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A bundle method for minimizing a sum of convex 
functions with smooth weights* 

Krzysztof C. ~ i w i e l f  

March 14, 1994 

Abstract 

We give a bundle method for minimizing a (possibly nondifferentiable and non- 
convex) function h(x) = Czn=, p;(x) f;(x) over a closed convex set in IRn, where pi 
are nonnegative and smooth and fi are finite-valued convex. Such functions arise 
in certain stochastic programming problems and scenario analysis. The method 
finds search directions via quadratic programming, using a polyhedral model of h 
that involves current linearizations of pi and polyhedral models of fi based on their 
accumulated subgradients. We show that the method is globally convergent to sta- 
tionary points of h. The method exploits the structure of h and hence seems more 
promising than general-purpose bundle methods for nonconvex minimization. 

Key words. Nondifferentiable optimization, stochastic programming, bundle 
methods, semismoot h functions. 

1 Introduction 

We present a method for solving the nondifferentiable optimization (NDO) problem 

m 

minimize h(x) := p;(x) f;(x) over all x E S, 
i=l 

(1.1) 

where S is a nonempty closed convex set in IRn, pi : IRn + IR+ are nonnegative con- 
tinuously differentiable and f; : IRn + IR are convex and possibly nondifferentiable, for 
i = 1: m (= 1,. . . , m). We suppose that at each x E S we can calculate the gradient 
Vp;(x) of pi and an arbitrary subgradient g f i ( x )  E df;(x) of fi, i = 1: m. 

~. 

The method is an extension of one for the convex case (all p; constant) given in [KiwgO] 
and exploits some ideas of [Kiw86] for handling nonconvexity. It is a descent method which 
finds search directions via quadratic programming (QP) subproblems. Each subproblem 
is obtained by linearizing each p; at the current iterate and constructing a polyhedral 
model of each f; from its accumulated subgradients. An inexact line search ensures global 
convergence of the method to stationary points of h over S. 

The special convex case of problem (1 . l) with constant pi (x), i = 1: m,  can be solved 
even in the large-scale case by several methods of varying efficiency; cf. [ErW88, HUL93, 
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Kiw90, Rus86, Rus93b, ScZ921. In general, problem (1.1) is nonconvex but semismooth 
[Mif77b], so it could be solved by other general-purpose bundle methods for NDO [Kiw85, 
Kiw92, Mif82, ScZ921. However, such algorithms would not be very efficient, since they 
cannot exploit the special structure of h. In particular, our method uses only the current 
linearizations of pi for search direction finding and, hence, does not need any complicated 
techniques for handling nonconvexity of h. Moreover, when all the weights pi have small 
gradients (are almost constant) then our method automatically gets close to its efficient 
predecessors for the convex case [KiwgO, Rus86, Rus93bI. 

We should add that problem (1.1) has been suggested to us by A. Ruszczyriski [Rus93a] 
as an important extension of stochastic programming problems (cf. [ErW88]). In classical 
versions of such problems, each p; is the (constant) probability of an event (scenario 
[RoW91]) with cost f i (x),  and one minimizes the expected cost h(x) over all feasible 
decisions x in S. Our framework allows the probability of a future event to depend on 
the decision taken at the first stage. It seems that such models could find widespread 
applications, once suitable software for their solution becomes available. 

The paper is organized as follows. In 52 we state our method for the simplest case of 
m = 1. Its global convergence is established in 53. The extension to m > 1 is described 
in 54. 

We use the following notation and terminology. (.;) and ( - 1 denote the standard 
inner product and norm respectively in a given Euclidean space. bs is the indicator 
function of S (bs(x) = 0 if x E S, oo otherwise). For any convex function f : IRn + IR, 
dc f (x) = {g : f (y) 2 f (x) + (g, y - x)  - c Vy) is the c-subdiflerential of f at x for 
each c 2 0, d f (x) = do f (x) being the ordinary subdifferential. The mapping 3. f ( a )  is 
locally bounded and upper semicontinuous [Kiw85, HUL931. Under our assumptions, the 
function h (cf. (1.1)) has at each x the Clarke subdiflerential (generalized gradient [Cla83]) 

and h is semismooth [Mif77b]. We say that a point 5 E S is stationary for h on S if 
0 E dh(5)  + dbs(x), where dbs is the normal cone operator of S ;  this is a necessary 
condition for 5 to  minimize h over S [Cla83, Mif77bl. 

2 The method 

To simplify notation, we now consider the case of m = 1 (extensions to m > 1 are deferred 
till $4). Thus we wish to minimize h(x) = p(x) f (x )  over x E S, where p : IRn + IR+ is 
continuously differentiable and f : Rn + R is convex. Given y E S and gj(y) E df(y),  
let 

f ( x ; y )  = f(Y) + (gf(Y),X - Y )  , (2.1) 

c r f ( " , Y )  = f ( x )  - f ( x ; y )  2 0 (2.21 
denote the value at x of the linearization of f computed at y and its error at x respectively 
(aj 2 0 by convexity). The method generates a sequence { X ~ ) E ~  in S that should 
converge to  a minimizer of h+bs, and trial points {yk) c S at which linearizations of f  are 
computed. Let f j ( - )  = f(.;  yj) and g i  = gj(y j )  for all j. To deal with nondifferentiability 
of f and h = p f ,  at iteration k the method uses their polyhedral models 



where J k  c (1 :  k ) ,  k E J k .  The kth search direction from xk E S is chosen as 
k k  dk = argmin{h ( x  + d)  + ukldI2/2 : xk  + d E S ) ,  (2.4) 

where the weight uk > 0 should keep xk+dk in the region where hk is a close approximation 
to h. The predicted descent 

vk = hk(xk  + dk )  - h ( x k )  (2 -5)  
is employed by a line search to find the next xk+' and yk+ l .  

Note that (2.4) can be solved by finding ( d k ,  v k )  to  

minimize ukIdl2/2 + v over all (d ,  v )  E IR"" 
k j satisfying -p(xk)af + ( P ( X  )g j  + f ( x k ) v p ( x k ) ,  d )  5 v ,  j E J k ,  (2.6) 

xk + d E S ,  

where af  = f ( x k )  - f j ( xk )  > 0 (cf. (2.2)). Denote the Lagrange multipliers of (2.6) by 

Af  , j E J k .  Let gk+I = xk  + dk = arg mins hi. As in [Kiw9O], using the fact p(xk )  > 0,  
from (2.3) and the optimality condition 0 E a[hk + u k (  -xkI2/2 + 6 ~ ] ( ~ ~ + l )  for (2.4) we 

k -k  k k+l deduce the existence of 3; E a jk (gk t l ) ,  3: = p(x )g, + f ( x k ) v p ( x k )  E ah ( y  ) and 54 E 
a6s(yk+1) such that the aggregate linearizations f k ( . )  = j k ( y k t l )  + ($, . - g k + l ) ,  H i ; ( . )  = 

k k+l h ( g  )+( i : , . -sk+'  ) and b i ( - )  = ( j : ,  - - I*+' ) minorize f ,  hk and 6.5 respectively 
k -k  and p(x )g ,  + f ( x k ) V p ( x k )  + j$ + ukdk = 0. Moreover, letting 

a: = f ( ~ ' )  - f k (xk)  o (cf. f P), B: = p ( ~ k ) j b )  0 ,  a: = -b:(xk) = ( & d k )  o 
(cf. 0 = bs (xk )  > b s ( x k ) )  and 

we have 

i; E 8,;f ( x k ) ,  
k k d k 2  

- V  = u  I 1 +ak .  (2.10) 

Indeed, (2.9) follows from f > f k ,  and (2.10) from vk = i k ( y k + ' )  - h ( x k )  = Xk(xk)  - 
h(xk)+( i j : ,dk)  = -6:-&:+( ik,dk) (cf. (2.5), (2.7)). Thus vk 5 0. If vk = 0 then either 

p(xk )  > 0,  B)  = 0 and j; E a f ( x k )  (cf. (2.8)-(2.10)), or p(xk )  = 0,  and dk = 0 (cf. (2 .7))  
imply jt E d6s (xk )  and 0 E a h ( x k )  + $d6s(xk), so xk  is stationary and the method may 
stop. Further, we note that for jk = {j E J k  : A: # 01, the selected model 

may a posteriori replace jk in (2.3) without changing (2.4)-(2.5), since f k ( y k + l )  = 
' k  k+l Ak k+l ' k  k+l 

f ( y  ) and i :  = CjEj.Afgi E af ( @  ) c af ( g  ), using Af  > 0,  A f [ f k ( y k + " -  
f j ( f k + ' ) ]  = 0,  j E J k ,  C j  Af = 1. Thus f k  incorporates all the active linearizations, and 
the inactive ones may be dropped to save storage. 

We may now state the method in detail. 

Algorithm 2.1. 
S t e p  0 (Initiation). Select an initial point x1 E S ,  a final stationarity tolerance cOpt > 0,  
positive linesearch parameters K L ,  K R  and K ,  satisfying K L  + K ,  < K R  < 1, a stepsize 
bound f E (O , l ] ,  lower and upper bounds for weights 0 < u f i ,  5 urn,,, an initial weight 
u1 E [um;,,urnax] and the maximum number of stored subgradients M 2 n + 2. Set 
y1 = x l ,  J 1  = { I ) ,  f 1  = f ( y l ) ,  g; = g f ( y ' ) .  Set the counters k = 1, 1 = 0 and k (0 )  = 1. 



Step 1 (Direction finding). Find the solution (dk, vk) of (2.6) and its multipliers A: such 

that the set jk = {j E J~ : A: # 0) satisfies ljkl 5 M - 1. 

Step 2 (Stopping criterion). If vk 2 terminate; otherwise, continue. 

Step 3 (Line search). By a line search procedure as given below, find two stepsizes 
0 < t i  < tk  < 1 such that xk+' = xk + t idk  and yk+' = xk + tkdk satisfy 

and either a descent step is taken: t i  = tk > 0 and either t i  > f or 

or a null step occurs: t i  = 0 (i.e., xk+' = xk)  and 

If t i  > 0, set k ( l+  1) = k + 1 and increase the counter of descent steps 1 by 1. 

Step 4 (Linearization updating). Select jk such that jk c jk c Jk and 1jkl 5 M - 1, set 

J'+' = j k u { k+ l ) ,  g:+' = gj(yk+l) ,  f::: = f(xk+'; yk+') and ftt' = f:+(gi,xk+' - xk)  

for j E jk (so that a:+' = f (xk+') - f:", j E Jk+'). 

Step 5 ( Weight updating). If xk+' # xk,  select uk+' E [ u ~ , ,  urn,,]; otherwise, either set 
k uk+' = uk or choose uk+' E [u , urn,,]. 

Step 6. Increase k by 1 and go to Step 1. 

A few comments on the method are in order. If S is described by finitely many 
linear inequalitites then Step 1 may use the QP methods of [Kiw89, Kiw941, which can 
solve efficiently sequences of related subproblems (2.6). Step 2 is justified by stationarity 
estimates following from (2.7)-(2.10), i.e., crk and ukJdkl measure how far the null vector 
is from dh(xk)  + dbs(xk). Step 3 is entered with vk < 0 and xk + dk E S, but dk need not 
be a descent direction for h at xk. Whenever descent occurs, criteria (2.12)-(2.13) make 
t i  sufficiently large so that h(xk+') is significantly better than h(xk). On the other hand, 
each null step collects a new linearization of f to modify significantly the next direction 
finding subproblem (cf. (2.6) and (2.14)). At Step 4 one may let Jk+' = Jk U {k + 1) and 
then, if necessary, drop from Jk+' an index j E Jk \ jk with the largest error a:+'. Step 
5 may use the weight updating procedure of [KiwgO]. 

The following procedure may be used at Step 3, with x = xk,  d = dk, v = vk. 

Procedure 2.2 (line search). 

(i) Set tL = 0 and t = t u  = 1. Choose K E ( K ~ + K , , K ~ ) .  

(ii) If h(x + td) < h(x) + ~ t v  set tL = t ,  otherwise tu = t. 

(iii) If h(x + td) 5 h(x) + K L ~ V  and either t 2 i or p ( x ) ~ j ( x , x  + td) + [p(x + id) - 
p(x)] (gj(x + td), d) + [f (x + id) (VP(X + td), d) - f (x) (VP(X), d)I L - K V V ,  set t i  = 
tk  = tL and return. 

(iv) If t < i and -p(x)aj(x,  x + td) + (p(x)gj(x + td) + f (x)Vp;(x), d) 2 K R V  set tk  = t ,  
t i  = 0 and return. 



(v) Choose t E [tr, + O.l(tu - tr,), tu - O.l(tU - tL)] and go to (ii). 

Lemma 2.3. Procedure 2.2 exits with t i  and tk satisfying the requirements of Step 3. 

Proof. If the search does not terminate, there exists t* such that tL T t* and tu I t*. We 
consider two cases. First, if i > 0 then, since tr, f i, tu I i, K V  < KLV < 0, and h is 
continuous, we eventually have h(x + td) <_ h(x) + nitv at step (iii), with t = tu for 
infinitely many such t. Therefore, such t satisfy 

h(x + td) > h(x) + ntv, (2.15a) 

t < f and p(x)af (x, x + td) + [p(x + id) - P(x)] (gf ( X  + id), d) + [f ( X  + id) (VP(X + td), d) - 
f (x) (Vp(x), d)] < - K,V; hence, since also 

we have 

Secondly, if t* = 0 (i.e., t I 0), then we have (2.15a) for all t = tu ,  and (2.15b) for 
small t ,  since t I 0, f (x + td) + f (x) ,  (gf (x + td), d) is bounded, af (x, x + td) + 0, 
p(x + td) + p(x), Vp(x + td) + Vp(x), while -v > 0, K, > 0. Thus in both cases (2.15) 
holds for infinitely many t I i ,  so a contradiction can be established as in the proofs of 
[Mif77a, Thm 4.11 or [Kiw85, Lem. 3.3.31 between the semismoothness of h and the fact 
that v < 0 and K < K R  - K, .  Therefore, the search terminates. 0 

3 Convergence 

In this section we show that each accumulation point of {xk) is stationary for h on 
S .  We assume, of course, that the tolerance cOpt = 0. Then (cf. $2) upon termination 
0 E dh(xk) + dSs(xk). Hence we may suppose that the algorithm does not terminate. 

We first show that Ivk( measures the stationarity of xk. 

Lemma 3.1. Suppose there exists a point xm E S and an infinite set Ii' c {1,2, . . .) 
k K 

such that xk 5 xm and v 4 0. Then 0 E dh(xm) + dSs(xm). 

I( k Proof. Since -vk = ukldk12 + 6k 4 0 (cf. (2.10)), u E [ ~ ~ n , ~ m a x ]  (cf. Step 5) and 

> p(xk)6f 2 0 (cf. (2.8)) for all k, we have dk 5 0, p(xk)6) 5 0. Hence if p(xm) > 0 

then (cf. continuity of p) 6) 5 0, so we may use 9: E f (xk) (cf. (2.9)) and local 
I 

boundedness and upper semicontinuity of d. f (.) to deduce the existence of if" E d f (x") 
k K' 

and an infinite set II" C K such that ij, --+ 47. Then the limit of -ukdk - p(xk)i$ - 
f (xk)Vp(xk) = 5; E dSs(xk + dk)  (cf. (2.7)) as k + m, k E Kt, yields -p(xm)ijo - 
f (xm)Vp(xm) E dSs(xm) by continuity and closedness of S, so 0 E dh(xm) + dSs(xm). 
Next, if p(xm) = 0, for each k let zk = xk + ijfk/l$I if ifk # 0; otherwise pick any zk with 

- - 

Izk - xk (  = 1. Multiplying the subgradient inequality f (zk) - f ( xk)  + &f 2 ($, zk - xk) 
k -k  (cf. (2.9)) by p(xk) 2 0, we get ~ P ( X  )gf 1 5 p(xk) [ f ( fk )  - f (  xk)] + p(xk)6) 5 0, since 

h' h' 
p and f are continuous, xk 4 xm, p(xk)6fk 4 0 and Izk - xkl = 1 for all k. Thus 

p(xk) j )  5 0 = p(xm)ijo for any i? E Ef(xm), and the preceding argument yields 
o E ~ ~ ( X O O )  +  as,(^^). o 



Note that,  by construction (cf. Step 3), 

where we set k ( l +  1) = oo if the number 1 of descent steps stays fixed. 

Lemma 3.2. (i) Let wk = ukldkI2/2 + 6:. Then vk < -wk < - vk/2. 
(ii) If xk+' = xk  then 0 < wk+' 5 wk - uk(dk+' - dkI2/2. 

(iii) If k = k(1) thenwk 5 Ip(xk)gf (xk)  + f ( x k ) ~ p ( x k ) J 2 / 2 u k  with uk 2 u,,,jn. 
( iv) Idk 1 5 lp(xk('))gr (xk(')) + f (xk('))vp(xk(')) l / ( ~ ~ u , , , j ~ ) ' / ~ .  

Proof. (i) This follows from (2.10) and (2.8). 
(ii) Let i k ( - )  = p(xk ) j k ( - )  + f (xk )  (vp(xk) ,  - xk), i k ( - )  = Xk(xk + .) + ukl . 12/2 + ! 

I 

* k  k 2 + hs(xk + - )  and (cf. (2.4)) 6s(xk + a ) ,  Jk((.  = h (x + a )  + ukI . I / ~ 

By the choice (2.11) of jk = maxj,jk f j ,  dk = argminJk and i k ( x k  + dk) = hk(xk + dk) ,  

so 9k = min 4' and the strong convexity of dk implies (cf. [Roc76]) 

If xk+l = xk ,  then fk+ l  2 jk (cf. Jk+' 3 jk) and uk+' 2 uk (cf. Step 5), so > dk 
and 

77kf' > 77k + ukldk+' - dkI2/2 (3.4) 

from (3.2)-(3.3) and p(xk) > 0. But wk = h(xk) - 77k, since 77k = hk(xk + dk)  + ukldkI2/2 
(cf. (3.2)), hk(xk + dk) = h(xk) + vk (cf. (2.5)) and -wk = vk + ukldk2/2 (cf. (2.10)), SO 

wk+' < - wk - ukldk+' - dkI2/2 from (3.4) and h(xk+') = h(xk)  (cf. Step 3). 
(iii) If k = k(1) then, since yk = xk  (cf. Step 3), k E Jk (cf. Step 4) and f k ( - )  > f k(.) = 

f (xk )  + (g), - xk)  (cf. (2.3a)), (3.2) yields 

so wk = h(xk)  - 77k < Ip(xk)gf (xk)  + ~ ( x ~ ) v ~ ( x ~ ) ( ~ / ~ u ~ ,  where uk 2 u,,,jn (cf. Step 5) 
(iv) Using Idk( < ( ~ w ~ / u ~ ) ' / ~  (cf. part (i) and (2.8)), apply parts (ii)-(iii). 0 

Lemma 3.3. If B c S is bounded then there exists c < oo such that if xk  E B then 
Idk( < C / ( U ~ ) ' / ~  < c / ( u , , , ~ ~ ) ' / ~  and Jg:+' 1 5 C. 

Proof. Use Lemma 3.2(iv), (3.1), the facts uk > u h n  (cf. Step 5), yk+' = xk + tkdk with 
tR <- 1 (cf. Step 3) for all k, and local boundedness of f ,  p, gf and Vp. 17 

We may now consider the case of a finite number of descent steps. 

Lemma 3.4. If xk = xk(') = x" for some fixed 1 and all k > k(l), then vk + 0. 

Proof. By the algorithm's rules and Lemma 3.2(ii), uk+' > uk and wk+l 5 wk for all 
K - large k, and Idk+' - dkl + 0. Let = l i m ~ u p ~ + ~ ~  vk and Ii' c {1,2,. . .) satisfy vk - v. 



Let k > k(1) and ek = (p(xk)g:+' + f (x i)Vp(xk),  dk) - p(xk)a::; - vk. Then, by (2.6) 
with xk+' = xk, k + 1 E Jk+' and v = vk+', 

so limsupkEK ek 5 0 by Lemma 3.3. But (2.14) holds for all large k, so ek > nRvk - vk = 
(1 - tcR)(vk( with KR E (0 , l )  imply 6 = 0. Then wk 1, 0 and vk + 0 by Lemma 3.2(i,ii). U 

It remains to analyze the case of an infinite number of descent steps. 

Lemma 3.5. Suppose there exist xm E S and an infinite set L c {1,2,. . .) such that 
xk(') xm. Then vk 5 0, where K = {k ( l+  1) - 1 : 1 E L) .  

K Proof. Suppose vk < 6 for some v < 0 and all large k E Iil. Since xk + x" and 
h(xk+') < h(xk)  + t c ~ t i v ~  < h(xk) (cf. (2.12)) for all k, h(xk) 1 h(x") by continuity of h 

h' and t i vk  + 0. Then te  5 0 and Isk+' - xkI < teldkl + 0, since {dk)kEK is bounded 
(cf. Lemma 3.3). Thus both { x k ) ~  and { x ~ + ' ) ~  converge to x", so the right side of 
(2.13) vanishes as k + w, k E Ii', due to the continuity of f ,  p and Vp, the boundedness 
of { d k ) ~  and ( 9 ; ) ~  (cf. Lemma 3.3), and properties of aj (cf. [Mif82]). But the left side 

of (2.13) is at least n,l81 > 0 for large k E Ii', a contradiction. Therefore, vk 5 0. 0 

Combining (3.1) with Lemmas 3.1 and 3.4-3.5, we deduce our main result. 

Theorem 3.6. Every accumulation point of {xk) is stationary for h on S .  0 

Remark 3.7. If the set {x E S : h(x) 5 h(xl))  is bounded and cOpt > 0, then the 
algorithm will terminate in a finite number of iterations, producing an approximately 
stationary point xk with -vk < eOpl. This follows from the proofs of Lemmas 3.4-3.5. 

Remark 3.8. Theorem 3.6 still holds if, to  save storage, one employs aggregation as 
in [Kiw85, Kiw86, KiwgO]. Briefly, subgradient aggregation boils down to replacing an 
arbitrary linearization f j  by the aggregate linearization P (cf. the derivation of (2.9)) 
and selecting Jk+' SO that { j ,  k + 1) c Jk+l, e.g., Jk+' = { J ,  k + 1) -  

Remark 3.9. The preceding convergence results remain valid if we only assume that p is 
nonnegative and continuous on S, Vp is continuous on S, f is continuous on S and a. f (.) 
is locally bounded on S .  The last assumption may be replaced by the requirement that 
g j  be bounded on S (then gf are bounded, and so are their aggregates jf, as required in 
the proof of Lemma 3.1). In particular, g j  is bounded if f is polyhedral and finite-valued 
on S. Such relaxed assumptions carry over to the extension presented in 54. 

4 The method for the general case of m > 1 

Algorithm 2.1 extends easily to the case of h = C;"=, p; f; with m > 1. Then the lineariza- 
- 

tions E(x ;  y) = f;(y) + (gj,(y),x - Y )  and errors a j , (x ,y )  = f;(x) - f;( x; y) of j, (cf. (2.1), 



(2.2)) are employed in the models 

with f;(-) = f,(.; yj),  g;, = gji ( ~ j ) ,  j E J/ C 1 k }  i = 1 m. Accordingly, dk and 
k k  

1 
vk = Em ;=I v;k can be computed by finding (d , v, , . . . , v i  ) to ~ 

minimize uk ldI2/2 + EL1 v; over all (d, vl , . . . , vm) E IRn+" 
k j k ,, 3 E Ji  , i = 1: m, satisfying -pi(~k)a& + (Pi(z )gf, + f , (zk)Vp,(sk),  d) < v. 

' 

zk  + d E S, 
(4.2) 

where a k  = f;(zk) - f!(zk). The Lagrange multipliers A t j  of (4.2) may be used for se- 
Y 

Iecting J/ = { j  E J/ : A!, # 0) such that x~~ ljF1 < M - m, where M > n + 2m 
(cf. [Kiw89, Kiw941). Thus, for dense g t  and Vp,(zk), the algorithm requires storage of 
order n (M+m)  > n(n+3m) (plus the QP workspace, which can be of order min{m, nj2/2; 
cf. [Kiw94]). The storage requirements can be reduced to about 3mn locations via sub- 
gradient aggregation (cf. [KiwgO]), at the cost of slower convergence. One easily extends 
the argument that provided relations (2.7)-(2.9), which become 

Of course, the line search criteria (2.13)-(2.14) are replaced by 

and corresponding changes occur in Procedure 2.2. 
It is easy to verify all the convergence results of $3 for this extension of Algorithm 

2.1. 
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