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Abstract

The queueing problem with a Poisson arrival stream and two identical Erlang
servers is analysed for the queueing discipline based on shortest expected delay. This
queueing problem may be represented as a random walk on the integer grid in the
first quadrant of the plane. In the paper it is shown that the equilibrium distribution
of this random walk can be written as a countable linear combination of product
forms. This linear combination is constructed in a compensation procedure. In this
case the compensation procedure is essentially more complicated than in other cases
where the same idea was exploited. The reason for the complications is that in this
case the boundary consists of several layers which in turn is caused by the fact that
transitions starting in inner states are not restricted to end in neighbouring states.

Good starting solutions for the compensation procedure are found by solving
the shortest expected delay problem with the same service distributions but with
instantaneous jockeying.

It is also shown that the results can be used for an efficient computation of
relevant performance criteria.

1 Introduction

The shortest queue problem is one of the most intensively studied queueing problems, even
in its simplest formulation with a Poisson stream of arriving customers and two identical
exponential servers. In this simple formulation the shortest queue problem is an example
of a two-dimensional random walk on an unbounded part of the plane. Since it appeared
to be hard to solve these simply formulated problems, it has been tried again and again
to obtain more insight in the equilibrium behaviour of two-dimensional random walks in
general and the shortest queue problem in particular.

The shortest queue problem was formulated originally by Haight in [12], however, the
first major step towards its analysis was made by Kingman in [14] and Flatto and McKean
in [10]. Using a uniformization approach they proved that the generating function of the
equilibrium distribution is meromorphic and they established explicit relations for the
poles and residues. As a consequence, partial fraction decomposition of the generating
function would in principle lead to a representation of the equilibrium distribution as

1 Eindhoven University of Technology, Department of Mathematics and Computing Science, Eind-
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an infinite linear combination of product forms. Regrettably, however, it appeared to
be practically impossible to obtain more than two terms of the representation in this
way. Also other analytic approaches took the generating function as a starting point
which lead to interesting analytic results, but not to explicit solutions for the equilibrium
distribution (compare, for instance, Cohen and Boxma [8]). Another approach would have
been to exploit more directly the representation of the equilibrium distribution as a linear
combination of product forms in order to obtain a more explicit expression. This may
have been tried in the course of the years, but the idea was only successful when it was
combined with an idea of how to construct subsequent terms of the linear combination (ef.
[1]). The essence of the latter idea is that there is an uncountable number of product forms
satisfying the equilibrium equations for states in the inner area; of these product forms
a selection should be made such that a particular linear combination of this selection
not only satisfies the equilibrium equations for inner states, but also for all boundary
states. In [1] it has been worked out in detail how this selection can be made via a
compensation argument: alternately, product forms are added which make the current
solution a solution for the equilibrium equations on the horizontal and on the vertical
boundary respectively. In this way the current solution always needs compensation to
turn it into a solution on the other boundary, however, after compensation it stops being
a solution on the first boundary, which requires again compensation, etc. In [1] it has
been proved that the constructed solution converges absolutely.

From a practical point of view the shortest queue problem with Poisson arrivals and
identical exponential servers is not the most interesting one. Therefore, the aim of the
present paper is to extend the compensation method to the case of two identical Erlang-r
servers. We will do so for the situation of shortest expected delay rQuting which means
that the jobs of all customers are considered as consisting of r exponentially distributed
subjobs and a new job is joining the queue with the lowest number of subjobs to be
executed (in case the numbers of subjobs are equal, either queue is joined with probability
~). Hordijk and Koole [13] and Weber [16] have shown that, within certain constraints,
this way of routing is optimal. For us, however, the important aspect is that the model
can be represented by a two-dimensional random walk in the first quadrant of the plane:
Define i and j as the numbers of subjobs in both queues and define the state (m, n) by
m = min(i,j), n = Ii - jl. Now the process on (m, n) is a random walk on the grid points
with m ~ 0, n ~ O. This random walk is homogeneous for m > 0, n ~ r. On the line
m = 0 its mechanism is just the truncation of the main mechanism. On each of the lines
n = 0, 1, ... , r - 1 its behaviour is homogeneous, but different on different lines (compare
fig.l, where the transition diagram is depicted for an instream rate ,\ and three subjobs
with mean 1 for each job).

The analysis of the described model is of practical value, but also theoretically signifi­
cant, since the model essentially differs from the other models for which the compensation
method has been developed so far. In [4] it has been investigated for which random walks
on the first quadrant of the plane a compensation approach could be developed. In order
to keep the analysis tractable, a restriction was made to random walks with transitions
to neighbouring states only. For this restricted class of random walks it was proven, that
the essential condition for the compensation approach is that no transitions are possible
from inner states to the North, the North-East and the East. The model to be treated
in the present paper satisfies the latter condition for n ~ r (compare fig. 1), but it does
not belong to the restricted class considered in [4], since for inner states the transitions
are not restricted to neighbouring states. At first sight the difference is not essential,
although it will make the analysis more cumbersome. The main difference seems to be
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that now not only the states on the line n = 0 form the horizontal boundary, but also
states with n = 1, ... , n = r - 1 are part of the horizontal boundary. However, it will
appear that the compensation procedure will get an essentially more complex form. The
reason for this phenomenon is that the equilibrium equations for the states on the lines
m = 0, ... , m = r - 1 all differ from the equations in the real inner states, which implies
that compensation on the vertical boundary sets r requirements and therefore appears to
require r compensatory terms. Each of these terms then requires a compensation on the
horizontal boundary. .

The compensation procedure is developed in Section 3 after a formulation of the equi­
librium equations in Section 2. Section 4 treats the question of convergence and Section 5
is devoted to finding starting solutions for the compensation process, which lead to useful
linear combinations. The more complex compensation procedure essentially complicates
the quest for feasible starting solutions. In fact, it becomes more and more apparent that
finding feasible starting solutions is the essential difficulty of the compensation approach.
In the first exploration of the compensation approach for the symmetric shortest queue
problems (d.[I]), this aspect of finding a starting solution still looked like a simple ques­
tion, since there was a natural candidate, but later explorations placed this aspect more
and more in the center (d. [3, 4, 6, 7]). So, Section 5 may well be called the key part of
this paper. In fact the problem is solved by the solution of a variant of our problem in
which instantaneous jockeying is allowed. This solution is a finite linear combination of
products. Section 6 gives the finishing touch by first investigating the risk of degeneration
of the compensation procedure and then using the results of the previous sections to prove
that, indeed, the equilibrium probabilities can be represented by an absolutely conver­
gent linear combination of countably many product forms for which the factors and the
coefficients can easily be computed. Section 7 shows, as an example, that the moments of
the waiting time and the waiting time distribution can be expressed as the sum of infinite
series, which can easily be approximated. Numerical aspects of the computation of the
equilibrium probabilities are treated in Section 8. Section 9 gives some numerical results
and, finally, Section 10 is devoted to some conclusions and comments on the further de­
velopment of the compensation approach in general as well as on the use of this approach
for models related to the present one.

2 The model and the equilibrium equations

We consider a system with two identical parallel servers. The service times are Erlang-r
distributed. Jobs arrive in a Poisson stream with intensity..\. Without loss of general­
ity, we may assume that the Erlang-distributions have scale parameter 1. To guarantee
stability, we require:

..\r < 2.

An arriving job can be thought of as consisting of r identical subjobs, where each
subjob requires an exponentially distributed service time with unit mean. Arriving jobs
join the queue with the smallest number of subjobs, and in case the number of subjobs in
the two queues is equal, they join either queue with probability!.

This queueing system can be represented by a continuous-time Markov process, whose
natural state space consists of the pairs (i, j) where i and j are the numbers of subjobs
in each queue. In order to obtain a homogeneous random walk in the first quadrant, we
will use the variables m and n instead of i and j, where m = min(i,j) and n = Ii - il.
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Let {Pm,n} be the equilibrium distribution. For the model with Erlang-3 servers the
transition-rate diagram is depicted in Figure 1.

n

1

k
o °

o 0 0

o °
A

1

2

--+- - - __- __-__.. -_---"_..... m

Figure 1: The transition-rate diagram for the queueing model with
Erlang-3 servers. The transition rates on the vertical boundary
are the truncation of the rates in the inner region. The horizon­
tal boundary consists of 3 layers.

The equilibriu-m probabilities satisfy the following relations, which are obtained by
equating for each state the average number of times per time unit the state is reached and
the average number of times per time unit the state is left. Since the states with m < r
cannot result from a transition triggered by the arrival of a new job (compare Figure 1),
the 'most regular' equation is only obtained for states (m, n) with m ? r, n > T.

Pm,n(2 +.\) - Pm-r,n+r.\ +Pm,n+l +Pm+l,n-l , (2.1 )

m 2: T, n > T j

Pm,n(2 +.\) - Pm,n+l +Pm+l,n-l , (2.2)

0< m < T,n > Tj

Po,n(l +.\) = PO,n+l +Pl,n-l , (2.3)

n > r;

Pm,n(2 +.\) - Pm-r,n+r.\ +Pm,n+l +Pm+l,n-l +Pm-r+n,r-n'\ , (2.4)

m 2: r,l < n ~ r;

Pm,l (2 +.\) = Pm-r,l+r.\ +Pm,2 +Pm+l,02 +Pm-r+l,r-l.\, (2.5)

m > r'- ,
Pm,o(2 +.\) - Pm-r,r.\ +Pm,l , (2.6)

m 2: r.
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The equations in states (m, n) with 0 ~ m < rand 0 ~ n ~ r are left out because of
their minor importance to the analysis. The equations (2.1) form the inner conditions, the
equations (2.2) and (2.3) form the vertical boundary conditions and, finally, the equations
(2.4), (2.5) and (2.6) form the horizontal boundary conditions. In the following sections
we shall try to prove that the equilibrium probabilities Pm,n can be expressed as an infinite
sum of products of powers, i.e., there are ai, (3i and Cj such that for all m and n,

00

Pm,n = L Cjai (3i .
i=O

3 The compensation approach

In this section we will try to construct a formal solution to the set of equations (2.1 )-(2.6)
by combining products am (3n satisfying equation (2.1) for the interior points of the grid.

Inserting the product am (3n into equation (2.1) and then dividing both sides of that
equation by the common factor a m- r(3n-1 leads to the following characterization:

Lemma 3.1 The product am (3n is a solution of equation (2.1) if a and (3 satisfy

(3.1 )

Any linear combination of products am(3n with a and (3 satisfying equation (3.1) is a
solution of equation (2.1). The next step is to construct such linear combinations which
also satisfy (2.2)-(2.6).

Let us start by considering an arbitrary product am (3n with a, (3 satisfying equa­
tion (3.1). Most likely, this form will not satisfy the vertical boundary conditions (2.2)­
(2.3). Th~ straightforward compensation idea implies the addition of a compensating
term cam (3n such that

satisfies (2.1)-(2.3). Insertion of this linear combination into (2.2)-(2.3) yields r equations
of the form

for n > r.

This condition requires that s= (3.

Since a and Shave to satisfy (3.1), it follows that a and a must be two of the r +1 roots
of (3.1) for the given (3, only leaving C for fulfilling r requirements. Hence, this choice
does not provide sufficient freedom to adopt the compensating term to the requirements.
However, we may also use the other r - 1 roots of (3.1) for the given (3, resulting in the
following compensation procedure which is slightly more complicated:

Try to find C1, ••• ,Cr such that the linear combination

satisfies (2.2)-(2.3), where a, ab' .. ,Q:r are the r + 1 roots of equation (3.1) for given (3.
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So, each term satisfies (2.1). If we note that (2.2) and (2.3) are just versions of (2.1)
with one and two terms missing respectively, we can insert the linear combination into
(2.2) and (2.3) and simplify by exploiting (2.1), which leads to:

r

a m
-

r (3n+r ,\ +L ciai- r (3n+r,\ - 0,
i=l

0< m < r,n > r; (3.2)

r

a -r(3n+r ,\ +L ciair (3n+r,\ _
i=l

By dividing these equations by (3n-m,\ we get

n > r. (3.3)

(
(3) r-m r ( (3 ) r-m
- +LCi - -0,
a i=l ai

(
(3)r r ((3)r- + I:Ci -:- -
a i=} a.

O<m<r;

These equations for the coefficients C}, ••. ,Cr are of a Vandermonde-type, and therefore,
may be solved explicitly. The solution can be simplified by using that the product of the
roots a, a}, ... ,ar is equal to (-1Y(3r >.. This compensation procedure is summarized in
the following lemma.

Lemma 3.2 Let ao, a}, ... , a r be the roots of equation (3.1) for given (3. Then the sum

satisfies the conditions (2.1)-(2.3) if the coefficients C}, .•• ,Cr are given by

( 2.i. - 1) n .~. (.!i.. - .!i..)
f3 J-r-' "0 "J

Ci=-( ) (f3 (3)
~ -1 n·~· ~ --f3 Jr' '" "J

for i = 1, ... , r ,

where the index j in the two products runs through 1, ... ,r.

To satisfy the horizontal boundary conditions (2.4)-(2.6) we try to follow a similar ap­
proach starting with the addition of dam ~n instead of cam fin to the original term am (3n.
This requires that a has to be equal to a and that ~ and (3 have to be roots of equa­
tion (3.1) for the given a, leaving d to satisfy r + 1 requirements, which, clearly, is not
sufficient. To create sufficient freedom we introduce extra coefficients for the solution in
states (m, n) with n = 0,1, ... , r - 1 instead of using the other r - 1 roots of equation
(3.1) for the given a, by considering

for m ~ 0, n ~ rand
for m ~ 0, n = 0, ... , r - 1 .

(3.4)

The analogous procedure would not have worked for the vertical boundary, since we
would have been forced by the inner conditions (2.1) for the states on the lines m = r, r +
1, ... , m+ r -1 to set the coefficients of (3n equal to am + cam, yielding insufficient freedom
to satisfy the vertical boundary coriditions (2.2)-(2.3). In the case of the horizontal
boundary, however, the lines n = 0,1, ... ,r - 1 only allow transitions to the line n = r
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and not to any state with n > r. Because of this feature, the equations (2.1) for inner
states do not restrict the freedom of choice for the en' Note that the way of compensating
of (3.4) was also used in [4], the vertical compensation, however, is of a new type. Later
it will become clear why we don't use the approach of Lemma 3.2 also for the horizontal
boundary. It has to do with convergence of the solutions.

Insertion of the terms (3.4) into the conditions (2.4)-(2.6) and then dividing by the
common factor o:m-r yields r +1 linear equations for the coefficients eo, ... ,er-l, d, which
may readily be solved. This procedure is summarized in the following lemma.

Lemma 3.3 Let f30 and f31 be roots of equation (3.1) for given 0:. Then the terms

o:m f36 + do:m f31
eno:m

for m ~ 0, n ~ rand
for m ~ 0, n = 0, ... , r - 1.

satisfy the conditions (2.1) and (2.4)-(2.6) if the coefficients eo, ... , er-l, d are the solution
of the following r +1 linear equations:

A(o:) ( 7)+ C(o:, f3ddf3r + C(o:, f3o)f3~ = 0,
er-l

where the (r+1)xr-matrix A(o:) and the (r+1)-column vector C(o:,f3) are given by

Ko:T o:r 0 0 0 0 0 0 0 0 0 0
20:r Ko:r- 1 o:r-l 0 0 0 0 0 0 0 0 A
0 o:r-l Ko:r- 2 0 0 0 0 0 0 0 A 0

A(o:) = +
0 0 0 0:3 K0:2 0:2 0 0 A 0 0 0
0 0 0 0 0:2 KO: 0 A 0 0 0 0
0 0 0 0 0 0: A 0 0 0 0 0

A
All

Q

A(~)2

C(o:,f3) =
A(~Y-2

A(~Y-l + 0:
Q.

-lJ

with K= -(2 + A).

Lemma 3.2 and 3.3 show that an arbitrary solution of equation (2.1) can be compensated
in such a way that it either becomes a solution to (2.1), (2.2), (2.3) (Lemma 3.2) or a
solution to (2.1), (2.4), (2.5), (2.6) (Lemma 3.3). One might hope that alternate use of
these two compensation procedures would in the long run turn some solution of equation
(2.1) into a solution of (2.1)-(2.6), at least if the compensating terms converge to zero
sufficiently fast. For the time being, we do not attend to the convergence problem, but
only define the formal solution which can be constructed with this compensation approach.
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Starting with an arbitrary product form solution aoPo of equation (2.1), we add
ClorPo + ... + cro;:n Po to compensate for the error of aoPo on the vertical boundary
and, by doing so, we introduce r new errors on the horizontal boundary, since each of
the terms ClorPo, ... ,c,.o;:n Po violates these boundary conditions. An essential feature
is now that we compensate each of these errors individually on the horizontal boundary.
To compensate for the error of ClorPo we consider

ClorPo + Cld1arpr
Cl el,nOr

for m ;::: 0, n ;::: rand
for m ;::: 0, n =0, ... , r - 1

where PI is one of the r other roots of (3.1) with a = all and choose el,O,' .. , el,r-l, d1
such that these terms satisfy the horizontal boundary conditions (2.4), (2.5) and (2.6).
The same procedure is used to compensate for the terms C202(30, ... , c,.a;:n Po. However,
the new terms Cl d1arpr, ... ,erdro;:np~ violate the vertical boundary conditions, so we
have to add again terms, and so on. Thus the compensation of 00 Po on the vertical
boundary generates an infinite sequence of compensation terms. An analogous sequence
is generated by starting the compensation of 00 (30 on the horizontal boundary. The
resulting sum has, due to the compensation on the vertical boundary, the structure of an
r-fold tree, which is illustrated in Figure 2.

By definition we have CO = 1 and the coefficient do will be defined later on. Each
term in the sum satisfies (2.1), each sum of r + 1 terms with the same p-factor satisfies
the vertical boundary conditions (2.2)-(2.3) and each sum of two terms with the same
a-factor satisfies the horizontal boundary conditions (2.4)-(2.6). Since the equilibrium
equations are linear, we can conclude that the infinite sum formally satisfies the equations
(2.1)-(2.6). Let us define Xm,n(OO, Po) as the infinite sum of compensation terms. For all
m ? 0, n ? r set

00 r

xm,n(OO, (30) - L di(CiO~ + L Cri+jO~+JpF
i=O j=1

-00 r

+Ldi-l(CjO~ + LCri-jO~_j)(3F_l
i=O j=1

(terms with same (3-factor),
00 r

- L L cri+j(dipF + dri+j(3;i+j)O~+j
i=O j=1

-00 r

+L L cri-j(di- I (3F-l + dri- j- 1(3;i_j_l )a~_j
i=O j=1

(terms with same a-factor) .

(3.5)

(3.6)

The representations (3.5) and (3.6) reflect the compensation on the vertical and horizontal
boundaries, respectively. The compensation on the horizontal boundary requires the
introduction of new coefficients for the terms in Xm,n( 00, Po) with n < r. For all m ;::: 0,
n = 0,1, ... ,r - 1 set

00

xm,n(OO, (30) = L ciei.na~.
i=-oo

Below we formulate recurrence relations for ai, Pi, Ci, di1 ei,O,"" ei,r-l.

8
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. .
d . mr.ln
-r-lC_ra_rfJ-r-l

d_1C!ra~r/3~1

Figure 2: The resulting infinite sum of compensation terms. Sums of r + 1 terms with the
same /3-factor satisfy the vertical boundary conditions (V) and sums of two terms with
the same a-factor satisfy the horizontal boundary conditions (H).

The numbers ai and /3i can be represented in an r-fold tree which is depicted in Figure
3 (compare Figure 2).

For given initial roots ao and /30 of equation (3.1), the numbers ai and /3i with i ~ 0
are generated such that for all i ~ 0 the r descendants ari+l,"" ari+r of /3i and its
predecessor ai are the r + 1 roots of (3.1) with fixed /3 = /3i, and the descendant /3ri+i
of ari+i, j = 1, ... ,r and its predecessor /3i are two roots of (3.1) with fixed a = ari+i'
Notice that /3ri+i is not uniquely determined, since we can choose among r candidates. In
the next section we will show that the convergence question determines the selection of
the appropriate root for /3. There it will also become clear why we do not use the more
elegant way of compensating at the vertical boundary also for the horizontal boundary:
that would force us to use all the roots for /3, which raises convergence problems.

The numbers ai and /3i with i ~ 0 are generated analogously, starting with /3-1 being
one of the r roots other than /30 of equation (3.1) with a = ao.

Initially set
eo=!.

9



f3-1
t
00

~
f30

Figure 3: The r-fold tree structure of the sequence of 0i and f3i.

The coefficients Ci with i > 0 are generated such that for all i ~ 0 the sum

r

(cioi +L Cri+jO~+j)f3f
j=l

satisfies the vertical boundary conditions (2.2)-(2.3). Hence, applying Lemma 3.2, the
coefficients Cri+l, ••• ,Cri+r for i ~ 0 can be obtained from Ci by

(~ 1) IT (!!i. --fl.L)
/3i - Jc"f.j O'i - O'ri+k

Cri+j = - (0'. ) (a a.) Ci= - 1 IT . .....t:.l- - -J:::.L-
/3i k"f.J O'r'+J O'ri+k

for j = 1, ... , T , (3.8)

where the index k in the two products runs through 1, ... , T. Similar recurrence relations
can be formulated for the coefficients Ci with i < O.

Initially the coefficients do, d_1 , eo,O,' .. ,eO,r-l are determined such that the sequence
Pm,n given by

(dof33 +d-lf3~l)O~

eo,no~

for m ~ 0, n ~ rand
for m ~ 0, n = 0, ... , r - 1

10



satisfies the horizontal boundary conditions (2.4)-(2.6). This means that do, d_ 1 , eO,O, . .. ,eO,r-l
have to be a nonnull solution of

(3.9)

The coefficients di , ei,O,.'" ei,r-l with i > 0 are generated such that for all i ~ 0 and
j = 1, ... , r the sequence Pm,n given by

for m ~ 0, n ~ rand
for m ~ 0, n = 0, ... , r - 1

satisfies the horizontal boundary conditions (2.4)-(2.6). Hence, applying Lemma 3.3, the
coefficients dri+j, eri+i,o, .. . ,eri+i,r-l for i ~ 0 and j = 1, ... , r are the solution of

(3.10)

Similar recurrence relations can be formulated for di- 1 , ei,O, ... ,ei,r-l with i < O.
This concludes the definition of xm,n(0'0,130), For any pair of roots 0'0, 130 of equation

(3.1) the series Xm,n(O'O, 130) formally satisfies the equations (2.1)-(2.6). Below, it will be
shown that Xm,n(O'O, 130) also satisfies the equilibrium equations in the points (m,n) with
o::; m < r, 0 < n ::; rand m + n ~ r. The equations in these points are given by

Po,r{1 + A) - PO,r+l +pl,r-l +Po,oA;

Pm-,n(2 + A) - Pm,n+l +Pm+1,n-l +Pm-r+n,r..,n A ,

0< m < r - 1,1 < n < r, m + n ~ r;

Pr-l,l(2 + A) = Pr-l,2 +Pr,02 +PO,r-l A .

(3.11)

(3.12)

(3.13)

Compared to the horizontal boundary conditions (2.4)-(2.6), only the term Pm-r,n+rA at
the right-hand side is missing and in (3.11) an extra term pO,r at the left-hand side is
missing. Using (3.2)-(3.3), it is readily verified that for Pm,n = Xm,n(O'O, 130) the missing
terms vanish. So it is harmless for Pm,n = xm,n(O'O' 130) to add these terms to (3.11)-(3.13),
and by doing so, we get equations of the same form as the equations (2.4)-(2.6), implying
that Xm,n(O'O, 130) indeed satisfies the conditions (3.11)-(3.13).

Hence, we can conclude that xm,n(0'0,130) formally satisfies all equilibrium equations,
except for the ones in the points (m, n) with m+n < r. So there are r(r+ 1)/2 boundary
equations to be satisfied yet. Ifwe can find r(r + 1)/2 pairs 0'0,130 for which xm,n(O'O, 130)
converges, then, by linearly combining these solutions, we can construct a solution that
also satisfies the remaining boundary conditions. In the next section it will be investigated
for what 0'0, 130 the series xm,n(O'O, 130) converges.

4 Convergence results

For convergence of Xm,n(O'O' 130) for fixed m and n we need that the compensation terms
converge sufficiently fast to zero as i tends to plus or minus infinity. So it would help if

11



we are able to show that OJ and /3i converge to zero as i tends to plus or minus infinity.
For convergence of the sum of xm,n(00, (30) over all values m and n (necessary for normal­
ization) we need that lod < 1, l.8il < 1 for all i. In this section we investigate whether OJ

and .8j indeed converge to zero and remain inside the open unit disk.
The numbers OJ and .8i are defined as roots of equation (3.1). The next lemma formu­

lates some useful properties of the roots of equation (3.1).

Lemma 4.1 For each fixed 0 satisfying 0 < 101 < 1, equation (3.1) has exactly one root
.8 with 0 < 1.81 < Riol and r roots.8 with 1.81 > 101, where R is the positive root, less than
one, of the equation

For each fixed /3 satisfying 0 < 1.81 < 1, equation (3.1) has exactly r simple roots 0 with
o< 101 < 1.81 and one root a with 101 > 1.81.

Proof We first prove the first part of the lemma. Let a be fixed and satisfy 0 < 101 < 1.
By dividing equation (3.1) by or+l and introducing z = .8/0 we may rewrite (3.1) as
f(z) +g(z) = 0, where f(z) = .\zr+l + O'Z2 and g(z) = -(2 + .\)z + 1. It follows for all z
with z i= 0 that

If(z)I-lg(z)1 < .\Izlr+l + Izl2- (2 + A)lzl + 1.

It is readily verified that the right-hand side h(x) = AX r+1 +x 2
- (2 +A)X +1 is convex for

x ~ 0, h(O) = 1 > 0, h(l) = 0 and h'(l) = r.\ > O. Hence, h(x) = 0 has two positive roots,
namely x = 1 and one in (0,1), say x = R. Subsequently applying Rouche's Theorem to
the circles Izi = Rand Izi = 1 proves the first part of the lemma.

Now let (3 be fixed and satisfy 0 < /.81 < 1.~ By dividing equation (3.1) by .8r +1 and
introducing u = 0/.8, we may rewrite (3.1) as f(u) + g(u) = 0, where f(u) = ur+1 + .8ur

and g(u) = - (2 + .\ )ur +.\. Analogously to the first part of the proof, application of
Rouche's Theorem yields that j(u) +g(u) has r zeros inside the circle lu I= 1. It is easily
seen that the derivative of j(u) +g(u) only vanishes for

_ r
u =-(2 +.\ - (3).

r+1

Since

Ij(u) +g(u)1 = I~ur+l - AI ~ ~Iulr+l - .\ > ~ (_r_(l + A))r+I - .\ ~ 0,
r r r r+l

we can conclude that all zeros of j(u) +g(u) are simple, which completes the proof of the
second part of the lemma. 0

For the convergence of xm,m(0'0, (30) it is helpful to choose ai, .8i as small as possible.
Therefore, starting with 00 satisfying 0 < 1001 < 1, we choose .80 as the root of (3.1)
with 0 < 1.801 < 10'01. Then Lemma 4.1 directly yields that for all i ~ 0 it is possible to
choose .8i as the smallest root in absolute value of (3.1) with fixed 0' = O'j. This implies
that O'j and .8i decrease exponentially fast to zero (at least with rate R) as i tends to
plus infinity and that 10ji < 1, l.8jl < 1 for all i ~ O. However, in the upper part of
the tree of numbers OJ and .8i, it appears that 0i and .8j do not remain inside the open
unit disk. Since 1.801 < 10'01, it holds that 1.8-11 > 10'01, so there is exactly one OJ with
j = -1, ... ,-r such that 100ii > 1.8-11, say 0'-1. Now we have 1.8-21> 10'-11 (for the
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other O-i with j = 2, ... , r it is possible to choose 1.8-i-ll < 10-i I). Hence, repeating the
argument above, we find a path starting in 00 along which Ok and .8k are monotonously
increasing in absolute value, the modulus of the ratio of .8k and its o-predecessor being
at least R-1. So this path eventually ends in some .8i-l with i :5 0 for which l.8i-ll ~ 1
or one of its descendants Ori-j, j = 1, ... , r satisfies 10r-il ~ 1. In the first case, the
addition of the compensating term Cidi-1.8f_loi would lead to a solution which cannot
be normalized. Since Ci is nonzero (cr. (3.8)) this can only be repaired by requiring that
di - 1 = O. In the second case, we have to prevent the addition of di - 1c;.i-jo~_j.8f_l' Since
Cri-i is nonzero, this again implies di- 1 = O. After renumbering the terms this amounts
to the requirement d_1 =O. This means that the initial product doCoo~.8~ has to satisfy
the horizontal boundary conditions.

Hence, summarizing our findings, to guarantee for the initial roots 00, .80 satisfying
1 > 1001 > 1.801 > 0 that the numbers 0i and.8i converge to zero and remain inside the open
unit disk, we have to require that doo~.8~ satisfies the horizontal boundary conditions, i.e.
there are nonnull coefficients do, eo,O,' .. ,eO,r-l such that do.8~o~ for m ~ 0, n ~ rand
eo,no~ for m ~ 0, n = 0, ... , r - 1 satisfy the horizontal boundary conditions (2.4)-(2.6).
In that case, namely, we only have to generate the lower part of the tree of compensating
terms. To prevent that in the lower part of the tree 0i or .8i runs out of the open unit disk,
we choose .8i as the smallest root in absolute value of equation (3.1) for fixed 0 = 0i for
all i ~ O. Then the numbers 0i and .8i converge (exponentially fast) to zero as i tends to
plus infinity and remain inside the open unit disk for all i ~ O. Pairs 00,.80 which satisfy
these requirements will be called feasible pairs. Since.8o is uniquely determined once 00
is given, we will simply speak of feasible oo's without mentioning the corresponding .8o's.

The question arises whether there exist feasible oo's and if so, how they may be found.
In the next section we will try to answer this question.

5 The quest for feasible aO's

Insertion of the sequence Pm,n given by do.8~o~ for m ~ 0, n ~ r and eo,no~ for m ~ 0,
n = 0, ... , r - 1 into the horizontal boundary conditions (2.4)-(2.6), where .80 is the
smallest root of equation (3.1) for 0 = 00 with 1001 < 1, and then dividing the resulting
equations by common powers of 00 yields the following set of equations for 00 and the
coefficients do, eo,O, ... , eO,r-l (see (3.9) with d_ 1 = 0):

(5.1)

The feasible oo's are the ones for which this set of equations has a nonnull solution.
The analysis of this set of equations, however, seems to constitute a difficult analytical
problem. Therefore, we will follow another approach to find the feasible oo's, which is
more elegant from an analytical as well as computational point of view. This approach is
inspired by the following result for the exponential case r = 1. For r = 1 it appeared that
there is a relation between the equilibrium distributions of the standard shortest queue
problem and the shortest queue problem with instantaneous jockeying (i.e. a job jumps
to the other queue as soon as this would improve its perspectives). In [2] it has been
shown that the equilibrium probabilities Pm,n of the instantaneous jockeying problem can
be expressed as

- f mPm,n = nO , m ~ 0,0:5 n :51, (m,n) =/: (0,0),
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for 0'= p2 and some fa and /I. Remarkably, a appears to be the feasible 0'0 for the case
r = 1 (see [1]). In this section it will be investigated whether also for the general case the
solution of the instantaneous jockeying problem produces the feasible ao's.

For general r, the jockeying problem is characterized by the property that as soon as
the difference between the number of subjobs in the two queues exceeds r, then one job,
or equivalently a batch of r subjobs jumps from the longer to the shorter queue. For the
model with Erlang-3 servers the transition-rate diagram is depicted in Figure 4 (compare
Figure 1).

n

2 2

--+-_~ ~ -I------o --->;'_--om

A

Figure 4: The transition-rate diagram for the jockeying model with Erlang-3
servers.

We will first show that the probabilities Pm,n for the jockeying problem can be expressed
as a finite sum of geometric terms,

Pm,n = L:fn(a)am ,
o

m ~ 0, 0::; n::; r, (m,n) =I (0,0),

where a runs through a set of r(r +1)/2 possible values and then we show that these a's
indeed produce the feasible ao's.

5.1 Analysing the jockeying problem

For the points (m, n) with m > 0, °::; n ::; rand m +n ~ r the probabilities Pm,n for the
jockeying problem satisfy the following relations:

Pm,0(2 +A) - Pm,l +Pm-r,r A; (5.2)

Pm,l (2 + A) - Pm,2 +Pm+I,02 +Pm-r+l,r-l A; (5.3)

Pm,n(2 + A) - Pm,n+l +Pm+l,n-l +Pm-r+n,r-n A, I<n<r-I; (5.4)

Pm,r-l (2 + A) - Pm,r2 +Pm+l,r-2 +Pm-l,IA; (5.5)

Pm,r(2 + A) = Pm+l,r-l +Pm,OA . (5.6)

These relations are valid for r ~ 3. For the special cases r = 1 and r = 2 it is easily seen
how these relations should be adapted. In this subsection we will attempt to construct a
solution of the jockeying problem by combining geometric terms of the form

- f mPm,n = nO' ,

14
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which all fit the equations (5.2)-(5.6) for the interior points. Inserting the form (5.7) into
(5.2)-(5.6) and then dividing the resulting equations by common powers of 0 leads to the
following set of r+ 1 equations for fo, . .. , fT and o.

(5.8)

where the (r+l)x(r+1)-matrix A(o) is composed of the matrix A(o) and an extra column:

K,OT OT 0 0 0 0 0 0 ,X

20T K,OT-l OT-l 0 0 0 0 ,X 0
0 OT-l K,OT-2 OT-2 0 0 ,X 0 0

A(o) =
0 0 OT-2 K,OT-3 OT-3 ,X 0 0 0

0 0 ,X 0 0 0 3 K,0 2 0 2 0
0 ,X 0 0 0 0 0 2 K,O 20
,X 0 0 0 0 0 0 0 K,

with K, = -(2 + 'x). Now we would like to find the o's for which the set of equations
(5.8) has a nonnull solution fo, ... , fT' However, it is more convenient to consider the
symmetric equations obtained by insertion of the form

P _ 9 ,2m+n (5.9)m,n - n

into the equations (5.1)-(5.5). This leads to the following set of equations.

G(,) U:) = 0, (5.10)

where the (r+1) x (r+1)-matrix G(,) is given by

K,T ,T+l 0 0 0 0 0 0 ,x
2,T+! K,r ,T+l 0 0 0 0 ,x 0

0 ,T+l K,T ,T+l 0 0 ,x 0 0
0 0 ,T+l tqT ,T+l ,x 0 0 0

G(,) =

0 0 ,x 0 0 ,T+l K,T ,T+l 0
0 ,x 0 0 0 0 ,T+l K"T 2,T+!

,x 0 0 0 0 0 0 ,T+l K,T

Of course, the geometric forms (5.7) and (5.9) are equivalent; the substitution

0= ,2, fn = 9n,n, (5.11)

transforms (5.9) to (5.7). \Ve now try to find the ,'s with III < 1 for which equation
(5.10) has a nonnull solution 9o, ... ,9r, or in other words, for which the columns of G(,)
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are dependent. Instead, we consider the equivalent problem of finding the ,'s for which
the TOWS of G(,) are dependent, i.e., there is a nonnull solution ao, ... ,ar of the equations

(ao, ... ,ar)G(-y) = 0. (5.12)

Such ,'s will be called feasible. In the following two subsections we shall consider the
cases T is odd and T is even separately. In both cases r(r + 1) feasible ,'s will be found,
with the property that for each feasible, also -, is feasible. By (5.11), the square of
each feasible, yields an 0' for which (5.7) has a nonnull- solution. Let:F be the set of
squared feasible ,'so Then for each choice of the coefficients k(O') the linear combination

Pm,n = I:k(O')fn(O')O'm,
a

m ~ 0, 0$ n $ r, (m,n)"# (0,0),

satisfies the equations (5.2)-(5.6), where 0' runs through the set:F and fo(O'), ... ,fr(O')
is a nonnull solution of (5.8). The remaining equilibrium equations are the ones in the
states (m, n) with m + n < r and the one in (0, r). These equations form a linear,
homogeneous system for the unknowns k( 0') and the unknown quantity Po,o. The number
of equations is equal to the number of unknowns. Hence, since the system of equations
is dependent, there is a nonnull solution Pm,n and normalization of the Pm,n produces the
equilibrium distribution. These findings are summarized in the following theorem, for
which the proof will be completed in the subsections 5.1.1 and 5.1.2 by finding sufficient
numbers of feasible ,'so

Theorem 5.1 (Jockeying problem) For all states (m, n) with m ~ 0, °$ n $ rand
(m,n)"# (0,0) it holds that

Pm,n = L k(O')fn(O')O'm ,
a

where 0' runs through the set :F, fo(O'), ... , fr(O') is a nonnull solution of (5.8) and k(O')
is some appropriately chosen coefficient.

5.1.1 Finding the feasible ,'s in case r = 2k + 1

For each sequence ao, . .. ,ar satisfying the equations (5.12) it follows from the symmetry
of these equations that the reversed sequence ar, .. . , ao also satisfies (5.12). Hence,

and

are also solutions of (5.12). The first solution satisfies o'j = o'r_j, the second one satisfies
aj = -ar-j and at least one of the two solutions is nonnull if the original solution ao, ... , ar
is nonnull. Hence, we may conclude that for each feasible, there is a nonnull solution
ao, . .. , ar of (5.12) with aj = ar-j or aj = -ar-j. In the first case (5.12) simplifies to

(5.13)

and in the second case it simplifies to

(5.14)
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where the (k+1) x (k+1)-matrices G+b) and G-b) are given by

K"/ + ~ ,r+1 0 0 0 0 0
2,r+1 K,r + ~ ,r+l 0 0 0 0

0 ,r+1 K,r + ~ ,r+l 0 0 0
G+b) =

0 0 0 0 ,r+1 K,r + ~ ,r+l
0 0 0 0 0 ')'r+1 K')'r + ,),r+l + ~

K,r _ ~ ,r+1 0 0 0 0 0
2,r+1 K,r _ ~ ,r+l 0 0 0 0

0 ,r+l K,r _ ~ ')'r+1 0 0 0
G-b) =

0 0 0 0 ,r+l K,r _ ~ ,r+l
0 0 0 0 0 ,),r+l K,r _,r+l _ ~

Since r is odd, it directly follows that if ao, ... ,ak is a solution of (5.13) with, = 1',
then ao, -aI, a2, ... , (-1)k ak satisfies (5.14) with, = -1' (the same holds with (5.13) and
(5.14) interchanged). Hence, it suffices to find the ')"s with bl < 1 for which (5.13) has
a nonnull solution. The problem of finding these, 's can be translated to an eigenvalue
problem as follows. By dividing G+ b) by ')'r+1 and introducing

(5.15)

the matrix G+b) is transformed to the (k+1) x (k+1)-matrix H+ - zI, where I is the
(k+ 1) x (k+1) identity matrix and H+ is given by

0 1 0 0 0 0 o 0
2 0 1 0 0 0 o 0
0 1 0 1 0 0 o 0

H+ = (5.16)

0 0 0 0 1 0 1 0
o 0 0 0 o 1 0 1
o 0 0 0 o 0 1 1

for all k > 0 and by H+ = (2) for k = O. We now have to find the z's for which H+ - zI
is singular, i.e. we have to find the eigenvalues of H+. The feasible ,'s may then be found
from relation (5.15). The following lemma formulates properties of the eigenvalues of H+.
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Lemma 5.1 All eigenvalues of the (k+l)x(k+1)-matrix H+ defined by (5.16) are real­
valued and simple. The largest eigenvalue is 2 and the other ones are in absolute value
strictly less than 2.

Proof The case k = 0 is trivial. Now suppose that k > O. Dividing the first column of
the determinant IH+ - z11 by J2 and multiplying the first row by J2 yields IH+ - z11 =
IT - z11 where T is the (k+1) x (k+1) symmetric matrix given by

0 J2 0 0 0 o 0 0

J2 0 1 0 0 o 0 0
0 1 0 1 0 o 0 0

T=

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

So the spectrum of H+ is identical to the one of T. Since T is symmetric, all eigenvalues
of T are real and T can be reduced to diagonal form. Furthermore, since all elements
on the lower subdiagonal of T are nonzero and all elements below that subdiagonal are
zero, we can conclude that the dimension of each eigenspace is exactly one. Hence, all
eigenvalues of T, and thus also the ones of H+, are real and simple, which proves the first
part of the lemma.

To prove the second part of the lemma, notice that the spectral radius of H+ is
bounded by II H+ 111=2. Hence, all eigenvalues of H+ are in absolute value bounded by
2. The sum of the rows of H+ - 2I vanishes, so 2 is an eigenvalue of H+. It remains to
show that -2 is not an eigenvalue of H+. Let us consider the equations

or

2ao + 2Q1 = 0;

an-l +2an +an+l = 0,

ak-l +3ak - O.

n = 1, ... , k - 1;

The first k equations yield an = (-1)n ao and then the final one that ao = O. Hence,
H+ + 21 is nonsingular, and thus -2 is not an eigenvalue, which completes the proof of
the lemma. 0

For each eigenvalue u of H+ the roots inside the unit circle of equation (5.15) with z = u
produce feasible ,'so The following lemma states that this equation has exactly r simple
roots inside the unit circle. The proof of the lemma is similar to that of Lemma 4.1, and
therefore it is omitted.

Lemma 5.2 For given r ~ 1 and lui :5 2 the equation

(5.17)

has exactly r simple roots inside the unit circle.
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This concludes the determination of the set of ,'s with hi < 1 for which (5.13) has
a nonnull solution. As mentioned before, the set of ,'s for which (5.14) has a nonnull
solution may be found from the first set by multiplying each, in that set by -1. The
set :F is obtained by squaring the ,'s in these two sets. So, to produce :F, it suffices to
square the ,'s in the first set only. For each, in the first set, i.e. , is a root inside the
unit circle of (5.17) for some eigenvalue u, it holds that -, is not in this set, since for
each eigenvalue 5 of H+ we get (recall that r is odd)

15(-,y+l + K(-,Y +,\1 = 1- 2K,r + (5 - u)/r+11 ~ (2IKI- 4)hlr+1 ~ 2,\hl r+1 > 0,

where the equality follows by substituting ,\ = _K,r - u,r+l. Hence, we can conclude that
:F may be obtained by squaring the ,'s in the first set only, yielding r(k +1) = r(r +1)/2
possible values for Q. This is formulated in the following lemma.

Lemma 5.3 (Characterization of :F in case r = 2k + 1) The set :F may be obtained
by squaring the roots, with III < 1 of the equations (5.17) where u runs through the set
of eigenvalues of the (k+1)x(k+l)-matrix H+ defined by (5.16).

5.1.2 Finding the feasible ,'s in case r = 2k

Analogously to the previous subsection, we may conclude, by the symmetry of the set of
equations (5.12), that, if there is a nonnull solution ao, ... , ar to (5.12), then there is also
a solution with aj = ar-j. So (5.12) simplifies to

(5.18)

or with aj = -ar_j, in which case ak = 0 and (5.12) simplifies to

(5.19)

where the (k+1) x (k+1)-matrix G+b) is given by

K,r + ,\ ,r+l 0 0 0 0 0
2,r+l K,T + A ,T+l 0 0 0 0

G+b) = 0 ,r+l K,r + A ,r+l 0 0 0

0 0 0 0 ,r+l K,r + A 2,r+l

0 0 0 0 0 ,r+1 K,r + A

and the k x k-matrix G- (,) is given by

K,r - A ,r+l 0 0 0 0 0
2,r+l K,r - A ,r+l 0 0 0 0

0 ,r+l K,r - A ,r+1 0 0 0
G-b) =

0 0 0 0 ,r+l K,r - A ,r+1
0 0 0 0 0 ,r+l K,r - A

The problem of finding the ,'s with III < 1 for which (5.18) or (5.19) has a nonnull
solution may again be transformed to an eigenvalue problem. By dividing G+ (,) by ,r+1
and introducing

K,r + A
(5.20)-v= ,r+l
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the matrix G+ h') is transformed to the (k +1) x (k +1)-matrix H+ - vI, where I is the
(k+ 1) x (k+ 1) identity matrix and H+ is given by

0 1 0 0 o 0 o 0
2 0 1 0 o 0 o 0
0 1 0 1 o 0 o 0

H+= (5.21)

o 0 o 0 1 0 1 0
o 0 o 0 o 1 0 2
o 0 o 0 o 0 1 0

Similarly, by dividing G- (,) by ,r+l and introducing

(5.22)

the matrix G-h') is transformed to the k x k-matrix H- - wI, where I is the k x k
identity matrix and H- is given by

0 1 0 0 0 0 o 0
2 0 1 0 o 0 o 0
0 1 0 1 o 0 o 0

H-= (5.23)

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

\Ve now have to find the v's and w's for which H+ - vI and H- - wI respectively are
singular, i.e. we have to find the eigenvalues of H+ and H-. The feasible ,'s may then
be found from the relations (5.20) and (5.22). The following lemma formulates properties
of the eigenvalues of H+ and H-.

Lemma 5.4 All eigenvalues of the (k+l) x (k+l)-matrix H+ defined by (5.21) and the
k x k-matrix H- defined by (5.23) are real-valued, simple and bounded- by 2. Both 2 and
-2 are eigenvalues of H+. All eigenvalues of H- are in absolute value strictly less than
2. For each eigenvalue (1 of H+ or H- it holds that -(1 is also an eigenvalue.

Proof Multiplying the even rows and the odd columns of the matrices H+ - vI and
H- -wI by -1 yields H+ +vI and H- +wI respectively, hence we get for the determinants
IH+ - vII = (_1)k+1 IH+ +vII and IH- - wII = (-l)kIH- +wII, implying that for each
eigenvalue (1 of H+ or H- also -(1 is an eigenvalue. The rest of the lemma can be proved
similarly to Lemma 5.1. 0

For each eigenvalue (1 of H+ we get by substituting v = (1 in (5.20) the equation

(5.24)

By Lemma 5.2 this equation has exactly r simple roots inside the unit circle, each root
producing a feasible ,. The roots of (5.24) for the eigenvalue -(1 follow by multiplying
the ones of (5.24) for (1 by -1. Hence, since :F consists of squared feasible ,'s, it suffices
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to consider the nonnegative eigenvalues of H+ only. It is readily verified for, satisfying
(5.24) for some (j > 0 that -, cannot satisfy (5.24) for some u 2::: O. Of course, if ,
satisfies (5.24) for (j = 0, then also -, satisfies that equation. Notice that (j = 0 is only
an eigenvalue of H+ if k if even, otherwise it is an eigenvalue of H-.

Similar remarks can be made for the roots of the equations

(5.25)

where T runs through the set of eigenvalues of H-. Furthermore, for each, with 111 < 1
satisfying (5.25) for some eigenvalue T, it holds that ±, cannot satisfy (5.24) for some
eigenvalue (j, since (recall that r is even)

where the equality follows by substituting). = K,T + T,T+!. Hence, we can conclude that
:F may be obtained by squaring the roots inside the unit circle of the equations (5.24)
and (5.25), where (j and T run through the set of nonnegative eigenvalues of H+ and H­
respectively, yielding (r + l)k = r(r + 1)/2 possible values for 0'. This is formulated in
the following lemma.

Lemma 5.5 (Characterization of :F in case r = 2k) The set :F may be obtained by
squaring the roots, with 111 < 1 of the equations (5.24) and (5.25) where (j runs through
the set of nonnegative eigenvalues of the (k+l)x(k+1)-matrix H+ defined by (5.21) and T

runs through the set of nonnegative eigenvalues of the k x k-matrix H- defined by (5.23).

5.2 Characterizing feasible Q'O's

We now return to the problem of finding the feasible O'o's for the original problem with
no jockeying (see the beginning of Section 5). The following theorem formulates the
remarkable result that the set :F yields the feasible O'o's.

Theorem 5.2 The set :F is the set of feasible 0'0 's for the original problem without jock­
eying.

Proof VVe will first show that each 0'0 in the set :F is feasible. Then we will show that
:F yields all feasible values for Qo.

Part 1. Each Qo E :F is feasible.
To establish the first part we have to show for each Qo in the set :F that there are

nonnull coefficients do, eo,O, ... , eO,r-l such that the sequence Pm,n given by

for m 2::: 0, n 2::: rand
for m 2::: 0, 0 ~ n < r

(5.26)

satisfies the horizontal boundary conditions (2.4)-(2.6), where /30 is the smallest root of
equation (3.1) with 0' = 0'0. Since 0'0 is in the set :F it holds that

for some feasible,. Hence, we can rewrite the sequence Pm,n in the form (cf. (5.9))

P = g ...,2m+nm,n n I ,

21

m 2::: 0, n 2::: 0, (5.27)



where
(~o) n-r

n~r (5.28)gn = gr -:; ,

and

_ { do ('J:-r' n = r;
gn - n

eo,n (~) , O$n<r.

The original problem of finding nonnull coefficients do, eo,O, ... ,eO,r-l such that the se­
quence Pm,n given by (5.26) satisfies the conditions (2.4)-(2.6) can now be translated to
finding a nonnull sequence gn satisfying (5.28) such that the sequence Pm,n given by (5.27)
satisfies the conditions (2.4)-(2.6).

Insertion of the form (5.27) into the inner conditions (2.1) and the horizontal boundary
conditions (2.4)-(2.6) and then dividing by common powers of , leads to the following
set of equations for the sequence gn'

(5.29)

where the countable matrix G(i) is given by (cr. the matrix G(i))

"'i
r i r+1 0 0 0 0 0 0 ,\ 0 0

2ir+1
"'i

r ,r+l 0 0 0 0 ,\ 0 ,\ 0
0 i r+1

"'i
r i r+1 0 0 ,\ 0 0 0 ,\

0 0 i r+1
"'i

r i r+1 ,\ 0 0 0 0 0

G(,) = 0 0 ,\ 0 0 i r+1
"'i

r ,r+l 0 0 0
0 ,\ 0 0 0 0 i r+1

"'i
r i r+1 a 0

,\ 0 0 0 0 0 0 i r+1
"'i

r i r+1 0
0 0 0 0 0 0 0 0 i r+1

"'i
r i r+1

0 0 0 0 0 a 0 a 0 ,r+l
"'i

r

where the upper left block is of dimensions r+1x r+1. Since the sequence gn for n ~ r is
given by (5.28), all equations in (5.29), except for the first r + 1 equations, are satisfied
for each choice of gr' Substitution of (5.28) into the first r +1 equations of (5.29) yields a
system of r +1 homogeneous linear equations for go, ... ,gr. It now has to be shown that
this system of equations has a nonnull solution.

First we shall show that the rows of G(i) are dependent, i.e. there is a nonnull bounded
solution ao, at, ... of

(5.30)

Since, is feasible, it follows that the equations (5.12) have a nonnull solution ao, . .. , ar'
It is possible to extend this sequence periodically (with period 2r) to all nonnegative
integers, such that it satisfies (5.30). Namely, by defining for all k = 1,2, ...

j=O,I, ... ,r,
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it is easily verified that the resulting sequence ao, aI, . .. is a nonnull bounded solution of
the system of equations (5.30).

We can now prove that there indeed exist nonnull numbers 90, ,9r such that the
first r + 1 equations in (5.29) are satisfied. At least one of ao, , ar is nonzero, say
ak. By substituting (5.28) into the first r + 1 equations of (5.29) and omitting the k-th
equation we get a system of r homogeneous linear equations for 90, ... ,9r. This system
has a nonnull solution. Now it remains to prove that for this solution the k-th equation
in (5.29) is also satisfied. Since ao, aI, . .. satisfies (5.30) we have for all j = 0,1, ... that

00

L: ai9ij = 0,
i=O

where the 9ij'S are the elements of the matrix G(,). Multiplying the j-th equation by 9j
and then summing over all j yields

00 00

L: L ai9ij9j = O.
j=Oi=O

Since 1,801 < laol = 1112 < III, so 1,801,1 < 1, it follows from (5.28) that

00

L: 19i1 < 00.
j=O

Hence, since the sequence ao, al, ... is bounded, we get

00 00 00 00 00

L L lai9ij9jl :5 sup lail L L 19ijl19jl :5 2111:1 s~p lail L 19j1 < 00.
j=O i=O I j=O i=O I j=O

So we may change summations in the double sum (5.31) yielding

00 00

L: ai L: 9ij9j = 0 .
i=O j=O

(5.31)

(5.32)

The sequence 9j satisfies all equations in (5.29), except maybe for the k-th equation, so
the equality (5.32) reduces to

00

ak L9kj9j = O.
j=O

Hence, since ak is nonzero, we can conclude that the k-th equation is also satisfied. This
completes the first part of the proof.

Part 2. :F yields all feasible values.
To finally prove that :F produces all feasible values for ao we introduce an irreducible

Markov process on a slightly different grid, namely

{(m,n)lm ~ O,n ~ O} u {(m,n)lm < O,m + n ~ r}.

The transition rates from states (m; n) with n < r are identical to the ones for the
original process. From the other states the transition rates are identical to the ones
from the interior points of the original process, where it is assumed that transitions from
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Figure 5: The transition-rate diagram for the Markov process in the proof of Theorem
5.2 on the grid {(m,n)lm ~ O,n ~ O}U{(m,n)lm < O,m+n ~ r} for the case r = 3.

(m, r - m) with m < 0 to (m, r - m -1), which is not a grid point, are redirected to the
origin. The transition rate diagram for the case r = 3 is depicted in Figure 5 (compare
Figure 1).

The equilibrium equation in state (m, n) with m + n ~ r is given by (2.1) for n > r,
(2.4) for 1 < n ~ r, (2.5) for n = 1 and (2.6) for n = O. Hence, for each feasible 0:0 the
sequence Ym,n( 0:0) given by

for m + n ~ r, n ~ rand
for m ~ 0, 0 ~ n < r,

where 130 is the smallest root of (3.1) with 0: = 0:0 and the coefficients do, eo,O, ... , eO,r-l are
a nonnull solution of (5.1)' satisfies the equilibrium equations in all states with m+n ~ r.
The sequences Ym,n(O:O) with 0:0 in the set;: may be linearly combined such that the
remaining equations in the states with m + n < r are also satisfied. Substitution of the
linear combination

Pm,n = L: k(o:o)Ym,n(O:O)
OtoE:F

into the equilibrium equations in the states (m, n) with 0 < m + n < r yields a system
of r(r + 1)/2 - 1 homogeneous linear equations for the r(r + 1)/2 unknown coefficients
k(0:0)' So this system has a nonnull solution. The equation in (0,0) is also satisfied,
since insertion of Pm,n into the equations in states (m, n) ::j:. (0,0) and then summing
over these equations and changing summations exactly yields the desired equation. Since
11301 < 10:01 < 1 the sum of Ym,n(O:O) over all states absolutely converges, which implies that
changing summations is indeed allowed. Hence, Pm,n is an absolutely convergent solution
of all equilibrium equations. It is a nonnull solution, because the sequences Ym,n(O:O)
for different feasible O:o's are linearly independent (see Lemma 6.1 in the next section).
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Hence, from a result of Foster ([11], Theorem 1) it follows that the Markov process in
Figure 5 is ergodic and normalization of Pm,n produces the equilibrium distribution. Since
the equilibrium distribution of an ergodic Markov process is unique and for different oo's
the sequences Ym,n (00) are linearly independent, there cannot be more than r(r + 1) /2
feasible oo's. Hence, we may conclude that :F is the set of all feasible values of 00. This
completes the second part of the proof. 0

6 The finishing touch

In this section we first investigate under what conditions the construction of formal solu­
tions with feasible initial pairs does not fail, because of degeneration of the coefficients of
the compensating terms involved. Then we will prove that the formal solutions constitute
absolutely convergent series, except perhaps in a neighborhood around the origin. Finally,
the results obtained are summarized in the main result of this paper.

Each formal solution xm,n(OO, (30) has its own sequence {Oi, (3i} depending on the initial
value 00, and its own associated sequence of coefficients {C1, di , fi,O, ... ,fi.r-d (see Section
3). In the previous section we have found the feasible values for 00. For each feasible 00

it holds that d_ 1 = 0 and thus di- 1 = fi,O = ... = fi,r-1 = 0 for all i < O. Hence the upper
part of the tree of compensating terms vanishes (see Figure 2). Since the corresponding
(30 is uniquely determined as the smallest root of equation (3.1) with 0 = 00, we may
abbreviate the notation xm,n(OO, (30) to xm,n(OO)' So for each feasible 00 the series xm,n(OO)
simplifies for m ~ 0 and n ~ r to (see (3.5) and (3.6))

00 r

xm,n(OO) = 2.:di(CiQ~ + 2.:Cri+jO~+j)(3i (6.1)
i=O j=l

00 r

- Codof33Q~ +2.: 2.: cri+j(di(3i + dri+j(3~i+j)Q~+j (6.2)
i=O j=l

and for m ~ 0 and n = O, ... ,r-! to (see (3.7))

00

xm,n(00) = 2.: Cifi,nO;n .
i=O

(6.3)

We will now investigate whether the construction of xm,n(00) with feasible 00 can
possibly fail. From Lemma 4.1 we can conclude that the generation of the coefficients
Ci with i > 0 never breaks down because of a vanishing denominator in (3.8). So the
compensation on the horizontal boundary always works. It follows from (3.10) that the
generation of the coefficients dri+j, eri+j,O, ... ,eri+j,r-1 with i'~ 0 and j = 1, ... , r possibly
fails when the homogeneous equations

are linearly dependent, i.e. they have a nonnull solution. This means that the compen­
sating terms dri+j(3;!i+j0':i+j for m ~ 0, n ~ rand fri+j,nO':i+j for m ~ 0, n = 0, ... ,r - 1
can be fitted to the horizontal boundary conditions, so that Qri+j is feasible. This really
may occur, as simple examples show. Of course, this complication completely vanishes if

25



the term dil3iQ~+i itself can be fitted to the horizontal boundary conditions, i.e. if there
exist coefficients eri+i,O, ... ,eri+i,r-l such that

The question arises whether this is possible. Below we will show that the answer is
confirmative and in fact, it appears to be always possible when Qri+i is feasible.

So, let us suppose that Qri+i is feasible, say

2
Qri+i = 'Y

for some feasible 'Y. We now wonder whether there are coefficients eri+i,O, ... , eri+i,r-l
such that the sequence Pm,n given by

diQ~+il3i

eri+i,nQ~

for m 2: 0, n 2: rand
for m 2: 0, °~ n < r

(6.4)

satisfies the horizontal boundary conditions (2.4)-(2.6). If Il3il < III, then this can be
established by following exactly the same lines as in the first part of the proof of Theorem
5.2, where, since the coefficient dj is nonzero, it also has to be shown for the solution
90,91, ... of (5.29) that 9r is nonzero.

To prove that 9r is nonzero, we show that the assumption 9r = °leads to a contra­
diction. By (5.28), this assumption implies that 9n = °for all n 2: r. It then follows that
the sequence 90, ... ,9r-I,9r (with gr = 0) satisfies the equations (5.10). Consequently,

and

also satisfy (5.10). Now rh =0 or rli == 0, since otherwise, both C+({).and C-({) would
be singular, which is not possible, as we have seen in the subsections 5.1.1 and 5.1.2.
Hence, we obtain that 90 = 0. This implies, together with 9r = 0, that 9i = 0, which
obviously is a contradiction. So, indeed, we may conclude that 9r is nonzero. Remark
that by using the same arguments it follows that for each feasible starting solution the
coefficient do is nonzero. So we may set do = 1 and then solve the equations (5.1) for the
coefficients eo,O,"" eO,r-l'

Now it remains to show that Il3il < III. To do so, it will be helpful to first derive
bounds for l3i and 'Y.

Definition 6.1 For 0 ~ u ~ 2 define U(u) as the root on (0,1) of (ef. (5.17))

and L(u) as the root on (0,1) of
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Lemma 6.1

(i) For eaeh , with iii < 1 satisfying (ef. (5.17) and (5.24))

or (ef. (5.25))

(6.5)

(6.6)

where 10'1 ~ 2, it holds that

L(IO'I) ~ iii ~ U(IO'I);

Proof First observe that for 10'1 ~ 2 it holds that

10'1x r +1 + /\,x
r + >. > 0,

< 0,

o~ x < U(IO'I);

U(IO'I) < x ~ 1.

Now, for each, with iii < 1 satisfying (6.5) or (6.6) we obtain

so

from which it directly follows that iii ~ U(IO'I). The other inequality can be proved
similarly and the proof of part (ii) is straightforward. 0

Corollary For all feasible, 's it holds that L(2) ~ iii ~ U(2).

Let us from here on abbreviate L(2) and U(2) by Land U respectively. In Figure 6
the feasible ,'s together with the bounds Land U are depicted for r = 10 and>. = 0.1.
In this case the feasible ,'s are the roots inside the unit circle of the equations (5.24)
and (5.25) where 0' and T run through the set of 3 nonnegative eigenvalues of H+ and
H- respectively (d. Lemma 5.5). The roots are rather insensitive to changes in 0' and T

respectively. This explains why the feasible ,'s in Figure 6 are clustered in groups of 3.
The Corollary gives a lower bound for iii, namely

iii ~ L.

To get an upper bound for l,Bil, remark that it follows from Lemma 4.1 that l,Bil < Rlail.
Combining this inequality with lail ~ laol ~ U2 yields

Hence, we are done once the following lemma has been established.
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Figure 6: The feasible I'S together with the bounds L
and U for the case that r = 10 and ,\ = 0.1.

Lemma 6.2 L > RU2 •

Proof The numbers U, Land R are subsequently defined as the roots on (0,1) of

rxT+1
_ (r + p)XT+ p = 0;

- rxT+1
- (r + p)XT+ p = O·,

pXT+1
_ (r + p)x + r(x 2 + 1)/2 = 0,

(6.7)

(6.8)

(6.9)

where K and ,\ have been eliminated by substituting K = -(2 + ,\) and ,\ = 2p/r respec­
tively. One of the problems to establish the inequality in the lemma is that L, Rand
U are implicitly defined. Therefore we first derive an explicit upper bound for U. Since
x = 1 satisfies (6.7), this equation can be rewritten as

(x - l)(rxT- p(xT- 1 +... + x + 1)) = o.

Hence, U satisfies
rUT - p(UT-l +... +U + 1) = 0,

from which it follows that

We will now prove that

(6.10)
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(6.11)

(6.13)

(6.14)

which, of course, implies the desired inequality. Now (6.10) holds iff for x = R W the
left-hand side of (6.8) is positive, i.e.

-rRrp2 R W - (r +p)Rrp2 +p > 0,

which definitely holds if

or equivalently,

R< 1
V(2r + l)p

This inequality is trivial for p $ Ij(2r + 1). For r = 1 we have R = 1/(2p + 1), so in
this case it is clear that (6.11) is valid for all 0 < p < 1. Hence, it remains to prove that
(6.11) is valid for 1/(2r + 1) < p < 1 and all r > 1. This proceeds straightforwardly as
will be shown below.

Inequality (6.11) holds iff for x = 1/ V(2r + l)p the left-hand side of (6.9) is negative,
which, by dividing by x, amounts to

2 ~ 1 - (r + p) + -2
r (V 1 + V(2r + l)P) < O. (6.12)

r r (2r+l)p

By substituting y = V(2r + l)p in (6.12) and defining

1 yr r
f(y) - - r _ + _(y-l + y)

- 2r + 1 2r + 1 2 '

we thus have to show for r > 1 that f(y) < 0 for y > 1. Since f(l) =0, we are done once
it has been establlshed that f'(y) < 0 for y > 1. Now f'(y) is strictly concave for y > 1
having its maximum at

1

f; = (2r + 1) r+1
r-1

where

f(fj) =:. (1- r+ 1~)
2 r - 1 y2

Hence, if f'(f;) < 0, then we may conclude that indeed f'(y) is negative for all y > 1.
Equality (6.13) implies that f'(f;) < 0 if

_2

-2 (2r+1)r+1 r+1
y = < --,

r-1 r-l

or, equivalently, by raising both sides to the power (r + 1) /2 and multiplying both sides
with (r - l)j(r + 1),

r-l r-l

2r +1< (r +1) -2 = (1 + _2_) -2

r+1 r-1 r-l

It is readily verified that inequality (6.14) is valid for r = 2. Since the left-hand side of
(6.14) is less than 2 and the right-hand side is increasing and equal to 2 for r = 3, it
follows that (6.14) is valid for all r > 1. This completes the proof of the lemma. 0
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Summarizing, we have found that the construction of Xm,n (0'0) with feasible 0'0 never
degenerates. We now try to prove that the series (6.1) converges absolutely. We need
absolute convergence to guarantee that rearranging of terms is feasible (see (6.2)). The
series (6.1) however, might possibly diverge in states near the origin of the state space,
but we will prove:

Theorem 6.1 There exists an integer N ~ r such that for all feasible 0'0 's the following
holds:

(i) The series L~o diCiO'i.8i and L~o diCri+j O':1+j.8i with j = 1, ... , r, which add up
to xm,n(0'0, .80) by definition for m ~ 0, n ~ r, converge absolutely for all m ~ 0,
n ~ r with m +n ~ N;

(ii) The series L~o Ciei,nO'i, which defines Xm,n( 0'0, .80) for m ~ 0, 0 :5 n < r, con­
verge absolutely for all m ~ N - r, 0 :5 n < r;

(iii) L(m,n)EA IXm,n(O'o,.8o)1 < 00, where A is the set of states on which the series in
(i) and (ii) converge absolutely, i.e.

A = {(m,n)lm ~ 0, n ~ r, m + n ~ N} u {(m,n)lm ~ N - r, 0:5 n < r}.

In the following lemma we will first formulate the limiting behaviour of the sequence
{O'i, .8d~o and the associated sequence of coefficients {Ci, di, ei,O,' .. , ei,r-d~o' \Vith these
results the proof of the theorem itself appears to be simple. If di = 0 for some i ~ 0, then
the complete subtree of compensating terms starting with diciO'i.8i vanishes. Hence, to
prove Theorem 6.1 it suffices to consider the case that di never vanishes.

Lemma 6.3 Let 0'0 satisfy 0 < 10'0 I < 1 and let .8i be the smallest root in absolute value
of equation (3.1/ with 0' = O'i for all i ~ O. Suppose that the equations (3.10) for the
coefficients dri+j , eri+ j,O, .•. , eri+j,r-1 have a solution for all i ~ 0 and j = 1, ... , r, so that
the generation of these coefficients never breaks down, and suppose that di never vanishes.

Then we have:

(i) If i -+ 00, then

.8i 1
-+ - ,

O'i Ao
O'ri+j

-+ Aj , j=I, ... ,r
.8i

(6.15)

(6.16)

where AI, ... , Ar are the r simple roots inside the unit circle and Ao is the root
outside the unit circle of the equation zr(2 + -X) = -X + zr+1;

(ii) If i -+ 00, then

C ( A· - 1) TIk.J.· (l - ...!..)ri+j -+ C. ~f _) or) Ao Ak

) (1 1)'Ci (Ao - 1) TIk.J.· - - -
or) Aj Ak

j = 1, ... ,r

where the index k in the two products runs through 1, ... , r;
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(iii) If i -+ 00, then

eri+i,r-k
dd3[

-+ _ (~:) r

-+ - (1; -1~) k=1, ... ,r-1,

Proof By dividing equation (3.1) by W+1 and introducing Z = 0/13 we get

(6.17)

For 13 = 13i this equation has roots Zo = od13i and Zj = ori+j/13i, j = 1, ... , r. From
Lemma 4.1 it follows that as i -+ 00, then 0i and 13i -+ 0, and since the roots of (6.17)
continuously depend on the parameter 13, this implies that the roots Zi converge to the
roots of equation (6.17) with 13 = O. Similar to the proof of Lemma 4.1 it can be shown
that equation (6.17) with 13 = 0 has r simple roots inside the unit circle and one outside
the unit circle. This completes the proof of part (i). The proof of part (ii) directly follows
from expression (3.8) and the limits (6.15)-(6.16). From the limiting behaviour of 0i and
13i we obtain for the matrix A(Ori+J and the vectors C(Ori+j,13ri+i) and C(ori+i,13d in
the equations (3.10) that as i -+ 00,

0 0 0 0
0 0 0 ~

0 0 ~ 0
A(Ori+i) -+

0 ~ 0 0
~ 0 0 0

~ A.t-l
o

-Ao

from which part (iii) readily follows.

31

o



(6.18)

Proof of Theorem 6.1 If di = 0 for some i > 0, then the complete subtree of compen­
sating terms starting with dicia'i f3i vanishes. Hence, it suffices to consider the case that
di never vanishes. To prove Theorem 6.1 in this case, consider a fixed m ~ 0 and n ~ r.
Then by Lemma 6.1, as i -+ 00 and j = 1, ... , r,

Idicri+ja~+jf3il = ICri+ja~+jl -+ IC.I (IAjl)m
IdiCia'i f3rl ICiai I J IAol

and

Idri+~Cr~+~aE+jf3:i+jl= Idri+jf3:i+jl -+ (IAjl)n-r (6.19)
Id,cr'+Jari+jf3i I Idi f3i I IAol

To formulate the condition for absolute convergence of Xm,n(ao) we introduce the notion
of a positive geometric r-fold tree.

Definition 6.2 The sequence no, nl, ... is called a positive geometric r-fold tree if:

(i) The sequence no, nl, ... has an r-fold tree structure as depicted in Figure 7j

(ii) no > 0;

(iii) There are positive numbers RI, ... , Rr such that nri+j = Rjni for all i ~ 0 and
j = 1, ... ,r.

~. ~. '"
Figure 7: The r-fold tree structure of the sequence ni.

For an r-fold tree no, nI,. " it is easy to prove the following necessary and sufficient
condition for convergence of E~o ni.

Lemma 6.4 For a positive geometric r-fold tree no, nl, ... with rates RI , ... , Rr it holds
that E~o ni < 00 iff R1 +... +Rr < 1.

The compensating terms in the lower part of the tree in Figure 2 add up to xm,n(ao) (the
upper part vanishes for feasible ao's). This tree may be split up into two subtrees, one
consisting of the terms dicia'i f3i with i ~ 0 and the other of the terms dicri+ja~+jf3iwith
i ~ 0 and j = 1, ... , r. From the limits (6.18)-(6.19) it readily follows that the tree of
terms Idicia'i f3il asymptotically behaves as a positive geometrical r-fold tree with rates

(
IAj I) m+n-r

Rj(m +n) = IGjl IAol '
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The same holds for the tree of terms IdiCri+ja;i+j.8fl. With Lemma 6.2 it is now straight­
forward to show that the sum of the terms in the two trees converges if R1(m + n) +...+
Rr(m +n) < 1.

Similarly, by Lemma 6.1, we obtain for fixed values of m ~ 0 and n = 0, ... , r - 1
that as i --+ 00 and j = 1, ... , r,

ICri+jeri+j,n::.i+j I --+ lej I (IAj I) m

ICiei,nai I IAol
Hence, the tree of compensating terms ICjeiai I with i ~ 0 asymptotically behaves as a
positive geometrical r-fold tree with rates Rj ( m), j = 1, ... ,r. So the sum of the terms
converges if R1(m) + ... + Rr(m) < 1.

We can now define the integer N mentioned in Theorem 6.1 as follows.

Definition 6.3 N is the smallest integer ~ r for which R1(N) + ... + Rr(N) < 1.

We finally prove Theorem 6.1(iii). Insertion of the series (6.1) and (6.3) yields

L IXm,n(ao,.8o)1 -
(m,n)EA

N-r-1 00 00 00

L L IXm,n(ao, .80)1 + L L IXm,n(ao, .80)1
m=O n=N-m m=N-r n=r

r-1 00

+ L L IXm,n(ao, 110) I
n=O m=N-r

N-r-1 00 00 r

< L L L (ldiciai.8il +L Idicri+ja :.i+ j.8il)
m=O n=N-m i=O j=l

00 0000 r

+ L L LUdiciai.8il + L Idicri+ja:.i+j.8il)
m=N-r n=r i=O j=l
r-1 00 00

+L L L ICi€i,nai I
n=O m=N-r i=O

1 N-r-1 00 r

< 1-1.8 ILL (ldiciai.8f-ml+ L IdiCri+ja:.i+j.8f-ml)
o m=O i=O j=l

1 00 r

+ (1 - 1.801)(1 - lao!) ~(ldiCiaf-r .8FI +.f; IdiCri+ja~+;.8FI)

< 00,

since each of the series converges by virtue of the parts (i) and (ii) of Theorem 6.1. This
completes the proof of Theorem 6.1. 0
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We can now prove our main result stating that for states (m, n) in the set A the equi­
librium probabilities Pm,n can be expressed as a linear combination of the series xm,n(OO)
with 00 running through the set F of feasible values. In Figure 8 the set A is depicted
for the special case that r =3 and N = 6.

n

___ L ...o..-_-__- - m
I

I

I

Figure 8: The set A on which the series xm,n(00, (30)

converge absolutely, for the special case r = 3 and
N=6.

Theorem 6.2 (Main result) For all states (m, n) in the set A it holds that

pm,n = L k(oo)xm,n(oO)
O'oEF

for appropriately chosen coefficients k( 00)'

Proof Define for all (m, n) E A

Pm,n = L k(oo)xm,n(OO) '
O'oEF

where the coefficients k(00) still have to be selected appropriately. These Pm,n satisfy
the equilibrium equations at least for all states m + n ~ N, since these equations only
contain Pm,n with (m, n) E A . .The remaining equations to be satisfied are the ones in
states (m, n) with m + n < N. These equations form a linear, homogeneous system
for the unknowns k(oo) and the unknown quantities Pm,n with (m, n) not in A. For
N = r all states are contained in A, so there are no undefined Pm,n' For N > r, there are
tN(N +1) - tr(r +1) states not in A. Therefore, the number of equations is always equal
to the number of unknowns, viz. !N(N+1). Hence, by first omitting the equation in (0,0)
say, the reduced system has a nonnull solution. The equation in (0,0) is automatically
satisfied, since inserting the solution Pm,n into the equations in states (m, n) :/: (0,0) and
then summing over these equations and changing summations exactly yields the desired
equation. Changing summations is allowed by the absolute convergence stated in Theorem
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6.1(iii). Hence, Pm,n is an absolutely convergent solution of all equilibrium equations. It
remains to show that Pm,n is a nonnull solution. This readily follows if at least one of
the quantities Pm,n with (m, n) not in A is nonnull. If all these quantities are null, then
at least one of the coefficients k(0'0) must be nonnull. In this case the property that the
sequences xm,n(O'O) for different feasible O'o's are linearly independent on the set A implies
that Pm,n is a nonnull solution. The independence will be proved as a corollary to another
result, which will be proved in the next lemma. Let's take the independence for granted
at the moment. Then we can finish the proof of the theorem as follows. From a result
of Foster ([11], Theorem 1) we may now conclude that the Markov process is ergodic and
normalization of the Pm,n produces the equilibrium probabilities. 0

Lemma 6.5 Let the sequence ao, at, ... satisfy 0 < lail < 1 for i ~ 0, ai =J aj for i =J j
and ai ~ 0 as i ~ 00. Define for all m ~ 0

00

X m = Lkiai,
i=O

Proof Define
00

f(z) = L xmzm,
m=O

Izi ::; 1.

By inserting the series for X m and then changing summations, it readily follows that f(z)
may be continued to the meromorphic function

ZEC\{~,~, ... }.
ao al

Let

8 = inf I~ - .!-I) .... . ,
I.,..) ai aj

j ~ 0,

so 8j is the distance from the pole l/aj of f(z) to its other poles. Since all ai are distinct
and ai ~ 0 as i ~ 00, it follows that 8j > O. Use of Cauchy's Theorem of Residues yields

11 k .xm=o => f(z):=O => 0=-. 6f(z)dz=..2.. => kj=O (j~O).
21l"Z Iz- ~j 1=+ aj

The implication ki =0 => X m := 0 is trivial. o

Corollary The sequences xm,n(0'0) for different feasible 0'0 's are linearly independent
on the set A.

Proof We will show that the assumption that the sum

L I(O'o)xm,n(O'O)
DloE:F

vanishes for all (m, n) with m +n ~ N implies that 1(0'0) = 0 for all 0'0 in:F. The reversed
implication is trivial.
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For fixed n the sum above is an infinite sum of powers O'r. Let us first consider an 0'0

in :F, say ao, which is maximal in absolute value. The power aooccurs exactly once in
that sum, with coefficient l(ao)dol3~ if n ~ rand l(ao)eo,n if n < r. Hence, from Lemma
6.3 we obtain for ao that

l(ao)do = l(ao)eo,o = ... = l(ao)eo,r-l = 0,

which implies, since not all coefficients do, eo,O, ... , eO,r-l are zero, that l(ao) = O. By
subsequently applying the same arguments to the (or a) second largest 0'0 in :F and so
on, it follows that 1(0'0) = 0 for all 0'0 in :F. 0

We end this section with a remark on the normalization equation. By inserting into
this equation the series for Pm,n with (m, n) in A we get

1 = L Pm,n + L L k(O'o)xm,n(O'O)
(m,n)~.A (m,n)E.A OtoE:F

= L pm,n + L k(O'o) L Xm,n(O'O)'
(m,n)~.A OtoEF (m,n)E.A

By substituting the series (6.2)-(6.3), the infinite sum with xm,n(O'O) expands to

(6.20)

L xm,n(O'O) =
(m,n)E.A

N-r-l d aN- m d ar N-r
'"' 01/0 m + 01/0 0'0
L..J CO 0'0 CO

m=O 1 - 130 1 - 130 1 - 0'0

N-r-l 00 r (d aN- m d aN- m)
+ '"' '"' '"' .. il/i + ri+jl/ri+j m.

L..J L..J L..J Cr .+; a a O'rt+;
m=O i=O j=1 1 - I/i 1 - I/ri+ j

00 r ( d ar d .. ar ) N-r 00 r-l N-r
+ '"' '"' . . _il/_i_ + rt+;l/ri+j O'ri+j + '"' .'"' . _O'....:...i_L..J L..J Cr .+; L..J Ct L..J et,n .

i=O j=1 1 -l3i 1 - I3ri+j 1 - O'ri+j i=O n=O 1 - O'i

In the next section we will demonstrate that in the same way expressions for global
performance measures (like the mean waiting time) can be derived.

7 Expressions for global performance measures

In this section we will show that the series for the probabilities Pm,n, as developed in the
previous sections, lead to similar series for the mean waiting time and the complementary
waiting time distribution.

The waiting time W of an arbitrary job is given by

W = SI + ... + SM,

where M is the number of subjobs in the queue with the smallest number of subjobs on
arrival and Sll S2,' .. are exponentially distributed random variables with unit mean and
independent of M. By conditioning on M and using the property that Poisson arrivals
see time averages (see e.g. Wolff [17]) we find

EW L mpm,n, (7.1 )
(m,n)

P(W> t) - L F~(t)Pm,n (t > 0) , (7.2)
(m,n)
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where F~(t) is the complementary Erlang-m distribution with scale parameter 1, i.e.

m-1 t i
F~(t) = L e-t

1 ·
i=O J.

Insertion of the series for Pm,n with (m, n) E A into (7.1) and (7.2) yields

EW = L mpm,n + L L k(oo)mxm,n(OO)
(m,n)~A (m,n)EA aoEF

L mpm,n + L: k(oo) L: mXm,n(OO)
(m,n)~A aoEF (m,n)EA

and

(7.3)

P(W > t) = L: F~(t)Pm,n + L k(oo) L: F~(t)xm,n(oO) (7.4)
(m,n)~A OtoEF (m,n)EA

By substituting the series (6.2)-(6.3), the sums with xm,n(OO) in (7.3) and (7.4) expand
to

and

L mXm,n(OO) ­
(m,n)EA

N-r-1 d (3N-m d ar
" 0 0 m OPo A( )
L...J meo 1 _ f3 00 + eo 1 _ (3 00

m=O 0 0

N-r-1 00 r (d.(3N-m d ..(3N-!fl)
I I T1+J T1+J m+ L m L L cri+i 1 _ (3. + 1 _ (3.. ari+i

m=O i=O i=l I T1+J

00 r ( d (3r d·· (3r )i i T1+J ri+i+I:I: cri+i 1 _ (3. + 1 _ (3.. A(ari+i)
i=O j=l I rl+J

00 r-1
+ L Ci L ei,n A(ai)

i=O n=O
(7.5)

I: F~(t)xm,n(ao) =
(m,n)EA

N-r-1 00 r (d (3N-m d (3N-m)
+ " Fe (t)"" .. i i + ri+i ri+j ~.

L...J m L...J L...J cTI+J 1 (3 1 (3 aTl+J
m=O i=O i=l - i - ri+j

00 r ( d (3r d·· (3r )i i rl+J ri+i
+ L L cri+i 1 _ (3., + 1 _ (3.. B(ari+i)

i=O i=l I T1+J

A(a) -

B(a) =

00 r-1
+ Lei I: ei,nB(ai),

-i=O n=O

where A(a) and B(a) are defined as

a+(N-r)(I-a) N-r
(l-a)2 a ,

FN_r(t)aN- r + e(a-1)t(1 - FN_r(at))a

I-a

(7.6)

Of course, similar expressions may be obtained for the second or higher moments of the
waiting time.
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8 Some numerical aspects

This section is devoted to numerical aspects of the series for the probabilities Pm,n'
One of the numerical problems of using the series Xm,n(OO) for the computation of

the probabilities Pm,n is the generation of the numbers 0i and 13i. Starting with 00 the
numbers 0i and 13i with i ~ 0 are generated such that for all i ~ 0 the 13i is the root inside
the circle 1131 = 10il of

(8.1 )

and the numbers 0ri+ll"" Ori+r are the roots inside the circle 101 = l13il of

(8.2)

Hence, we have to calculate zeros of the polynomials in (8.1)-(8.2). In general, this
constitutes a difficult numerical problem. Luckily, in our case we can transform the
equations (8.1 )-(8.2) to contraction equations, which can be solved efficiently. By dividing
equation (8.1) by oi+1 and introducing y = 13 j 0i we can rewrite equation (8.1) as

where

y=F(y,Oi), (8.3)

Analogously, by dividing equation (8.2) by 13;+1 and introducing z = oj13i, equation (8.2)
can be rewritten as

z = ¢G(z, 13i) ,

where ¢ satisfies ¢l = 1 and

The following lemma states that both F and G are contractions.

(8.4)

Lemma 8.1

(i) For all 0 with 101 < 1 the function F(y,o) is a contraction on Iyl ~ Y, where Y
is the positive root, less than one, of the equation

y = F(y, 1(1). (8.5)

(ii) For all 13 with 1131 < 1 the function ¢G(z,o) is a contraction on Izi ~ Z, where </>

satisfies ¢r = 1 and Z is the positive root, less than one, of the equation

z = G(z, 1131) . (8.6)

Proof It is readily verified that F(y, 1(1) is convex for 0 ~ y ~ 1, F(O,lol) > 0 and
F(l,lol) < 1. Hence, there is, for each 0 with 101 < 1, a unique Y with 0 < Y < 1
satisfying

Y = F(Y, 1(1).
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For IYI $: Y s, it follows that

W(y, a)1 $: F(lyl, lal) $: F(Y, lal) =Y,

so, F maps Iyl $: Y into itself. Further, for Iyl $: Y we have

1

0 I 0 0oy F(y, a) $: oy F(lyl, lal) $ oy F(Y, laD < 1.

Hence, for IY11, IY21 $ Y, we get

IF(Yll a) - F(Y2' a)1 - 111 :y F(Y1 + t(Y2 - Y1), a)(Y2 - Y1) dt l

< IY1 - Y21 max I~ F(Y1 + t(Y2 - yd, a)1
09:$1 uy

o
< IY1 - Y210y F(Y, lal).

which proves part (i) of the lemma. Part (ii) can be proved along the same lines. 0

By Lemma 8.1(i), equation (8.3) has exactly one root y with Iyl $: Y and this root may
be found by using the iteration scheme

n = 0,1, ...

starting with Yo = O. The sequence Yo, Y1," . converges exponentially fast to y, at least
with rate tyF(Y, lail). The desired f3i is then given by f3i = Yai. Analogously, by denoting
the roots of ~r = 1 by ~1l' •. , ~r, it follows from Lemma 8.1(ii) that for each j = 1, ... , r
equation (8.4) with ~ = ~j has exactly one root Zj satisfying IZjl $: Z and this root may
be found by using the iteration scheme

n=O,I, ...

starting with Zo = O. The desired ari+jis then given by ari+j = Zjf3i.

Another numerical problem is the calculation of the feasible values of ao. According
to Lemmas 5.3 and 5.5, for the calculation of the feasible values we first have to find the
eigenvalues of the matrices H+ and H-. The eigenvalues are the zeros of the associated
characteristic polynomials. For the characteristic polynomials of H+ and H- the following
relations may be derived. Define for k > 0 the k x k-matrix Hk by

0 1 0 0 o 0 0 0
2 0 1 0 o 0 0 0
0 1 0 1 o 0 0 0

Hk=
000 0 1 0 1 0
000 0 0 1 0 1
000 0 0 0 1 0
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and let hk(x) be the characteristic polynomial of Hk. Then it is readily verified that hk(x)
satisfies the following recurrence relations:

h1(x) = -X;

h2(x) - x2
- 2',

hk(x) - -xhk_1(X) - hk- 2(X), k > 2.

In the following lemma we formulate relations between -the characteristic polynomials
hk (x) and the ones of H+ and H-.

Lemma 8.2

(i) For k ~ 0 the characteristic polynomial ht+l(x) of the (k+l) x (k+l)-matrix H+
defined by (5.16) is given by

ht(x) ­

ht(x)

ht+l (x) =

2-x;

x 2
- X - 2',

k> 1.

k> 1,

(ii) For k > 0 the characteristic polynomial ht+l(X) of the (k+l) x (k+l)-matrix H+
defined by (5.21) is given by

ht (x) = x2
- 4 ;

ht+l(X) = -xhk(x) - 2hk- 1 (X),

and since the k x k-matrix H- defined by (5.23) is identical to Hk1 its characteristic
polynomial is given by hk(x).

For the case that r is odd, we obtain from Lemma 5.1 that all zeros of the characteristic
polynomial of the matrix H+ defined by (5.16) are simple, real-valued and in absolute
value bounded by 2. Hence, these zeros can easily be computed by using a bisection
method. Then, by Lemma 5.3, we can produce the feasible values of 0'0 by squaring the
roots, with III < 1 of the equations (5.17) where (J runs through the set of zeros of the
characteristic polynomial of H+. Equation (5.17) can be rewritten as

where </> satisfies </>T = 1 and Ob, (J) is given by

~ ~AGb,(J)=r .
I\, + (J,

It is readily verified that Ob,2) is convex for 0 ~ , ~ 1, 0(0,2) > 0, 0(1,2) = 1 and
;..,,0(1,2) = 2/rA > 1. So there is a unique r with 0 < r < 1 satisfying

r = G(r,2).

Similar to the proof of Lemma 8.1 it can be shown that </>Ob, (J) is a contraction on
III ~ r. Hence, the zeros of equation (5.17) can be produced efficiently by using the
scheme

n = 0,1, ...
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starting with 'Yo = 0, where (1 runs through the set of eigenvalues of H+ and <p through
the set of roots of <pr = 1.

In case r is even, the feasible values of 00 can be produced similarly.

The terms cri+j(dd3r+dri+j13ri+j)0~+j,which add up to Xm,n(OO) for m :::: 0 and n :::: r
(see (6.2)), may be represented in the r-fold tree depicted in Figure 9.

~: '" ~: ~. ~.

Figure 9: The r-fold tree structure of the terms in the infinite sum xm,n(00) given by (6.2).

The infinite sum of the terms in this tree can be approximated by the finite sum of the
terms at the first 1levels. The number of terms at the first 1levels equals 1+r +...+r 1

- 1
•

This number increases very fast as 1 increases. Luckely, in Section 6 it has been shown
for m :::: 0 and n :::: r that the terms in xm,n(OO) behave asymptotically as a geometrical
r-fold tree with rates

j = 1, ... ,r. (8.7)

Since IAjl/IAol < 1 for j = 1, ... , r it follows that the terms in xm,n(OO) converge ex­
ponentially fast to zero. So, usually, already a few levels in the tree in Figure 9 provide
an accurate approximation for xm,n(OO)' Moreover, we may conclude from (8.7) that the
convergence to zero of the terms in xm,n(OO, 130) is faster for states further away from the
origin. This feature can be exploited for numerical purposes; the trees of compensating
terms are only used for the calculation of Pm,n if m + n is sufficiently large, that is, if
the sum R I (m + n) + ... + Rr (m + n) is sufficiently small. The remaining quantities
Pm,n can then be solved from the equilibrium equations. The rate at which the sum
RI(m+n)+ ...+Rr(m+n) becomes small depends on the ratios IAII/IAol, ... , IArl/IAol.
The equation

the roots of which define Ao, . .. , Ar (see Lemma 6.3), has exactly two positive roots, one
larger and the other less than one. The larger root is Ao and one of the roots AI, , Ar

is the smaller one, Al say. It may readily be verified that Ao > 2 and for j = 1, , r
that IAjl ~ AI, so
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In Table 1 the ratio AdAo is listed for increasing values of r and the workload p = r>..j2.

r p Al Ao AdAo
2 0.1 0.231 2.077 0.111

0.5 0.500 2.414 0.207
0.9 0.630 2.784 0.226
0.95 0.642 2.832 0.227

5 0.1 0.481 2.039 0.236
0.5 0.665 2.196 0.303
0.9 0.740 2.355 0.314
0.95 0.747 2.375 0.315

10 0.1 0.656 2.020 0.325
0.5 0.772 2.100 0.368
0.9 0.817 2.180 0.375
0.95 0.821 2.190 0.375

Table 1: The ratios AdAo for increasing values ofr and the workload p = r)"/2. Here Al
and Ao are the positive roots with Al < Ao of the equation zr(2 + ,X) = ).. + zr+l.

Table 1 illustrates that AdAo is small, which implies that the sum R1(m +n) +... +
Rr(m +n) will already be small for m +n being a little bit larger than r.

Finally, we remark that for high values of r (say, r ~ 15) the system of linear equations
for the coefficients k( ao) is 'close' to singular. In that case, the accurate computation of
the k(ao) is delicate. The reason is that for high values of r the feasible ao's are closely
clustered (see e.g. Figure 6; recall that the feasible ao's are produced by squaring the
feasible ,'s). Hence, the set of solutions xm,n(ao) is nearly dependent, and thus also the
system of linear equations for the coefficients k( ao). Maybe, it helps to transform the
solution base to a better conditioned base.

9 Numerical results

This section is devoted to numerical results. The evaluation of performance measures
requires the computation of infinite sums (cf. (7.5) and (7.6)). The coefficients k(ao) and
the probabilities Pm,n with (m, n) not in A (d. (7.3) and (7.4)) are also required. They
have to be solved from the equilibrium equations in states (m, n) with m + n < Nand
the normalization equation. To set up these equations one has to compute the infinite
sums Xm,n(ao) for all (m, n) with m ~ N - rand m +n < N, but also for all (m, n) with
m +n = N, because these states have an incoming rate into one of the states (m, n) with
m + n < N. All infinite sums will be approximated sufficiently close by partial sums. So,
to evaluate performance measures, the following steps may be distinguished:

(i) Select a number I with 1 ~ 1 and approximate, for all states (m, n) in the set
{(m,n)lm ~ N - r,n ~ O,m + n < N} U {(m,n)IO ::5 m ::5 N,m + n = N},
the infinite sum xm,n(ao) by the terms of the first I levels (see Figure 9), i.e.
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r
'
- 1 _r

---;:=r- r

Xm,n(O:O) - C{)doI330:'; + L L Cri+i(dil3i +dri+i l3:.i+i )O:;:+i'
i=O ;=1

m ~ O,n ~ r;

r ' - 1 _r
---;:=r-

Xm.n(o:O) = L Ciei,no:i,
i=O

m ~ 0,0:5 n < r.

Do the same for the infinite sums in the normalization equation (6.20).

(ii) Solve the coefficients k(0:0) and the probabilities Pm,n, with (m, n) in the set
{(m, n)[O :5 m < N - r, n ~ 0, m + n < N}, from the boundary equations and
the normalization equation.

(iii) Compute approximations for performance measures by approximating the infinite
sums occurring in the expressions for the performance measures (ef. (7.5) and
(7.6)) by the terms at the first I levels.

(iv) Set I = 1+1 and perform the same computations as in (i)-(iii).

(v) Stop if only negligible improvement is seen for the performance measures. Otherwise
repeat step (iv).

As it has already been mentioned in the previous section it is numerically sensible to
replace N by a higher value N because convergence of the infinite sums is faster for states
further away from the origin (ef. Table 1). This is demonstrated in Table 2 for the case
of Erlang-2 servers. \Ve list the probabilities Po,O and L~=o pO,n with an accuracy of 0.1 %
for increasing values of the occupation rate p = Ar/2 and N. The value of I indicates the
number of levels of the trees required to reach the desired accuracy. The minimum value
of N is N which equals 2 in each example.

p N I Po,O L~-oPO,n
0.8 2 12 0.09708 0.3029

3 4 0.09709 0.3029
0.9 2 11 0.04399 0.1560

3 4 0.04398 0.1560
0.99 2 11 0.004005 0.01510

3 4 0.004005 0.01510

Table 2: The probabilities Po,o and L~=o PO,n for the Erlang-2 queueing system with an
accuracy of 0.1 %for increasing values of the occupation rate p = Ar/2 and N. The value
of I indicates the number of levels of the trees required to reach the desired accuracy. The
minimum value of N is N which equals 2 in each example.

Table 2 illustrates that the number of levels of the trees, that needs to be evaluated
to reach the desired accuracy, decreases very fast as N increases. When realizing that
the first 1 levels involve (r l - 1) / (r - 1) terms (due to the r-fold tree structure) we may
conclude that the numerical effort to compute the partial sums considerably decreases as
N is a little larger than N. Of course, the price is that a larger set of linear equations for
the coefficients k(0:0) has to be solved, but this extra effort is easily compensated by the
advantage of efficiently computing the infinite sums.
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In Table 3 we list the probability Po,O of the system being empty, the delay probability
1rw (= 1 - L:~=OPO,n by PASTA) and the normalized first two moments and the squared
coefficient of variation c~lw>o of the conditional waiting time WIW > 0 for increasing
values of p and r. The normalized k-th moment of the conditional waiting time is defined
as the quotient of E(WkIW > 0) and the k-th power of the mean service time (= rk).
All quantities are computed with a relative accuracy of 0.1 %. The value of I indicates the
number of levels of the trees required to reach the desired accuracy. In the computations
N has been replaced by the somewhat higher value N.

r p Po,O 1rw E(WIW>Oj E(W'IW>O) 2 I N-r N-r
r r 2 cWlw>o

1 0.1 0.8175 0.01753 1.010 2.042 1.0000 3 1 0
0.5 0.3160 0.3160 1.349 3.631 0.9947 4 1 0
0.9 0.04225 0.8422 5.313 56.05 0.9855 4 1 0
0.95 0.01996 0.9200 10.31 211.7 0.9905 4 1 0.
0.99 0.003808 0.9838 50.31 5057 0.9977 4 1 0

2 0.1 0.8177 0.01768 0.6475 0.7990 0.9061 3 1 0
0.5 0.3193 0.3193 0.9375 1.665 0.8946 3 1 0
0.9 0.04398 0.8440 3.923 30.17 0.9608 4 1 0
0.95 0.02089 0.9209 7.672 116.5 0.9785 4 1 0
0.99 0.004005 0.9840 37.67 2832 0.9953 4 1 0

3 0.1 0.8177 0.01774 0.5409 0.5331 0.8222 3 1 0
0.5 0.3208 0.3208 0.8051 1.188 0.8329 3 1 0
0.9 0.04486 0.8449 3.460 23.33 0.9479 4 1 0
0.95 0.02137 0.9214 6.793 91.02 0.9723 4 1 0
0.99 0.004108 0.9841 33.46 .2233 0.9942 4 1 0

4 0.1 0.8178 0.01776 0.4903 0.4241 0.7639 3 1 0
0.5 0.3216 0.3216 0.7399 0.9816 0.7929 3 1 0
0.9 0.04539 0.8454 3.229 20.23 0.9401 4 1 0
0.95 0.02166 0.9217 6.354 79.47 0.9685 4 1 0
0.99 0.004171 0.9842 31.35 1960 0.9934 4 1 0

5 0.1 0.8178 0.01778 0.4609 0.3659 0.7224 3 2 0
0.5 0.3221 0.3221 0.7011 0.8678 0.7653 3 2 0
0.9 0.04574 0.8457 3.091 18.49 0.9349 4 2 0
0.95 0.02186 0.9219 6.090 72.92 0.9660 4 2 0
0.99 0.004214 0.9842 30.09 1804 0.9930 4 2 0

10 0.1 0.8178 0.01779 0.4040 0.2646 0.6215 3 3 1
0.5 0.3231 0.3231 0.6242 0.6624 0.7003 3 3 0
0.9 0.04653 0.8465 2.814 15.23 0.9230 3 3 0
0.95 0.02230 0.9223 5.563 60.67 0.9660 3 3 0
0.99 0.004311 0.9843 27.56 1513 0.9919 3 3 0

Table 3: The probability Po,O, the delay probability 1rw and the normalized first two mo­
ments and the squared coefficient of variation c~lw>o of the conditional waiting time
WI W > 0 for increasing values of p and r. All quantities are computed with a relative
accuracy of 0.1 %. The value of I indicates the number of levels of the trees required to
reach the desired accuracy. In the computations N has been replaced by N.

The examples in Table 3 show that the probabilities and performance measures can
be computed efficiently; already a small number of terms, namely (r1 - l)/(r - 1) terms,
is sufficient to reach high accuracy. Note from the results in Table 3 that the probabilities
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PO,O and 1rw are rather insensitive to the service time distribution and that the normalized
first two moments of the conditional waiting time WIW > 0 are decreasing in 1/r, i.e.
the squared coefficient of variation of the service time. Furthermore, the normalized mean
conditional waiting time appears to be nearly linear in 1/r. This is of course well-known
for the MIGll queue, but apparently it is also approximately valid for the shortest delay
problem.

In Table 4 the waiting time probability P(W > t) is listed for increasing values of t,
p and r. The probabilities are computed with a relative accuracy of 0.1 %. The values of
t are restricted to multiples of the mean service time r. The exact values are compared
with a two-moment approximation of the conditional waiting time probabilities. For all
examples displayed in Table 4 it holds that ct,IW>o exceeds! (and is less than 1; see
Table 3), so that we can fit a so-called K 2 distribution with gamma normalization to the
first two moments of WIW > 0 (alternatively, we might have used an E 1,2 distribution;
see Tijms [15] for details).

P(W> t)
t = r t = 5r t = lOr

r p exa app exa app exa app
1 0.9 0.7005 0.6999 0.3296 0.3298 0.1275 0.1277

0.95 0.8371 0.8359 0.5684 0.5683 0.3491 0.3496
2 0.9 0.6645 0.6608 0.2351 0.2366 0.06385 0.06385

0.95 0.8157 0.8112 0.4822 0.4834 0.2494 0.2505
3 0.9 0.6468 0.6421 0.1971 0.1989 0.04453 0.04435

0.95 0.8052 0.7992 0.4434 0.4452 0.2101 0.2112
4 0.9 0.6361 0.6312 0.1769 0.1787 0.03569 0.03542

0.95 0.7988 0.7921 0.4213 0.4236 0.1893 0.1903
5 0.9 0.6288 0.6240 0.1644 0.1661 0.03074 0.03041

0.95 0.7946 0.7875 0.4072 0.4097 0.1765 0.1765
10 0.9 0.6118 0.6078 0.1388 0.1403 0.02174 0.02132

0.95 0.7845 0.7770 0.3764 0.3794 0.1504 0.1512

Table 4: The waiting time probability P(W > t) for increasing values of t, P and r. The
values of t are restricted to multiples of the mean service time r. The exact values are
computed with a relative accuracy of 0.1 %and are listed in the columns with heading 'exa '.
The two-moment approximations are listed in the columns with heading 'app '.

The results in Table 4 indicate that the two-moment approximation is quite accurate.
This is also illustrated in Figure 10 where for the Erlang-4 system with load 0.95 the
distribution P(W > t) together with the two-moment approximation are depicted for a
wide range of t values. Of course, from a practical point of view, we also like to have
good approximations for the first two moments of the conditional waiting time, since
then we are able to use the two-moment approximation to produce fast and accurate
approximations for the conditional waiting time distribution. A good approximation for
the first moment is available (it is nearly linear in 1/r; see the remark below Table 3);
more research is required to find a good approximation for the second moment.

We end this section by demonstrating that also for extremely high traffic intensities
the exact solution behaves well numerically. For the Erlang-2 and Erlang-4 system with
workload p = 0.999, we list in Table 5 the probability Po,o, the delay probability 1rw,
the normalized first two moments and the squared coefficient of variation ct,lw>o of the
conditional waiting time WIW > 0 and the waiting time probability P(W > lOOr).
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Figure 10: The exact waiting time probabilities P(W > t) (solid line) together with the
two-moment approximation (dotted line) for the Erlang-4 system with load 0.95.

As before, all quantities are computed with a relative accuracy of 0.1 %; the value of I
indicates the number of levels of the trees required to reach the desired accuracy and in
the computations N has been replaced by N.

r PO,O 1I"W L\WIW>Uj 2 P(W> 100r) I N-r N-r
r cWIW>o

2 0.000397 0.9984 375.2 0.9995 0.7649 4 1 0
5 0.000418 0.9984 300.1 0.9993 0.7156 4 2 0

Table 5: The probability Po,O, the delay probability 1I"W, the normalized mean and the
squared coefficient of variation c~lw>o of the conditional waiting time WIW > 0 and the
waiting time probability P(W > 100r) for p = 0.999 and r = 2 and 5, respectively. All
quantities are computed with a relative accuracy of 0.1 %. The value of I indicates the
number of levels oj the trees required to reach the desired accuracy. In the computations
N has been replaced by N.

10 Conclusions and comments

The primary conclusion of the present paper may be that the compensation method, which
was originally developed for the shortest queue problem with exponentially distributed
service times and Poisson arrivals (d. [1]), can indeed be extended to the case of Erlang
distributed service times with expected delay routing. The compensation steps themselves
become more complicated and also the finding of starting values 0'0 requires more skill.
Nevertheless, the final result has the same pleasant analytic and algorithmic features as
the result for the simpler case. Numerically, the nice features are the following: a simple
algorithm for the computation of the equilibrium probabilities; the series of products of
powers converge exponentially fast and the convergence is faster for states further away
from the origin; similar features for performance criteria like expected residence time.
The algorithms in [1,3] for exponential servers not only produce approximations but also
upper and lower bounds which approach each other fastly; this also seems to be possible
for Erlang servers although it has not been worked out in the present paper. In the
exponential case it could be proven that the series Xm,n (0'0) converge absolutely for every
m, n ~ O. In the present case we could only prove absolute convergence on the set A,
which was determined by N. If N = r, then A represents the whole first quadrant of the
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grid, but for N > r, there are also states for which xm,n(OO) was formally defined, but
may not converge absolutely. A similar feature was already encountered in the case of
the asymmetic shortest queue problem (d. [2]) and also in the case of general random
walks on the first quadrant with transitions to neighbours only (d. [4]). The remaining
question is of course: how large can N be? Or more precisely: how much larger than r
can N be? Numerical evidence indicates that N is usually equal to r, but sometimes it
is equal to r + 1. So, we might conjecture that there is indeed an upper limit for N, for
instance r +1 (d. Table 3).

From a numerical point of view it may even be sensible to replace N by an even
higher value than the prescribed one, since this speeds up convergence (at the price
of having to solve a larger set of linear equations). One may add here that N was
determined in a search for necessary and sufficient conditions for absolute convergence. It
is quite well possible that for states not in A there is common convergence if the series are
defined appropriately, namely by keeping terms together which are each other's complex
conjugates. Our conjecture is that with this amendment all xm,n((0) are convergent.

Another numerical complication is provided by the r-foldedness of the compensation
trees. Luckily, it is usually not necessary to investigate many levels of these trees. More­
over, the amount of work can be kept within bounds by only climbing higher in the tree
where it is really necessary (d. [3]).

The problem in the present paper is a particular case of a whole class of related models.
Its advantage is that it can be described in a useful way by a two-dimensional random
walk with nice features. With useful we mean here that residence time characteristics
can be obtained from the equilibrium probabilities. With nice features we mean here that
the random walk is still sufficiently homogeneous. If we would allow the subjobs of an
arriving job to split up over the available queues, then we would destroy the usefulness,
although the analogous analysis can still be made. If we would take the shortest-queue­
routing, then we can still represent the process by a random walk, however, we would
loose homogeneity in m for fixed n < r. It is most likely that in this case the problem can
still be solved with the compensation approach, however, one would need extra freedom
because of the lack of homogeneity on the horizontal boundary levels. A good way of
constructing the extra freedom might be to introduce separate state variables indicating
how many subjobs of a job in service are still waiting for execution. In this Way the state
space is becoming more complicated, which leads to basic solutions of the form

am (3n"l8/ with k, 1= 0, ... , r - 1.

Such an approach has appeared to be effective for the EslEric-problem (d. [5]). The same
holds for the replacement of the Poisson arrival process, which might be replaced by Erlang
distributed interarrival times: an extra factor ei might help, like in [5]. It seems natural to
replace the pure Erlang service times by mixtures of Erlang distributions with the same
scale parameter. With the class of distributions we have the ability to approximate any
distribution sufficiently close. This model can be described by a two-dimensional random
walk with the same nice features as the model with pure Erlang servers. However, finding
feasible starting solutions is then essentially more complicated and this problem cannot
be solved anymore by the solution of the jockeying model.

For obtaining the feasible starting solutions, the instantaneous jockeying model was
used. In fact, the interpretation as instantaneous jockeying was not the essential feature,
although it was good to see how the jockeying model could be solved relatively straight­
forwardly. The essential feature, however, was that the jockeying model represented an
ideally truncated version of the original problem and that, in this way, we obtained all
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feasible starting solutions for the original problem. Since the more heuristic procedures
of other cases, can all be interpreted similarly, one may conjecture that this truncation
procedure provides a general approach to procuring the feasible starting solutions.

Of course, it is also possible to consider other, possibly more realistic, variants of the
jockeying model. Indeed, similar approaches as the one in Section 5 seem workable in
such cases.

The compensation approach clearly has its limitations. The most important one being
that transitions to North, North-East and East are already forbidden in the case with
transitions to neighbours only (cr. [4]). The strong feature, however, of the compensation
approach is that it helps in finding such conditions for getting elegant solutions and that it
provides constructive methods for obtaining the elegant solutions in case the conditions are
satisfied. In fact, the two-dimensional random walks with transitions to neighbours only
have been studied very intensively over the years with the help of generating functions,
but the results mentioned above could only be produced in that way with the results of
the compensation approach as guidelines (cr. Cohen [9]). Possibly, also the results of the
present paper can be recognized in properties of the generating functions.
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