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Foreword 

IIASA celebrated its twentieth anniversary on May 12-13 with its 
fourth general conference, I IASA '92: An International Conference 
on the Challenges to Systems Analysis in the Nineties and Beyond. 
The conference focused on the relations between environment and 
development and on studies that integrate the methods and find- 
ings of several disciplines. The role of systems analysis, a method 
especially suited to taking account of the linkages between phenom- 
ena and of the hierarchical organization of the natural and social 
world, was also assessed, taking account of the implications this has 
for IIASA's research approach and activities. 

This paper is one of six IIASA Collaborative Papers published 
as part of the report on the conference, an earlier instalment of 
which was Science and Sustainability, published in 1992. 

When policy advisors come to appreciate that real uncertainty 
will affect the application of their recommendations they usually 
respond in one of two ways: 

1. They may say that there are many possibilities, and then pre- 
pare a scenario for each; knowing the options advances the pol- 
icymaker a little but his real decision making is not adva.nced, 
and on that he is left without advice. 

2. They say that the uncertainties are so great that action had 
better be delayed until more is known; this recommendation 
for inaction is often very attractive to a policymaker, especially 
if getting more knowledge will mean waiting to enact some un- 
popular measure llntil a successor takes over the office. 

Since there are no situations in which data is complete and 
exact, what can be done? That question is specially relevant to 
environmental decisions. At least policy can avoid what is called 
the prisoners' dilemma, where two people making rational deci- 
sions independently, i.e., each not knowing what the other will de- 
cide, can put themselves into a worse condition than if they make 
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certain decisions that from the individual viewpoint are irrational, 
and much worse than if they participate in a collective decision. 
French indicative planning, now less favored than it was, aims to 
spread knowledge to each enterprise in an industry of what the 
competitors are intending, in the hope that that that will mean 
better decisions all around. A special case is what economists call 
externality, where a piece of common property is exploited by in- 
dependent individuals, solitary choosers. One of the questions is 
whether the prisoner's dilemma and externalities can be handled 
by dissemination of information alone, or whether some form of 
compulsion is required, for example compulsion in the form of re- 
quired pollution permits. These would give those who choose to 
buy them a marketable permission to exploit, and it can be shown 
that the outcome is economically superior to any instruction from 
above. 

Professor Krasovskii provides some models, simple in form but 
sophisticated in substance, that show the nature of the problem of 
uncertainty in decision making, and how at least in theory it can 
he dealt with. 

Committee for IIASA '92 
Nathan Keyfitz (Chair)* 

*Members of the Commit tee for IIASA '92 were: Nathan Keyfitz (Chair ) ,  Peter E. 
de Janosi, Alexander Kurzhanski, Arkadii Maltsev, Nebojsa Nakidenovid, Roderick 
Shaw, Claudia Heilig-Staindl, Evelyn Farkas 



Decision Making Under 
Uncertainty 

Nikolai N. Krasovskii 

This paper deals with models of dynamic phenomena that are sub- 
jected to control actions (decisions) and unknown disturbances (un- 
certainties). The terminology that I have started to use in the first 
phrase is quite common in contemporary theoretical research and 
applications. Its substantial meaning is heavily overloaded, how- 
ever. On the one hand, the terminology may be felt to include 
large-scale multiparametric models of systems analysis and synthe- 
sis related to pretentious "global" projects whilst, on the other, it 
includes modest problems that could be successfully placed within 
the framework of low-dimensional models of the classical types 
known, for example, in analytical mechanics. 

In this paper we will concentrate on models of a simple form 
to illustrate some basic concepts in the field. Of course, some of 
these models may seem to be of a rather fabulous nature and on the 
verge of being amusing. The author would like to beg the reader's 
forgiveness for this small weakness of his. At the same time, I wish 
to remark that a mathematical model (of which I will only speak in 
this paper) is, after all, only a caricature of reality. However, this is 
precisely one of the basic features and possibilities of mathematical 
models. Doesn't a good caricature indeed emphasize at least some 
of the essential features of a phenomenon? 

Before passing on to the main text of this paper I would also like 
to mention some considerations which I always use when teaching i11 

Institute of Mat,hematics and Mechanics, Ural Scientific Center, Russian Academy of 
Scie~lces, Ekaterinburg, Russia. 



2 Nikolai N: Krasovskii 

college and high school. I believe that education is something that 
has an especially high priority at  this moment. You are all aware 
of the "brain drain" problem in our country. I will allow myself to 
suggest that this phenomenon is not as destructive as it seems and 
it may even turn out to be useful in some sense provided, however, 
that there is a good educational system which will reproduce the 
"brains" and which will start to operate with children at a fairly 
early age. Human experience indicates that education in applied 
issues should often start by using model problems, assuming, of 
course, that, simplification does not erase the basic properties of 
reality. 

Let us now consider a typical scheme of a controlled dynamic 
system that evolves in time t. We thus have a controlled process 
(a  "plant") L, an information system Y that forms the on-line in- 
formational image y [t] , the decision-making (control) block and the 
uncertain environment V - the source of a disturbance v[t]. We 
presume that the on-line description of the state of the process is 
given by a variable x[t,] in a framework sufficient to define the fu- 
ture course of the process provided the initial state is measured 
and the decision variable u[t] and the disturbance variable v[t] are 
known for t > t,. The information on the on-line and future values 
of x[t,] and v may be unknown to the decision maker, who is un- 
able to penetrate beyond the informational image of the process, 
which in turn may be regularly refined through an on-line process 
of collecting additional information. The formal nature of the vari- 
ables x[t], y[t], u[t] and v[t] is naturally defined by the type of real 
system and the model selected for its description. These variables 
may be represented by scalars, vectors, functions, probabilistic dis- 
tributions, sets, logical statements, etc. It should be understood, 
however, that the decision maker is actually dealing not with the 
real process but only with its informational image and forming a 
complementary vision of the whole process x[t] through available 
knowledge. Let me illustrate this by means of an example of the 
evolution of a fabulous model system whose computer simulation 
was a blitz-task at  a high-school competition in informatics. Al- 
though simplistic in appearance, the system does indicate some 
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substantial issues in decision-making. The evolution of the process 
described by the model is as follows. 

The fairyland Cyclonia has the form of a circumference. Its 
population consists of n property owners. They are located along 
the circumference and numerated counterclockwise from 1 to 12. 

On the first day of the first month of the reforms the ith owner 
had a "prosperity" sum estimated by i monetary units or "rnuns". 
On that day an Alien suggested to the population of the country 
that it should vote on the following transformation (change): each 
owner should give away his "prosperity" to the next neighbor in a 
clockwise direction. Each owner whose prosperity increases after 
this transaction must divert a part EA of the increment A of his 
prosperity to the Alien. The transformation is accepted if at least 
kn owners (0 < k < 1) vote with "yes". 

It is known that each owner voted with "yes" if and only if 
the transaction increased both his own prosperity and that of his 
nearest neighbors in both directions. The numbers n and k are 
such that under the above conditions the Alien's suggestion was 
accepted and the transformation did take place. 

It is known that after the transformation each owner whose 
prosperity (after the payment of the &-increment) constituted the 
value b ( b  > a, a given) invests b - a "muns" in external commerce. 
By the end of the month this gives him an additional income P ( b  - 
a)  = 1 - pl - p2 with probability pl. With probability pa he wins 
or loses nothing and with probability p3 he loses P ( b  - a). 

On the first day of the second month the Alien suggested voting 
again on a similar transformation. The conditions for the evolution 
of the system again remain the same. The process is then continued 
throughout the following months as long as the voting is positive. 

One has to write a computer program that allows one to simu- 
late the evolution of economics. The program comes to a stop when 
one of two conditions is fulfilled: either the voting in a new month 
produces a negative result or the number of months reaches a given 
number m. 

The input data: n, 0 < E < 1, 0 < k < 1, a > 0, P > 0, pl, pa, 
m. 



The output data: the number of the month for the end of the 
process, the prosperity of each owner, the total prosperity of Cy- 
clonia, the total prosperity of the Alien (all of these at the end of 
the transformations). 

The respective evolution was simulated with the following input 
data: 

The total prosperity of the population of Cyclonia at the beginning 
of the process was 820, that of individual owners not more than 
40 (the individual maximum). The prosperity of the Alien was 0. 
After 50 transformations the total prosperity of the population had 
become 488.8, with the individual maximum amounting to 26.9 and 
that of the Alien to 539.1. 

I believe that despite its humoristic form the model contains 
some important tutorial information for the student. Namely, it 
indicates, perhaps too explicitly, that a restriction on the informa- 
tional horizon and on the memory concerning the process, as well 
as the subjectivity of decision-making with limitations on the ob- 
jective knowledge of reality, may lead to highly undesirable results 
due to a bad choice of decision parameters and despite the overall 
good intentions. 

Let us now return to the main direction of the presentation. 
We presume that the law that governs the evolution of the variable 
z[ t ]  and also perhaps the law that governs the evolution y [ t ]  is of 
a differential type. We will therefore deal with systems described 
l ~ y  differential or recurrence equations with a minor discrete time 
increment in the latter case. Our aim will be to integrate these 
infinitesimal or difference generators of the evolution process, aim- 
ing at  a best possible result in our interest by selecting appropriate 
decision or control rules. 

Our ideal case would be if the lack of information on the system 
were only fictitious and a sufficient amount of information could be 
obtained through properly organized measurement and the process- 
ing of its result. The information processing would thus incorporate 
the integration of the infinitesimal or recurrence generators of the 
process. Such a situation is not realistic, however, and would be 
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eilcouiltered perhaps only in a fairy tale. Let us nevertheless illus- 
trate this option. I will now describe a model example that demon- 
strates to the student how small perturbations of the conditions of 
the problem change the effect of the informational image on the 
decision. The latter may then have to be changed from a vigorous 
deterministic rule to a modified rule that would, perhaps, incorpo- 
rate some game-theoretic or statistical schemes and a presumption 
that the game would be repetitive. 

The problem is to simulate on a computer a trick well known in 
literature. It was suggested at one of our olympiads for high-school 
students and formulated as follows. 

One has to prepare a computer program that demonstrates the 
following trick through an interactive man-machine procedure. On 
three seats numerated as 1, 2, 3 one places three objects (for ex- 
ample, a glass, a plate and a spoon). The numbers and the names 
of the objects are known to the computer but the correspondence 
between the numbers (the seats) and the objects is unknown. 

Stage 1. The man tells the machine of only one correspondence 
(seat - object) of his choice. 

Stage 2. After that one performs several pairwise permutations of 
the objects by interchanging the numbers (for example, the object 
from N 1  goes to N 3  and the object from N 3  to N1; the object from 
N.3 goes to N2 and the one from N2 to N3, etc.). 

Stage 3. After that the man choses one object and makes the two 
others change places. Which the other two objects are that change 
places (by changing seats or changing numbers) is not communi- 
cated to the machine. 

Stage 4. One again performs several pairwise permutations of the 
objects by interchanging the numbers. 

Stage 5. The machine has to guess the object chosen at stage 3. In 
order to do this the machine asks the number of the seat for one of 
the objects that it chooses. 
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,Stage 6. The machine tells us the object chosen at  stage 3. 

The last stages were deliberately formulated in an ambiguous way. 
Here we have to distinguish two interpretations of the situation. 
The first one would mean the following: "The machine tells the 
number of the seat and asks which object is on that seat". This is 
the canonical formulation. Here an algorithm exists that interac- 
tively processes the information and allows a unique solution. This 
algorithm is usually well discovered by students. 

There is, however, a second interpretation of the phrase, 
namely: "The machine names the object and asks for the num- 
ber of the seat it occupies". Then the information available to the 
machine may turn to be insufficient for a unique answer on what 
the respective object chosen at stage 3 is. The process of guessing 
the answer may be based on a matrix game. Namely, the one who 
makes the choice at  stage 3 may select one of the three strategies 
V1, V2, V3, each of which at  stage 1 stands for naming an object 
arid naming the corresponding number and at  stage 3 stands for 
the choice of one of the objects. On the other hand, the machine 
may select one of the three strategies U1, U2, U3, each of which 
at stage 5 stands for naming an object and asking for the seat it 
occupies. At stage 6 each of these strategies names the chosen ob- 
ject depending on the answer at  stage 5 which was either n l ,  n2 
or n3. If the cost for a correct guess is taken to be 1 or 0 is taken 
for a wrong guess, then the matrix game discussed here does not 
have a saddle point and, therefore, a value in the given class of pure 
strategies. 

The situation is different, however, in the class of mixed strate- 
gies where a saddle point, and therefore a value of the game, does 
exist. A computer simulation of the situation in the class of mixed 
strategies is a good methodological exercise that would also serve 
as a good introduction to more complicated problems of decision- 
making under uncertainty. 

Let us return to  the basic text. Here we have to admit that the 
statistical approach is not flawless and may not work well in the 
absence, for example, of good learning statistics, or in a condition 
when the available informational image is due to a single evolution 
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trajectory. Then the cost criteria for control under uncerhinty is 
selected in the form of an index 

for which one has to secure a guaranteed value. Otherwise we should 
estimate a control strategy S, through the upper bound 

p* = sup g 
Y[~I?V[ . I  

of the values y[.], v[.] that are consistent with S,. 
The optimal ("minimax" or "guaranteed") stra,tegy is then de- 

termined as the one SE for which the value p* turns out to be 
minimal and which, therefore, gua~antees the value 

0 p = ming* . 
,s, 

The guaranteed strategy is sometimes criticized as very cau- 
tious, being related to the worst case realization, which may not 
be the actual case. The counterargument is that here we are not 
dealing with an "open loop control" or otherwise, with a rigidly 
fixed solution programmed in advance. The decision is made due 
to a feedback strategy, so that the realization ~ [ t ] ,  to 5 t 5 O, is 
calculated in an on-line procedure due to strategy 5'; that tracks 
the evolution of the informational image y[t] that reflects the actual 
evolution z[t] and that ensures a flexible reaction to any deviation 
of the external environment from the anticipated worst case situa- 
tion. More precisely, the optimal strategy that defines the decision 
rule should be universal relative to the on-line informational images 
y[t] that may be met throughout the process. 

The given two basic features secure a certain guaranteed result 
from possible unfavorable circumstances and allow for improvement 
of the situation if the worst case does not occur. They seem to 
justify the applicability of this appr~ach  to the design of feedback- 
type rules for decision under uncertainty. Nevertheless we often 
encounter advertisements for rigidly fixed "scenarios" that are sup- 
posed to secure a successful performance of the system. 

The requirement of universality for the decision rule may gen- 
erally be formulated as follows. The optimal strategy ,5': should 
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ensure for any possible realization ~ [ t , ]  t,e[to, 01 a minimal value 
over all admissible strategies S,, namely 

pO(y[t,]) = min sup p ) 

y[.l,v[.l 

where the upper bound is taken over all possible future realizations 
y[t], v[t], consistent with the given informational image y[t,]. In 
each specific case a precise formulation is available within a rig- 
orous formal scheme. The key point here is a rational descrip- 
tion of the informational image and its evolution. Here I have in 
mind the minimax game-theoretic approaches in the form of dual 
games of feedback control and observation, developed, particularly, 
in Sverdlovsk (now Yekatherinburg). 

In connection with the present discussion I will mention a spe- 
cific game-theoretic formalization of a control problem for a differ- 
ential system in the class of mixed strategies. This allows us to 
propagate the classical notion of mixed strategies for matrix games 
to dynamic systems. The approach combines the problem of find- 
ing a minimax estimate related to the uncertainty of the system 
with some average probabilistic procedures that may correspond to 
the statistics of the disturbance (perhaps, even unknown), together 
with artificially introduced statistics of the generated decision rule 
(the control). 

It is important, however, to emphasize that with the incorpo- 
ration of mixed strategies the total result of the control process is 
evaluated not by an average cost taken over the realizations, but 
in the form of a guaranteed probability of performance that turns 
to be close to unity over every individual realization of the process. 
This is due to the fact that throughout the evolution of the dy- 
namic system the law of large numbers holds for a large number of 
small sequential time intervals over each of which a separate control 
decision is taken. The actual scheme is such that, together with the 
actual controlled x-object, we introduce a computer simulation y- 
model (a "leader" in terms of control optimization) or a z-model 
(if we are to simulate the worst case disturbance). Both models 
are incorporated into the control loop. Abstract models that form 
some fictitious motions wy[.] and w,[.] that correspond to y[.] and 
z[ . ]  are also formed. The evolution of all the mentioned motions is 
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organized in a mode that ensures motion of the leader that is op- 
timal in some sense and also a stable tracking of the leader by the 
actual motion. This therefore ensures a suboptimal performance of 
the actual process. 

All the given features are thus synthesized into the overall 
scheme of feedback control through an appropriate mixed strategy. 
A successful incorporation of the scheme requires the solution of 
quite a number of auxiliary problems of stability, optimal control, 
etc. This also includes the utilization of the so-called open-loop 
synthesis method. The idea of the method consists of coupling 
the on-line element w[t] that follows the informational image g[t] 
with an auxiliary stochastic procedure that acts as a sort of lo- 
cator that predicts the future course of the game on the basis of 
some fictitious time T > t and some conceivable controlled stochas- 
tic process, based on an auxiliary probabilistic spa.ce, coilstructed 
independently of the space for the control and the disturbance. 

Under rather general conditions for a differential evolutionary 
system we prove the existence of a saddle point {S:, S,O) that is 
formed through mixed minimax (S:) and maxmin (S:) strategies 
yielding a value ,oO(t,, x,) of the respective differential game that 
is equal to the guaranteed results p;(t,, x,) and p:(t,, x,). These 
results should be interpreted as the limit values for the guaran- 
tees, which could be approached as close as we wish by increasing 
(regulating) the frequency of the random tests that determine the 
stochastic mechanism of generating the decision rule (the control). 

The given conceptual framework for decision-making (control) 
under uncertainty was suggested and developed in Sverdlovsk (now 
Yekatherinburg) for dynamic systems, described by differential 
equations. This concept presumes a game-theoretic nature of the 
problem and therefore lies within the framework of differential 
games. Let us illustrate these general considerations by the follow- 
ing specific material. Suppose the controlled system is described 
by the equation 

and we are to minimize the cost 
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Here 19 is a given time for the end of the process and the symbol 
Ix I stands for the Euclid norm of the vector x. The process starts 
at time to. Suppose the informational image y[t ]  has the form 

Here x: is the observed initial state where x: = xo+Axo,  and where 
xo is the actual initial state. The second element of y[t] is the history 
of the observed variable q[t] which reflects the measurement of the 
state space vector x[ t ]  with an error, namely 

where Ii' is a given matrix. The third element of y[t] is the history 
of the control u[ t ] .  It may also be convenient to include into y[t ]  
or ~ ( ~ [ t ] )  some other observable parameters. The given values of 
~ [ t ]  and the possible values of v [ t ] ,  Axo and Aq[t ]  satisfy the given 
constraints. However, it is more convenient to restrict the vari- 
ables ~ [ t ] ,  v [ t ] ,  Axo, Aq[ t ]  by adding penalty functions to the value 
y. Then the problem may he formulated as follows. Let the restric- 
tions on u [ t ] ,  v [ t ] ,  Axo and Aq[ t ]  be of quadratic nature. One has to 
devise the strategy ~ ' ( ~ [ t ] ,  E )  that minimizes the guaranteed result 

for the functional 7 of type 

where the prime stands for the transpose, and @, 8 ,  P and Q are 
the matrices of positive-definite quadratic forms. The exact setting 
of the problem requires us to explain the notations. We will be 
brief in this. Let E > 0 characterize the neighborhood in which 
the respective elements are selected. The given relations are then 
treated as the limits for a certain time-discretized approximation 
scheme when E and At  tend to zero. While forming the motions y[t ]  
of the information system it is convenient to include the observed 
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variable G [ t ]  = { 2 [ t ] ,  i jn+l, [ t ] )  described by the equations 

into the informational image of the system. Here X [ t ,  T ]  is the 
fundamental matrix solution of the equation 

We will also use the variable 

Finally we have 

Suppose the realization of the process resulted at time t  in the 
state y [ t ] ,  the accompanying element is chosen in the form 

This element generates for T > t  a certain fictitious stochastic mo- 
tion 

This is constructed on an appropriate probability space and is gen- 
erated by an appropriate stochastic process ( (7 ,  W )  and an appro- 
priate stochastic differential equation 

Here U ( T ,  W )  is a stochastic program nonanticipative relative to 
( ( 7 ,  w ) .  A nonanticipative random function g ( r ,  W )  is a prolongation 
for 6 > t  of the informational error g [q ] ,  t o  I 77 5 t ,  that had 
realized before time t .  Moreover the construction includes random 
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variables w ( w ) , v ( ~ , w ) , t ~  5 T 5 8. In an additional stochastic 
construction they imitate the real disturbance and the real initial 
state xo that are actually unknown throughout the process. 

For the stochastic motion we have an additional minimax prob- 
lem where the additional cost functional y* arrives from after a 
substitution of all the realized motions by those of the fictitious mo- 
tion. The minimax is calculated by minimization over a stochastic 
program U(T, W )  and by maximizing over g ( ~ ,  w), V(T,  w) and w(w). 
The value of this minimax p* gives a desired estimate for the opti- 
mal guaranteed result po(z[t]) for the primal control problem over 
the neighborhood of the actual informational image y[t]. After that 
the control action uO[t] = ~ ' ( ~ [ t ] ,  E )  is selected by applying the con- 
dition of steepest descent to a certain Liapunov function A, namely 

Symbol % stands for the full derivative of X in time t along the 
motions of the system which is calculated due to the rules of Lia- 
punov's stability theory. The Liapunov function could be selected 
as a quadratic form of the difference 

In compliance with Liapunov's stability theory the perturbed mo- 
tion is the one that describes the evolution of the informational 
image y[t]. The unperturbed motion is the one that is formed as 
the evolution of the accompanying element z[t]. 

Let us emphasize an interesting point. If we know in advance 
that our control will be optimal, then the worst case disturbances 
could be specified in advance as a deterministic program - a func- 
tion of time t. However, if we deviate from the optimal control 
situation, then the worst-case "antioptimal" disturbances should 
be, in general, organized through a feedback correction procedure. 
Let us now proceed with another model illustration taken from the 
curriculum of the University of Ural at Yekatherinburg. This illus- 
tration is of a mechanical nature. 
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Take an object of variable mass that satisfies the Meschersky 
equation, that is driven by a reactive control force and also sub- 
jected to a central force, a friction and a disturbance. The distur- 
I~ance consists of an irregular additional external force and a certain 
clearance that deviates the control force. The cost criteria is the 
estimate for the distance of the object from a preappointed "target" 
point at given time 0. 

The given informational image is the current position { t ,  x [ t ] )  

of the system and the velocity $[ t ] .  The optimal mixed strategies 
- the minimizing ,f: and the maximizing 5': - were synthesized 
according to the scheme loosely described in the above. The process 
was simulated on a.n IBM PC-type computer. Under the selected 
starting data the optimal guaranteed results were as follows: 

The value of the game: 

The value with simulated optimal co~itrol and disturbance 

With optimal control and nonoptimal disturbance 

With nonoptimal decision, optimal disturbance 

The nonoptimal control forced the acceleration toward the origin 
at each instant t ,  while the nonoptimal disturbance forced it from 
the origin. 





Discussion 

Gustav Feichtinger 

Professor Nikolai Krasovskii's paper begins with models of a simple 
form, of rather fabulous nature and on the verge of being amusing. 
It seems to us that such types of models provide an efficient way 
to transport basic concepts and insights. To put it in amnother way: 
Bourbakism is didactically out. Some mathematical models a.re 
only caricatures of reality: but good caricatures indeed emphasize 
at least some of the essential features of a phenomenon. 

Furthermore Krasovskii stresses the importance of education, 
which should have high priority, especially at  this stage of the his- 
torical process, i.e., the rapid changes in Eastern Europe and the 
dramatic developments in the North-Sout h conflict. 

The I V  Viennese Workshop on Optimal Control and Dynamical 
Systems (Feichtinger, 1992) contains also a few papers which are 
at first glance humoristic, but deal with problems which are also 
of interest in real applications. This is a good tradition, already 
taken up in the first Viennese Workshop. To mention a few topics, 
we refer to the "dynamics of extramarital affairs", "optimal drink- 
ing behavior at a party", "optimal slidesmanship", "corruption of 
politicians", etc. 

A good example for models of this type is provided by the 
author in his fairyland Cyclonia model. It illustrates in humoristic 
form how a model may contain important tutorial information for 
students. The message in this case is that subjectivity of decision- 
making together with restrictions on the information structure of 
the process may lead to highly undesirable results despite the overall 

Inst i tute for Econometrics, Operations Research and Systems Theory, Technical Uni- 
versity of Vienna, Vienna, Austria. 
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good intentions. More precisely, the "Alien" acting as coordinator 
becomes richer at the cost of the agents who are exploited by the 
Alien. 

This remark leads us to a second point we would like to deal 
with. We consider, as I<rasovskii did, an action selected by a 
decision-maker which runs counter to its goocl intention. 

Let us just mention an example to clarify what we mean. Long 
and Siebert (1985) and Steindl et nl. (1986) analyze the impa,ct 
of an incentive scheme in which a firm receives a reward (or pays 
a. penalty) when it deviates above (below) its normal employment 
level. The latter concept is introduced as a weighted average of past 
employment levels. It turns out that such an institutional setting 
(more precisely, an incentive scheme of a certain kind) may imply 
cyclical demand in labor. Thus, institutional arrangements inay 
be responsible for business cycles. Clearly, alternative regimes of 
hiring and firing are beyond good intention. 

We conclude our remarks on the discussion by briefly sketching 
a related situation. As above, we consider a case in which the ac- 
tions of a decision-maker may be counter-productive to the society 
as a whole. 

In Dockner and Feichtinger (1992) the role of aggressive envi- 
ronmentalists in the process of exploiting a renewable resource (like 
a fish population) is studied. In particular, the harvesting activ- 
ities of a profit-maximizing firm are interrupted by the actions of 
environmentalists who aim at reducing total catch by the firm in 
order to protect the fish population. The resulting differential game 
model has been formulated t,o answer the question, "Does society 
gain from the actions of environmentalists?" 

It is interesting to mention that a. similar paradigm is applica- 
ble to "explain" cyclical patterns in ancient Chinese history, i.e., 
periodic alternatives between despotism and anarchy. The open- 
loop Nash solution of the differential game provides, up to now, the 
simplest case of a three-dimensional canonical system exhibiting 
a stable limit cycle as an "optimal" solution (see Feichtinger and 
Novak, 1992). 
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Discussion 

Eberhard P. Hofer 

In modern terminology the term uncertainty is often related to 
chaos, fuzziness, and neural nets. In Nikolai Krasovskii's paper un- 
certainties are unknown disturbances or parameters. The method- 
ology aspect is covered from an upper level and is rather global. 

The range of applications for decision-making under uncertain- 
ties in technical and non-technical linear and non-linear dynamical 
systems spreads from low-dimensional to large-scale systems. What 
is the salient feature of the problem and what could an engineering 
approach to the solution look like? 

Rather than assuming a stochastic process, a deterministic 
treatment of uncertainty seems to be very attractive, e.g., as out- 
lined in George Leitmann's work: one requires certain performance 
in the presence of uncertain information. Under the assumption 
that nature itself is not uncertain, but only our information, our 
knowledge, and our methods are uncertain, the deterministic ap- 
proach seems to be appropriate. 

As already mentioned, decision-making very much depends on 
the underlying performance index. Therefore, optimization prob- 
lems and differential games have to play a dominating role in this 
framework. The importance of the so-called auxiliary problems 
such as stabiliiy, control and observer design is given by the fact 
that their solutions form a basis for a - let me call it - "methodology 
box". A box full of tools available for practical problems marked 
with recommendations and indications about their limits in use. 

Department of Measurement, Control and Microtechnology, University of Ulm, Ulm, 
Germany. 



2 0 Eherhard P. Hofer 

The reader would have liked to hear more about the methods, an- 
alytical and numerical ones. I would have liked a list of references 
in order to participate in the rich experience of the author. 

As far as numerical methods are concerned, comments on the 
implementation of efficient and reliable software for more complex 
systems, as.  well as good price/performance relations for imple- 
mented software, would be important. Interval methods (algebraic 
methods), model reduction methods as an important tool to  re- 
duce system order (singular perturbations), and knowledge-based 
decision making with appropriate algorithms have to be discussed 
within this framework. In modeling, which plays a key role in dy- 
namical systems, first include the governing physical phenomena, 
then intuition and heuristics. 

All our really important problems are of an interdisciplinary 
nature. We have to bring together the knowledge and experience 
of our participating researchers from the various disciplines at the 
very beginning. This is our best chance for reducing complexity in 
the system and handling uncertainties, in order to be prepared for 
good decisions. We need problem-oriented research to be specific, 
flexible and efficient. 

When we talk about the enormous challenges of the nineties and 
beyond we have to face the population problem, economic problems, 
and health problems, with special emphasis on the immunology 
problem. For solving these problems I ask: 

Do we have the appropriate models? 
Do we have the right performance index? 
Do we have the powerful methods? 

I think there is a strong demand for our contributions in these 
fields for a good future on our planet earth. 
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Yuri M. Ermoliev 

Decision-making under uncertainty is as old as mankind. Caesar 
crossing the Rubicon said Alea iacta est (the dice are cast), imply- 
ing that our decisions are affected by chance. 

Uncertainty is an essential feature for any study directed toward 
the future. The tendency in decision-making involving uncertainty 
is to postpone decisions until uncertainties are resolved. Unfortu- 
nately, uncertainties are inherent in virtually all systems related to 
economics, meteorology, demography, ecology, etc., and will never 
be resolved. In order to encourage a decision-maker to act we need 
appropriate tools to explicitly treat the uncertainties involved. 

We cannot predict or optimize everything unless we make some 
assumptions about patterns of the phenomena: create a model. 
Sometimes the assumptions are made in an explicit form that lead 
to mathematical models and a rigorous analysis. Sometimes they 
are made implicitly and leads to a verbal analysis, often providing 
more questions than answers. We cannot rely on such statements 
as "market forces bring demand and prices into equilibrium" or 
"adaptation and incremental improvements will find an optimal 
decision", since they are true only when underlying processes have 
certain properties, for instance, smoothness, nontoxicity, concavity, 
product homogeneity and divisibility, unchanging "environment", 
full information (certainty), lack of collusion or strategic behavior, 
and absence of externalities. Otherwise the "convergence" cannot 
be proved even on paper (mathematically) and such mechanisms 

Risk Analysis and Policy Project, IIASA, Laxenburg, Austria. 



22 Yuri M. Ermoliev 

without the help of a regulatory body may create unpredictable be- 
havior and dangerous "locked-in" structures, caused even by small 
disturbances at the initial stage. 

The discussion of the section "Decision-Making Under Uncer- 
tainty" concentrated on various possible approaches for dealing 
with the uncertainty, one of which is described in the paper written 
for the conference by Professor Nikolai N. Krasovskii. The report 
below reflects the discussions, with a subjective view by the rap- 
porteur. 

Uncertainty enters various steps of a model building process, 
starting from the model structure: purely verbal or with some pre- 
cise details; which variables are driving?; levels of aggregation and 
decomposition (region, country, the universe) coinciding with un- 
certainty of available information; relations between variables, for 
instance, diffusion equations or only simple "predictors" such as 
transfer coefficients are needed in pollution management if we take 
into account uncertainties in the weather conditions, "dose-effect" 
relations, current and projected emission patterns, etc. 

The existence of decision variables creates additional and essen- 
tial sources of uncertainties in contrast with classical natural science 
models. The aim of a decision-making model is not only to make 
sense of a limited set of observable data, but also to change the cur- 
rent practice and structure for a better state which may be unlike 
anything that has been experienced in the past. The experiments or 
"trial and error" mechanisms may be dangerous, time-consuming 
or simply impossible - we have to rely only on models equipped 
with tools to treat arising uncertainties explicitly. 

The goals of a decision-making process and constraints create 
more uncertainties in cases when good intentions may lead to bad 
results and public distrust. Constraints induce feedback. For in- 
stance, if carbon dioxide in water C, and carbon dioxide in the 
atmosphere C, satisfy a symbolic constraint (in a time interval) 

aCw + PC, = constant 

with some positive coefficients a and p, then positive feedback oc- 
curs: warming diminishes C, and thus increases C,, which leads to 
more warming, diminishing C,, and so on. [See also the discussioil 
in Keyfitz (1992).] 
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Uncertainties in constraints such as in the values a and ,B influ- 
ence a balance of positive and negative multiple feedback and may 
lead to opposite conclusions, for instance, on warming or on the 
ozone layer. 

Modeling usually starts with an attempt to create a model 
which makes sense of observable data. From the formal point of 
view it can be interpreted as an approximation of available data 
by some functions, such as a polynomial, or other functions which 
may also be given implicitly as solutions of differential equations, 
or Petry and neural nets with unknown parameters to be identified. 
Since there may be errors of measurement, the "fitness" must also 
be understood in a certain way that often leads to non-unique solu- 
tions of the identification procedures and additional uncertainties 
in predictions. It is not true that any other, e.g., verbal, analyses 
avoid all the above mentioned difficulties: this is only possible by 
ignoring them. 

Of course, the building of a decision-making model (conceptual 
or more formal, including details such as concrete values a and ,B) 
is not only a scientific task but also an art. The main purpose is 
not to take a picture of the situation, but to make a sketch - a 
laboratory world to examine possible concepts and alternatives. In 
the presence of essential uncertainties the most important task in 
the modeling seems to be a search for better solutions, comparative 
studies or optimization, rather then prediction and assessment. It 
is impossible to explore all details of the environment, biochemical, 
hydro-meteorological, genetic, etc., differences involving large num- 
bers of variables. Therefore assessments and predictions will always 
yield poor absolute values. Despite this, the preference structure 
among decisions might be stable, which is similar to the difference 
between measuring exact weights of parcels and only guessing which 
is heavier. 

The study of interactions between uncertainties, decisions and 
outcome is a methodologically challenging task. Relations among 
variables may be changed considerably with the change of decisions 
aggravating various risks. It is possible to speak about reliability of 
a decision: the best decision combined with "bad luck" may lead to 
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negative effects, and a wrong decision wit 11 "good lucli" to positive 
effects - at least for a while, as it was in the case of Chernobyl. 

How can we choose decisions which are optimal and still ro- 
bust against all eventualities? What are the enforcements of such 
decisions? For instance, decisions in the case of greenhouse ef- 
fects might fundamentally endanger modern civilization, but on 
the other hand might be beneficial or perhaps even not big enough 
to matter (Clark, 1986). 

As uncertainty is a broad concept, it is useful to approach it, 
in many different ways [see, for example, von Winterfeldt and Ed- 
wards (1986)l. The most commonly used technique for dealing with 
long-term planning under uncertainty, scenario analysis, is seriously 
flawed. Although it can identify "optimal" solutions for each sce- 
nario, it does not provide any clue as to how these "optimal" solu- 
tions should be combined to produce a merely reasonable decision. 
The suggestion of mixing up all the best solutions with weights as- 
signed to correponding scenarios may lead to wrong decisions, as it 
can be seen from the simplest situations. There is also a suggestion 
to use mixed strategies derived from an appropriate "pay-off" (de- 
cision/scenarios) matrix. In this case an optimal decision appears 
as a result of random choice among decisions which are optimal 
only for one scenario (e.g., best crop for "dry", "normal" or "wet" 
season). Of course, such a solution lacks the diversity (multiple 
crops, different energy sources, various products, etc. ) needed for 
its robustness against all possible scenarios. 

One clear and easy way to characterize uncertainty is by ranges 
or even sets of possible values (without identifyiing their likelihood): 
set-valued estimate. Since such a depiction of uncertainty does not 
provide any idea of more reasonable values, the choice of optimal 
decisions is usually based on the calculation of upper and lower 
bounds of outcomes with respect to all possible uncertainties; in 
particular, it is suggested for making decisions from the worst case 
situation - so called guaranteed decisions (strategies). In fact, such 
an approach for the case of dynamic systems modeled by differential 
equations is described in the paper written by Krasovskii. 

In the case of dynamic systems modeled by differential equa- 
tions, guaranteed strategies often lead to instabilities and irregular 



Rapporteur's Report 2 5 

behavior of the corresponding trajectories. The absence of optimal 
trajectories in the commonly used sense requires generalization, and 
it is often suggested that the state of the system also be described as 
a set-valued estimate. Since nonlinear transformations of a dynamic 
system may map a simple set into a rather complicated domain, the 
set-valued estimates of the state are sometimes searched for among 
a rather simple approximation, for instance, ellipsoids. 

A more specific assumption described by Krasovskii's approach 
is that the information ima.ge has to be generated by a differential 
equation (second player) and these equations are known to the de- 
cision maker (first player) and thus he can integrate them. ("The 
information processing would thus incorporate the integration of 
the infinitesimal or recurrent generators . . . ", see p. 4.) Therefore, 
the search of guaranteed strategies requires the solution of optimal 
control subproblems that makes essential difficulties in a case of 
general-type constraints or nonlinearities. A typical application of 
such a scheme may be low-dimensional models of mechanics with 
two "players" modeled by differential equations. 

The characterization of uncertainties by ranges and worst case 
analysis may provide useful insights. On the other hand, "because 
a range may be derived through a process of ruling out impossible 
values rather then through critical analysis of the relative likeli- 
hood of more reasonable values this depiction sometimes arouses 
scepticism and can appear non-scientific" (Finkel, 1990). 

The following is a typical illustration (Finkel, 1990, p. xiii): 

Giving only the mean annual income . . . or only the median 
and bounds would not reveal that a substantial proportion of 
the total national income accrues to a relatively small number 
of very wealthy persons. 

The same applies for concentrations of pollutants, toxicants, en- 
ergy demand for the next year, population, etc. For instance, the 
daily concentration of a toxicant may be within the normal level, 
but for five minutes it may vitally exceed the survival level. A sim- 
plified depiction of the uncertainty by decision makers may easily 
create a syndrome of "public concern" as the following example 
illustrates. 
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Consider a situation where two types of accidents might oc- 
cur to  a group of 10 people. The first type of accident will result 
in the death of all 10 persons in 1 out of 10 cases. The second 
type of accident will result in the death of each of the 10 persons 
(independently), also in 1 out of 10 cases. The range of possible 
deaths (set-valued estimate) and the averaged value are the same 
in both cases, that is 10 and (1110) 10 = 1: but the chance of 10 
deaths in the second type of accident is only 10-lo = 0.0000000001 
in contrast to 0.1 of the first type. 

A more general idea for depicting uncertainties is to assign 
weights to possible values of uncertainties (parameters, events), 
such as frequencies in the case of repetitive events, or confidence 
measures in the case of non-repetitive events (an accident at a par- 
ticular plant). Such weights are often interpreted as a probabilistic 
measure (possibly of subjective nature). There may also be other 
versions, for instance when the support of the weight-function is 
interpreted as the "fuzzy set". 

The difficulty of such an approach is that although the weights 
of initial data are known, their propagation through the system 
creates enormous computational difficulties for the analytical eval- 
uation of outcome weights. The decision variables, as we can see, 
may dramatically affect these weights further and create a higher 
order source of uncertainties. 

The interpretation of weights as a probabilistic measure has 
essential advantages compared with any other concepts since the 
study of the propagation in this case can be based on the Monte 
Carlo simulation techniques. In other words, it is possible to  in- 
corporate a Monte Carlo simulation model into an optimization 
process. Unfortunately it is impossible in other approaches such 
as the "fuzzy-set" theory. Besides, in such approaches there is no 
well-established, empirical method to  quantify fuzziness (or vague- 
ness, plausibility) similar to  frequency analysis of real observations, 
experiments, results of questionnaires or expert judgements of the 
probability theory. 

How can we design an optimal strategy by utilizing only weights 
for the initial data? The task of the Adaptation and Optimization 
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Project (1982-1985) at IIASA was to study the a,nswers to this ques- 
tion. Extended discussions of motivations and developed tools with 
their possible applications and iinplementations ha,s been published 
in the volume by Yu. Ermoliev and R. Wets (1988). 

Let us note that the search procedure cannot be based on 
straightforward Monte Carlo simulations since even the evaluation 
of the best decision among two alternatives in such a case is equiva- 
lent to  well-known problems of hypotheses testing. Since results of 
initial data propagation can be studied (in general) only by a sam- 
pling procedure, the above question is equivalent to the following: 

How call we find an optimal decision among an infinite number 
of feasible decisions without calculation of exact values of "ob- 
jectives" and "constraints" and with a large number of decision 
variables and uncertainties? 

The answer to this question leads us to stochastic optimization 
tools conceivable with only partially known distribution functions 
(and incomplete observations of unknown parameters), which have 
been successfully applied to a wide variety of problems. 

There are differences between the typical formulation of the 
optimization problems that come from statistics and those from 
decision-making under uncertainty. Stochastic optimization mod- 
els are mostly motivated by problems arising in so-called "here-and- 
now", or ex ante situations, when decisions must be made on the 
basis of existing or assumed a priori information about uncertain- 
ties. The situation is typical for problems of long-term planning 
(strategic behavior) that arise in systems analysis. In mathemati- 
cal statistics we are mostly dealing with "wait-and-see" , or ex post 
situations, when decisions are made on the basis of observations 
"during" the decision-making process. Such a situation is encoun- 
tered in short-term planning or, say, in driving a car. 

Generally speaking, in the case of uncertainties, non- 
stationarities or disequilibrium there are two major mechanisms 
for facilitating our response to uncertainty and changing conditions: 
the short-term adaptive adjustments (defensive driving, marketing, 
inventory control, emergency service, etc.) and long-term anticipa- 
tive actions (engineering design, policy setting, investment strate- 
gies, insurance, pollution reduction strategies, land developments, 
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even keeping an umbrella at the office, etc.). The anticipative, 
long-term perspectives are important for environmental problems. 

The major challenge to the systems analyst is to develop an ap- 
proach that combines both mechanisms (adaptive and anticipative) 
in the presence of a large number of uncertainties, and this in such 
a way that it is computationally tractable. 

Dynamics and nonlinearities bring uncertainties of chaotic be- 
havior similar to probabilistic and well-known behavior from the 
pseudo-random numbers generator theory. Again, often the famous 
question arises of whether the good play dice or nature is certain 
and can be predicted (contradicting even with W. Hasenberg's "un- 
certainty principle"). If this is the case, then one may become a very 
wealthy person by finding a deterministic equation describing fluc- 
tuations of prices on a stock exchange. How shall we characterize 
uncertainties of a chaotic nature, for instance, sequences of pseudo- 
random numbers - by ranges, trajectories, generating equations or 
remarkably stable frequences? Of course, the answer depends on 
the problem at hand. 

Decisions create more uncertainties through externalities exist- 
ing in economics and environment, when the decisions of a partic- 
ipant (firm, region, country) are uncertain until other participants 
reveal their decisions. Such uncertainties require not only exchange 
of information, but a concept of mutual interests and joint con- 
straints which are not always understood and may often emerge 
only through a process of successive negotiations. Game theory 
exists: this is a theoretical framework with various concepts of 
possible equilibriums in the presence of the different interests of 
participants (of a cooperative or non-cooperative nature). 

The treatment of the environment as this generation's "public 
good" brings uncertainties in the evaluation of real costs, benefits or 
efficiencies. Of course, the round table discussion will never produce 
values of damages and the negotiations must be supplemented by 
unified approaches to treat involved uncertainties. It is possible to 
imagine a model accepted by participants to serve the purpose of a 
witness or victim during a negotiation process. 
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Accumulative effects and the irreversibility of environmental 
damage when some aspect may be lost forever accentuates the long- 
term and anticipative nature of decisions and requires the establish- 
ing of "contacts" between current and future generations. What are 
the "taxes" of the current generation? What are "social" costs and 
benefits? The answer often calls for a regulatory body (or a number 
of competing authorities) to establish environmental quality in cer- 
tain "norms" with appropriat,~: monitoring regulations and verifica- 
tion procedures. It requires a dynamic approach to decision-making 
under uncertainty to enable observable episodes to be traced back 
to their sources. 

A decision-making process can easily be directed toward desired 
results by manipulation of goals, constraints, parameters, relations 
between variables, etc. (with a model), that may lead to contradic- 
tory conclusions and public distrust. It is important to understand 
that the structure of a decision-making model is not as well de- 
fined as the structure of natural science models. The formulation 
of such a model always runs into difficulties in identifying objec- 
tives and constraints. Their understanding and quantification is 
usually achieved through a "dialogue" with the model when each 
run of the model provides new ideas for possible variables, con- 
straints and goals. Such a process proceeds until a compromise 
decision emerges. Therefore, the model doesn't make decisions - 
they are made by the decision maker (participant) and the most 
important is not what he decides but how he decides. 

We can say that in the decision-making process nothing can 
be claimed to be the true decision; it varies with changes in goals, 
alternatives, constraints, and information. The whole process must 
be viewed as a process of successive adjustments rather than a 
comprehensive choice. The study of such nonstationary decision- 
making processes is rather challenging. Important "adjustments" 
may not necessarily lead to incremental improvements even in the 
case of concave (or convex) but rapidly changing (nondifferentiable) 
objective (goal) functions. 

The nature of uncertainty avoids certainty, so that even the 
best solution, as mentioned above, may have (with bad luck) a 
negative result. It requires transparent representation of scientific 



understanding of inherent uncertainty, which is often quite different 
from the public and the decision maker's perception. 

Uncertainty easily creates nonlinearity and even discontinuity, 
which in turn creates new uncertainty. In the case of guaranteed 
strategies, essential uncertainties are created by "inner" subprob- 
lems which are often not completely solved, and thus the guaranteed 
results are unknown. Sometimes this difficulty can be avoided by 
using nondifferentiable optimization techniques that have bee11 a 
focal point of IIASA's research since the mid 1970s. 

Stochastic approaches to decision-making under uncertainty 
aim t,o model situations for a risk, when each given decision may 
have both positive or negative results or externalities (win or lose, 
hit or miss, cost or profit, over- or under-estimating, etc.). The pos- 
sibility of positive and negative externalities for the same solution 
results in nonlinearities and even discontinuities of corresponding 
risk indicators. 

Risk-based environmental management provides many such ex- 
amples. We can think of a typical "hit or miss" situation, that 
of reducing accumulative pollutants such as greenhouse gases and 
stratospheric ozone-destroying gases. Such problems are chara.c- 
terized by uncertain thresholds, which if exceeded may result in 
drastic losses. In this example, the discontinuity occurs due to irre- 
versible environmental impacts. The presence of risks also creates 
a discontinuity in a rather "smooth" situation at  first glance. 

To illustrate this fact by verbal discussion is difficult. Therefore, 
let us consider a simple pollution control model, given by a linear 
inequality ("safety constraint"): 

where x is the level of the emission; h is a "predictor" which com- 
putes the average deposition level a t  a receptor point from the 
source of the emission. The norm of the "dai1y"depositions equals 2. 
Such safety constraints are important as a "surrogate indicator" in 
the case when the evaluation of real damages (costs) is impossible. 

If h is known, then a permitted level of the emission x is defined 
easily from the inequality. Suppose now that h is a random variable 
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which takes only two values, 0.5 and 1, with probability 0.5. Then 
for any x > 0 there may be two possibilities 

and the simplest indicator to characterize the risk of violating the 
safety constraint is (risk-function) 

The graph of this step function is shown in Figure 1. The 
accumulative effect (increasing level of pollution x)  results in dis- 
continuous changes, which is similar to the so-called "chemical time 
bomb" phenomena (see Stigliani et al., 1991). They are unexpected 
and uncontrolled unless the rate of change is characterized. For in- 
stance, in a pollution control problem we might be interested in 
minimizing risk by a process of incremental improvements. Since 
the marginal value (derivatives) of F ( x )  at any x is 0, the search 
process cannot be based on evaluations of these values. How one 
can characterize the increasing rate of two functions is shown in 
Figure 2 in order to utilize it in the search for an optimal decision. 

We can now imagine the possible nonlinearities and discontinu- 
ities of a similar risk function defined for the case where we have 71 

emitters: 

where h l , .  . . , h, are random predictors (for each emitter i = 

1 , .  . . , n), X I , .  . . , x, are levels of emission and q is the norm (critical 
load). 

The discontinuity of F ( x )  creates the uncertainty in the change 
or in the indication of improvements. In addition, there are crit- 
ical uncertainties in the evaluation of t,he risk indicator F ( x )  as 
a function of x. The choice of a decision x may dramatically af- 
fect the value F(x) :  let us compare decisions x = (1,0,.  . . ,0)  and 
x = (1,1, .  . . , I ) .  Although uncertainties in the initial data for (pre- 
dictors) h l ,  . . . , h, are characterized by probabilistic measures, the 
probability of an outcome 
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Figure 1. Discontinuity of the risk function. The marginal value 
of the function is 0 but the risk increases with increasing x. An 
accumulative effect results in rapid and sudden changes. 

Figure 2. The rate of increase of two functions. 

as a function of x is evaluated exactly only in exceptional cases 
(especially for more general risk indicators involving "damages"). 



Rapporteur's Report 33 

The fundamental problem in the design of an optimal strategy 
is t,o bypass the above-mentioned discontinuities, uncertainties in 
the change and the evaluation of exact values of functioils similar 
to F (x), in general also involving costs, benefits, damages, etc. 

Within the stochastic optimization framework such a, search 
technique is being developed for problems with large numbers of 
decision variables and uncertainties, practically arbitrary "distri- 
l~utions" and rather general "objectives" and L'constraints". The 
technique is essentially based on using only random observatioils of 
risk functions through Monte Carlo simulations or actual measure- 
ments. 

A more rigorous and explicit formulation of assumptions may be 
a great advantage for decision making, even if uncertainty exists in 
the model. However, policy formation is a complicated process that 
involves political pressure, self-interest and the interest of various 
groups. The reluctance to reach firm (see Miller, 1980) conclu- 
sions enables a policy maker to use research to support or justify 
a pre-determined decision. Background and educational training is 
also important. Decision makers usually have difficulties assessing 
variable results and often only simple estimates and indicators are 
encouraged, which are often sources of public concern and distrust. 
For instance, such indicators as "life expectancy" and "collective 
dose" or "concentration level" alone are not able to depict the vari- 
ations of effects within a population or country. 

The complexity of the decision-making process itself creates ad- 
ditional uncertainties and constraints. We can also study the prop- 
agation of decisions through the "decision events tree", where an 
event may be "public rejection". The "dialogue" with the model 
at this stage involves more constraints and variables. For a "fair" 
solution to emerge at the end of such a process it may essentially 
depend on the dimensions of the problem (new perspectives) and 
the values of parameters (taxes, subsidies, discounting sales, safety 
levels, norms, etc.). 
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