( L d i v N ) )  * ( N  * N I L )  + N * N I L  

Comparison of convergence of basic algorithm with upper bound M = 10000 for num- 
ber of aggregates L = 1,96,192 is presented in the Figure 3. Experiments show that 
increasing of the number of aggregates distinctly improves the algorithm convergence. 
Nevertheless, it cannot be forgotten that increasing of aggregates number causes enlarge- 
ment of the subproblem (8),(18),(10) and as a consequence of it, growth of a subproblem 
solving time. The solving time needed by the single iteration of Algorithm A for various 
number of aggregates is presented in the Figure 4. 

The number of aggregates L = 96 was assumed in the further tests. 

TEST C 

Interesting results were obtained by testing various ways of partial aggregation with num- 
ber of aggregates fixed at 96. In previous test the way of constraints aggregation of 
problem (20)-(22) was dictated only by a comfort of programist. Much better effect gives 
aggregation supported by an economical interpretation. Let us create the aggregation 
constraints in more reasonable way: 

where the aggregation coefficients yij, j = 1 ,  . . . , N are normalized residuals: 

and 

with 

Note that such a form of aggregates has the interesting economical interpretation. 

Economic interpretation o f  aggregates 

Considering inequalities (25) and (26), variables w; and vj have to be counted with the 
same measure as cij. c;j is the cost of product unit transport between purveyor i and 
receiver j .  Thus variables w; and vj may be interpreted as a sale price of product unit 
at source node i and a purchase price of product unit at destination node j respectively. 
In a case of wiseblock aggregation for every source node i one aggregate constraint has 



been constructed. The aggregation coefficients yij, j = 1, . . . , N are normalized residuals. 
Such a single aggregation constraint expresses the fact that difference between an average 
purchase cost at  destination nodes seen from i and a sale price at source node i ought 
not to exceed an average transportat ion cost from node i (to protect against unjustifiable 
purchase price growth !). The similar situation applies to destination nodes j. There is 
again one aggregate for one destination node. This time, however, conditions expressed 
above are formulated from the destinations nodes points of view. Notice, that in a case 
of aggregates defined by (25)-(26), the subgroups overlapping appears (every single con- 
straint from original problem occurs in aggregates twice). Figure 5. shows a benefit 
of a wiseblock aggregation applying. The wiseblock aggregation was applied in the next 
tests. 

TEST D 

Although consecutive modifications of the solving method for TR48 problem based on 
constraints aggregation, gave the improvement of the convergence, the efficiency of the 
algorithm has been still poor. It must have been caused by a harmonic stepsize calculation 
(11). This simplest method used in tests until now led to premature saturation state. On 
the contrary, an attempt of stepsize calculation from (14) constitutes an optimization 
problem by itself. It is because of nonsmooth character of function (14). Because of it, 
the following rules for stepsize calculation were employed: 

1. Heuristic 1 rule - it uses 71, = 1, if it decreases the Euclidean norm of the constraint 
residuals; otherwise 71, = 1/(k + 1); 

2. Heuristic 2 rule - it uses, as above, 71, = 1, if it decreases the Euclidean norm of the 
constraint residuals; otherwise if 71,-1 decreases this norm then 71, = 71,-1 (stepsize 
is kept); otherwise (if 71,-1 does not decrease the norm) 71, = ,B * ( ~ 1 , - ~ )  (where 
,B = 0.95); 

3. Near optimal stepsizes - a kind of estimation of (14) was used, namely a modificated 
"golden division" rule. 

First two methods were implemented in order to slow down the rate of stepsize de- 
creasing. Heuristic 1 rule due to its simplicity is very easy to solve, but the rate of stepsize 
decreasing remains too fast. Much more flexible is Heuristic 2. The stepsize exchange may 
be controled by the ,B coefficient setting. The difficulty is that the setting of such a value 
needs many experiments and it is not easy to set one, best value for the various solved 
problems. To make matters worse, this value is strongly interrelated with other parame- 
ters of the algorithm and changing one of the parameters may lead to the deterioration of 
the convergence. In our tests ,B was set-at 0.95 - the value that ensure the slower stepsize 
decreasing. The purpose of the third method is not to control the stepsize decreasing but 
to find the stepsize as near as possible to the optimum (14). Unfortunatelly it is difficult 
to find such an exact value. Thus method using "golden division" rule was adapted to find 
near optimal stepsize. The modification comprises a way of search interval defining. Of 



course primitive (in the first iteration) search interval is [O, 11. In the subsequent iterations 
of the algorithm this interval depends on the stepsize of the previous iteration. In most 
of cases the search intervals decrease but it is still possible to take the size [0,1]. 

Let assume the following order of points of "golden division": 

For current iteration I; of the Algorithm A the procedure of the near optimal stepsize 
finding seems as follow: 

2. : 22 = (a * x1)/(1 - a ) ;  

3. : if 22 > 1 then 23 = 1.0; 22 = a; go to Step 6 

4. : If Ilres(x2)ll > Ilres(xl:~ll then 23 = 22; 22 = x l ;  go to Step 6 

5 .  : 22 = x1 go to Step 2 

6. : Apply traditional "golden division" method for the stepsize search interval [0.0, x3] 
and the current value of 22; 

The number of iterations of traditional "golden division" method was set at 10, the 
number sufficient for calculation the near optimal value with the absolute accuracy 4 

All above methods were compared with the simplest, harmonic method (11). Results 
are shown in Figure 6. Surprisingly, the Heuristic 1 stepsize rule efficiency was comparable 
with the Near optimal one, while Heuristic 2 rule for ,tl = 0.95 was worse even than 
Harmonic one (possibly, this time, the stepsize decreasing was to slow). 

TEST E 

Addition of all active constraints (aggregates) from previous iteration to the current solved 
subproblem (8)-(10) was the last modification introduced into a method of TR48 problem 
solving, based on aggregation principle. Obviously, it causes increasing of a total number 
of constraints in subproblem and growth of a solving time. The number of all constraints 
in subproblem may fetch the number of 2* L. Advantages achieved by such a modification 
fully make up for above weakness. Convergence of the aggregation method with main- 
taining of active constraints is much better than the previous versions of the algorithm. 
Comparison of various stepsize calculation methods for this modification is presented in 
Figure 7 and Figure 8. The advantages of the last modification are most visible when 
Figure 7 is compared with Figure 6. 



Although it is not an objective of this paper to compare different methods, some ad- 
vantages of aggregation technique can be observed. As a result of logical aggregation in 
related subgroups, that is to say by exploiting the specific characteristics of the model, one 
can improve computational efficiency. Partial aggregation, which does not take into con- 
sideration relations among constraints does not give such good effects. It follows from the 
tests that harmonica1 stepsize rule is computationaly inpractical. As it could be expected, 
the optimizing stepsize rule performed significiantly better than other ones. Surprisingly 
good results gives, however, adding in the auxiliary subproblem all active aggregates from 
the previous iteration. Moreover, additional experiments show, that these results are not 
sensitive with respect to the size of the bounding box. Obviously experiment has been 
performed for only one specific problem and in other cases results may differ sligthly. 
Boldly one can say, however, that applying of aggregation technique to huge network 
problems may bring surprisingly good results. 



5 Appendix 

The values of transportation costs c ; j  and amounts s; ,  i = 1, ..., N and d j ,  j = 1, ..., N 
for dual Transpotration Problem TR48: 

Matrix C used to define c; j :  





The way of defining c;j:  

nr=O; 
for(i=l;iiN;i++) 
for(j=i;jiN;j++){ 
c [i- 11 [j] = dane [nr] ; 
nr++;) 
for(i=O;iiN;i++){ 
c[i] [i]= 100000; 
for(j=O;jii;j++) 
c[ilUl=cLl[il;) 
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k k  Figure 1: Objective value f (w , v  ) as a function of the iteration number k for various 
upper bounds. 
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Figure 2: Norm of residual (zzl ~ E ~ ( h ? ( w ~ ,  v ~ ) ) ~ ) ' ' ~  as a function of the iteration 
number k for various upper bounds. 



Figure 3: Norm of residual as a function of the iteration number k for various number of 
aggregates 
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Figure 4: CPU time needed by one iteration of Algorithm A as a function of the iteration 
number k for various number of aggregates 
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Figure 5: Norm of residual as a function of the iteration number k for various ways of 
aggregation 

1000000 

100000 

& loo00 

S 
Heuristic 1 3 1000 

-Heuristic 2 2 
2 loo 

10 

1 

1 3 5 7 9 1113151719212325272931333537394143454749 

Iteration 

Figure 6: Norm of residual as a function of the iteration number k for various stepsize 
rules 



Figure 7: Norm of residual as a function of the iteration number k for kept in subproblems 
all previous active aggregates and various stepsize rules 
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Figure 8: Objective value f(zuk,vk) as a function of the iteration number k for kept in 
subproblems all previous active aggregates and various stepsize rules 


