
Pulsar Algorithms: A Class of
Coarse-Grain Parallel Nonlinear
Optimization Algorithms

Sobczyk, J. and Wierzbicki, A.P.

IIASA Working Paper

August 1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33895628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sobczyk, J. and Wierzbicki, A.P. (1994) Pulsar Algorithms: A Class of Coarse-Grain Parallel Nonlinear Optimization

Algorithms. IIASA Working Paper. Copyright © 1994 by the author(s). http://pure.iiasa.ac.at/4158/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

Working Paper
Pulsar Algorithms: A Class of

Coarse-Grain Parallel Nonlinear
Optimization Algorithms

Jerzy Sobczyk, Andrze j P. Wierzb ick i

WP-94-53
August 1994

BllASA International Institute for Applied Systems Analysis A-2361 Laxenburg o Austria

him Telephone: +43 2236 71521 Telex: 079 137 iiasa a n Telefax: +43 2236 71313

Pulsar Algorithms: A Class of
Coarse- Grain Parallel Nonlinear

Optimization Algorithms

Jerzy Sobczyk, Andrzej P. Wierzbicki

WP-94-53
August 1994

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

FflllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

bmd: Telephone: +43 2236 71521 D Telex: 079 137 iiasa a D Telefax: +43 2236 71313

Foreword

Computations that are performed either on parallel processors or distributed on a network
of computers are becoming standard options technologically, while we are not yet fully
prepared to take appropriate advantage of the available parallel or distributed computing
power. This stimulates much research on parallel computation, usually motivated by
using the parallel computing power to solve bigger and more complicated problems in
shorter time.

The authors of this paper address a different objective: how to use the parallel com-
puting power for obtaining more robust solutions to problems that are not necessarily
bigger, but might be difficult to solve because of other reasons such as nonlinearity, bad
conditioning, etc.

For this purpose, a new class of pulsating or "pulsar" algorithms has been developed
by the authors of this paper who worked on these algorithms and prepared this paper in
the cooperation with the Methodology of Decision Analysis Project as a part of the IIASA
Contracted Study Agreement project activities on Methodology and Techniques of Deci-
sion Analysis. These results were presented also during a workshop on Decomposition and
Parallel Computing Techniques for Large Scale Systems organized by the Optimization
under Uncertainty Project. Thus, this paper represents results of a cooperation which
has not only international, but also inter-project character.

Abstract

Parallel architectures of modern computers formed of processors with high computing
power motivate the search for new approaches to basic computational algorithms. An-
other motivating force for parallelization of algorithms has been the need to solve very
large scale or complex problems. However, the complexity of a mathematical program-
ming problem is not necessarily due to its scale or dimension; thus, we should search
also for new parallel computation approaches to problems that might have a moderate
size but are difficult for other reasons. One of such approaches might be coarse-grained
parallelization based on a parametric imbedding of an algorithm and on an allocation of
resulting algorithmic phases and variants to many processors with suitable coordination
of data obtained that way. Each processor performs then a phase of the algorithm - a
substantial computational task which mitigates the problems related to data transmission
and coordination. The paper presents a class of such coarse-grained parallel algorithms
for unconstrained nonlinear optimization, called pulsar algorithms since the approxima-
tions of an optimal solution alternatively increase and reduce their spread in subsequent
iterations. The main algorithmic phase of an algorithm of this class might be either a
directional search or a restricted step determination in a trust region method. This class
is exemplified by a modified, parallel Newton-type algorithm and a parallel rank-one vari-
able metric algorithm. In the latter case, a consistent approximation of the inverse of the
hessian matrix based on parallel produced data is available at each iteration, while the
known deficiencies of a rank-one variable metric are suppressed by a parallel implemen-
tation. Additionally, pulsar algorithms might use a parametric imbedding into a family
of regularized problems in order to counteract possible effects of ill-conditioning. Such
parallel algorithms result not only in an increased speed of solving a problem but also
in an increased robustness with respect to various sources of complexity of the problem.
Necessary theoretical foundations, outlines of various variants of parallel algorithms and
the results of preliminary tests are presented.

Contents

1 Parametric Imbedding Approach to Parallel Optimization Algorithms 1

2 Parallel Pulsar Variants of Quasi-Newton and Newton-type Algorithms. 4
2.1 Basic variant of variable metric pulsar algorithm. 6
2.2 Basic variant of Newton-type pulsar algorithm. 11
2.3 Regularized variants of pulsar algorithms. 12

3 Computat ional experiments. 14

4 Conclusions. 15

A Appendix: An Algorithm of Directional Search. 15

vii

Pulsar Algorithms: A Class of
Coarse- Grain Parallel Nonlinear

Optimization Algorithms *

Jerzy Sobczykf*Andrzej P. Wierzbicki**

1 Parametric Imbedding Approach to Parallel Optimization
Algorithms

While there exist diversified approaches to parallel computations in optimization prob-
lems, see e.g. [Bertsekas et al. (1989)], [Grauer et al. (1991)], a new parametric imbed-
ding approach to the parallelization of optimization algorithms for linear programming
problems has been proposed in [Wierzbicki (1993)l. This approach does not aim at solv-
ing problems of larger scale, but at using the parallel computing power in order to more
reliably and faster solve problems of moderate scale that might be difficult e.g. because
of their ill-conditioning. This approach might be also extended to any other optimiza-
tion algorithms, in particular, to nonlinear programming problems; such extension is the
subject of this paper. The essential aspects of this parallelization approach are as follows:

1. An optimization problem and/or an optimization algorithm is parametric imbedded
into a family of problems or algorithms (in [Wierzbicki (1993)l an imbedding into
a family of multi-objective linear programming problems has been used, but any
other imbedding might be also applied).

2. The optimization algorithm (not necessarily the optimization problem - see also
[Ruszczyfiski (1989)l) is then decomposed into algorithmic phases or tasks that might
be executed parallel for various parameter values.

3. The data obtained at the end of an algorithmic phase or task with various parameter
values is used to coordinate, accelerate and make more robust the process of finding
the solution of the original optimization problem.

Clearly, these aspects of the parallelization approach are very general and the main
difficulty relates to a skillful choice of their particular features. Some of such features are
as follows:

A. The resulting parallelization should be coarse-grained: each parallel working pro-
cessor executes an algorithmic phase which is a considerable computational task. Many
known approaches to parallel computations concentrate on fine-grain parallelization, e.g.

'The research reported in this paper was partly supported by the grant No. 3 0218 91 01 of the
Committee for Scientific Research of Poland and partly by the grant under The Program for Research
Collaboration between Norway and Eastern Europe Nations 1993 from the Norwegian Research Council.

"Institute of Automatic Control, Warsaw University of Technology, Nowowiejska 15/19, 00-665 War-
saw, Poland.

J . Sobczyk, A. Wierzbicki - 2 - Pulsar Algorithms

on a best way of parallel execution of vector and matrix operations - see e.g. [Nogi (1986)l.
Even in this case, it is known that the parallelization should not be too fine-grained
in order e.g. not to loose the pipelining efficiency in vector computations, see e.g.
[Carey (1989)l. Until recently, when the available processors had rather limited computa-
tional power and the research on parallel computing assumed massively parallel computer
architectures (i.e. thousands of processors with small computing power), the concentration
on rather fine-grained parallelization was well substantiated. However, modern processors
have today computing power comparable to supercomputers from yesterday and the cor-
responding computer architectures are rather scalably parallel (i.e. consist of a variable
number of very powerful processors). Therefore, it seems reasonable to concentrate on
coarse-grain parallelization.

The coarse-grain parallelization justifies another focus on the organization of parallel
computations: while the problems of data transmission might be negligible, the issues
of coordination of computations might be even more challenging than in fine-grain par-
allelization. In particular, parallel computing tasks might be asynchronous, adaptively
dynamic coordinated i.e. started and finished depending on the data obtained from all
parallel tasks.

B. While the need of solving problems of larger scale is a legitimate motivation of
parallelizing computations, it is not the only one possible. If the dimension of the original
problem is moderate but this problem is difficult to solve because of other reasons, then
we might try to solve the problem parallel for many parametric instances: due to a para-
metric imbedding, various problems similar to the original one might be solved together.
This clearly increases the total computational effort and, at the same time, improves the
robustness of the solution in respect to parametric variations, computational inaccuracies
and bad numerical conditioning of the problem; such an improvement is well-known and
typical for parametric imbedding approaches. The essential feature and difficulty of the
parallelization approach is, however, to devise such decomposition and coordination of
the algorithm that only the algorithmic tasks, not the entire computations are executed
for many instances of the problem, while the choice of decomposition and coordination
scheme results in a trade-off between the robustness of the solution and the acceleration
of computations.

Suppose P parallel working processors are used: if we just generate the same number
P of parametric instances of the problem to be solved and solve them without decom-
position on each of the processors, then we only increase the robustness of the solution
at the cost of P-times multiplication of the total computational effort. If we, however,
decompose the solution algorithm into algorithmic tasks and evaluate the data obtained
after each task is executed, we can use the data for two purposes: to increase robustness
and to shorten computational time. The total computational effort will be greater than
on a single processor, but we have anyway P times increased, parallel computing power
and the question is how to reasonably use it. If the purposes of increasing robustness
and shortening computational time, are deemed equally important, we might postulate
that the computational time should be shortened 0 times while another 0 times of
computational power increase should be used for improving the robustness of the solution.
In other words, we should be satisfied with a speedup of 0 and the so-called efficiency
of & as long as the remaining computational power is actually not lost but utilized to
increase the robustness of the parallel algorithm.

However, this '0 postulate' is only an approximate goal. Generally, the number of
parametric problem instances or tasks might be different, say M, than the number of
available processors, while we can often assume M 2 P for a scalably parallel architec-

J. Sobczyk, A. Wierzbicki - 3 - Pulsar Algorithms

ture. In order to balance processors loads, we can use the same processor several times
for various parametric instances or tasks, evaluate the data obtained after each task is
executed and dynamic adaptively adjust the number of necessary instances M depending
on the specifics of problem solved and on the results obtained.

These general features of the parallelization approach might be further specified for
the case of optimization algorithms. The number M of parametric instances or tasks
can be then related to the dimension n (and/or to the number m of constraints) in
the optimization problem. In some of such problems, in particular - large-scale linear
optimization problems, the numbers n and m might reach hundreds of thousands; the
issue is then how to reasonably limit the number of algorithmic phases and processors
used. We concentrate here, however, on optimization problems of moderate size where
the difficulty of solution is related to other features than the dimension; in particular,
nonlinear optimization problems might be difficult even if their dimension does not exceed
several hundreds.

Such optimization problems of moderate size but with strong nonlinearities and com-
plex structure have numerous applications in science and engineering; they are frequently
encountered in e.g. in control engineering. In this paper, we concentrate on the question
how to use the general parallelization approach outlined above for such type of nonlinear
optimization problems. Moreover, we start with the basic unconstrained optimization
algorithms for differentiable functions, since they are used also as essential parts in more
complicated cases of problems with constraints and/or with nondifferentiabilities. In
sequential computations, three classes of unconstrained differentiable optimization algo-
rithms are considered basic:

a) Several variants of conjugate directions algorithms. Conjugate direction algorithms
are often used for solving large systems of linear equations; in this application, they
were fine-grain parallelized in various ways, see e.g. [Bertsekas et al. (1989)l. For a fully
parallel, coarse- grained version of such algorithms we would need a method of producing
a set of many conjugate directions in one parallel sweep; although there are some recent
attempts to develop such a method, see e.g. [Chronopulos et al. (1989)], these attempts
relate again to linear equation systems or quadratic optimization problems. The question,
whether conjugate direction algorithms can be essentially, coarse-grain parallelized in a
general case of nonlinear optimization or whether they are sequential in their nature,
seems to be open yet. We shall not address conjugate direction algorithms in this paper,
although many of the ideas presented here are applicable also for them.

b) Various variants of variable metric (quasi-Newton) algorithms that use approx-
imations of the (inverse of) hessian matrix of second-order derivatives based on data
concerning gradient increments. The most popular variants of such algorithms (BFGS
and other rank-two algorithms) are related to the idea of conjugate directions and might
present difficulties in consistent parallelization. However, we shall use in this paper the
fact (see also Lootsma in [Grauer et.al. 19911) that another variant, the rank-one variable
metric method can be made consistently parallel due to its specific properties, while its
deficiencies can be overcome in parallel implementation.

c) Various variants of Newton or Newton-type algorithms using directly computed
second-order derivatives. We should note that a revival of such techniques can be ob-
served recently, most probably because symbolic differentiation helps to prevent errors in
programming derivatives (e.g. for a problem with 10 variables, 55 second-order derivatives
must be programmed as a part of hessian matrix specification). Provided the appropri-
ate tools of symbolic differentiation will be incorporated in optimization software, see
e.g. [Pacz~hski (1993)], some variants of such algorithms will be extremely useful. We

J . Sobczyk, A. Wierzbicki - 4 - Pulsar Algorithms

present here also a regularized and coarse-grain parallelized version of such an algorithm
- while fine-grain parallelized versions of such algorithms were known before, see e.g.
[Bertsekas et al. (1989)l.

The main algorithmic component of an unconstrained nonlinear optimization method
is usually directional optimization or directional search; the specific algorithms differ then
in the way the directions of search are generated. The directional search will constitute
here the basic algorithmic task that might be executed parallel. Another family of uncon-
strained nonlinear optimization methods uses restricted step or trust region determination
instead of directional search - see e.g. [Fletcher (1987)l. Restricted step determination
can be used as an alternative basic algorithmic task of a pulsar algorithm, but we con-
centrate here on the use of directional searches. Moreover, we assume here that the basic
algorithmic tasks - directional searches - are organized in a special double-phased pulsar
(pulsating) parallel optimization algorithm.

Suppose the parametric imbedding results in generating M various instances of pos-
sible search directions; in a simplest case, they might be generated as versor directions,
or correspond to various approximations and/or regularizations of the hessian matrix,
or to various conjugate directions, or various choices of updates of the basis in linear
programming, etc. In an odd-numbered or divergent iteration of a pulsar algorithm, di-
rectional searches are performed parallel along all these directions and result in divergent
approximations of the optimal solution of the problem. These approximations can be
then evaluated and, starting from each of them, another direction leading to the optimal
solution is determined. In an even-numbered or convergent iteration of a pulsar algorithm,
directional search performed along these new directions will lead to approximations of the
solution that are - hopefully, at least in a sufficiently close neighborhood of the optimal
solution - convergent, hence are called convergent approximations. Far from the optimal
solution, even the convergent approximations can differ rather widely; but this spread of
approximations helps in increasing the robustness of the algorithm with respect to nu-
merical inaccuracies, ill-conditioning or even local minima. Thus, a full double iteration
(composed of one divergent and one convergent iteration) of a pulsar algorithm ends with
a choice of one - or several - approximation point from which a new double iteration will
start.

This concept of a double-iterative parallel pulsar optimization algorithm is, as indi-
cated, quite general and can be probably applied widely in optimization algorithms of
various types - e.g. with constraints, nondifferentiable etc. However, we concentrate
here on the differentiable, nonlinear case and the classes b) and c) of quasi-Newton or
Newton-like algorithms with directional searches.

2 Parallel Pulsar Variants of Quasi-Newton and Newton-type
Algorithms.

We start here with some basic concepts related to variable metric algorithms. Suppose the
nonlinear unconstrained optimization problem consists in minimizing a twice differentiable
function f : Rn + R1. The so-called variable metric is actually a n x n matrix - denoted
further by ~ (~ 1 , where k is an iteration index - that successively approximates the hessian
of the minimized function, H(x) = V2 f(x), or - which is assumed here - its inverse
H-'(2). In a preliminary analysis of such approximation it is usually assumed that the
minimized function is quadratic:

J. Sobczyk, A. Wierzbicki Pulsar Algorithms

f (x) = 0.5 < x , A x > + < b , z > +c

V f (x) = g(x) = Ax + g E Rn
v2f(x) = H(x) = A E L (R n , R n)

where < . , . > denotes the inner product; thus, the hessian matrix is constant. If an
iterative method results in consecutive increments or steps dk) of the variable x and the
corresponding gradient increments are denoted by ~ (~ 1 , then the following relations hold
for a quadratic function (with an invertible, say, positively definite hessian):

We could thus construct a matrix Y of gradient increments y(k) that correspond to
(n linearly independent) steps dk) forming a matrix S for k = 1, ..n and compute H-' =
SR-l. However, it is often more useful to apply an incremental approximation v(~") =
v(" + +v(~) of H-' constructed in such a way that the following property holds:

s(i) = v (k + l) (i) Y for j = 1) ..k (3)

which implies that v(~+') = H-l, if all y(k) are linearly independent.
There are many known formulae for A V (~) that result - under appropriate addi-

tional assumptions - in the above property. Most popular are rank-two variable metric
formulae where A V (~) is a sum of two rank-one matrices, for example the BFGS for-
mula, or its dual (identical when applied to the matrix B (~) = (v(~))- ') DFP formula,
see e.g. [Fletcher (1987)], [Gill et al. (1981)l). However, the property (3) holds for rank-
two variable metrics under the assumption of precise directional search in the following
quasi-Newton directions:

and is related to the fact that these directions are conjugate. On the other hand,
[Stachurski (1981)l has shown that the Broyden's class of rank-two variable metric meth-
ods - that includes DFP and BFGS formulae as special cases - approximates asymptoti-
cally the property (3) for twice differentiable nonlinear functions with uniformly positive
definite and bounded hessians and results in superlinear convergence even without precise
directional search and conjugacy, if the quasi-Newton steps dk) = d(k) are consistently
used. Thus, these properties rely on essentially sequential quasi-Newton iterations and a
consistent parallelization of rank-two variable metric methods is rather difficult.

There exists, however, a variant of the variable metric method that does not require
even that the quasi-Newton directions (4) are used and neither precise directional search
nor the conjugacy of directions (4) is actually needed in order to obtain the property

J . Sobczyl<, A. Wierzbicki - 6 - Pulsar Algorithms

(3) and an inverse hessian approximation. It is the (symmetric) rank-one variable metric
defined by formula:

where . x . denotes the outer product. This method is unpopular, because it has an
essential drawback - it becomes ill-defined exactly then, when the matrix v (~) approxi-
mates H-' well, since the denominator of (5) is then close to zero:

It is possible to modify this method with special safeguards against ill-definition that
result also in good theoretical properties of the method such as the monotonicity of ap-
proximation of H-' and are rather effective in practical applications (see
[Kqglewski and Wierzbicki (1981)]), but these possibilities were not widely utilized. How-
ever, more recently [Conn et al. (1991)l used similar safeguards to obtain a version of the
rank-one variable metric method that is superior to rank-two methods in computing tests
and practical applications. Moreover, they have shown that - under rather mild assump-
tions - the errors of hessian approximation IIH-'(&) - ~ (~) l l have the same order of
convergence as the sequence I ~ x (~) - 211 , where x is the limit point of

Precisely this modified rank-one variable metric method can be consistently paral-
lelized, which was also printed out by Lootsma in [Grauer et al. 19911. Since the property
(3) does not depend in this method on the accuracy of directional search nor on conju-
gacy of search directions, hence the data dk) and y(k) for this method can be gathered
from independently, parallel working processors. One of processors should be reserved
for computing the approximation (5) with appropriate safeguards - which are easier and
safer in the parallel case, since we do not need in this case to use an incomplete approx-
imation of H-'(a!) and can start a new iteration first when a complete and well-defined
approximation is available.

2.1 Basic variant of variable metric pulsar algorithm.

We assume here that the dimension n of the optimization problem is possibly greater
than the number of available processors P . In this case, each processor might be used
for several algorithmic taksks. We shall index the processors by 11, = 1, .. P, while 11, = 1
will be reserved for variable metric approximation and other coordinating or so-called
housekeeping tasks. For counting the main iterations of the algorithm we shall use the
index Ii' that will increase by two during each double iteration.

In an odd-numbered (divergent) iteration of the pulsar algorithm, we assign subse-
(1)

quently to each processor with 11, = 2, ..P the following directions: first d('lO) = --
119(')11

or d("O) = -v("-- ')~(~) (steepest descent in the first iteration and a quasi-Newton di-
T rection in further iterations), then the directions of versors, d(Kyi) = ej = (0 ... l (i) . . O) ,

j = 1, ..n (Jacobi searches along all coordinates). If P = n + 2, which is a special case,
each processor with 11, > 1 has only one direction assigned. If there are less processors
than n + 2, which is a typical case, then each processor has a queue of, say, x directions
assigned.

The basic algorithmic task for a processor with 11, > 1 is to perform an approximate
directional search in each of these directions starting from a point dK) common to all
processors:

J. Sobczyk, A. Wierzbicki Pulsar Algorithms

s(K,j) = +(K,j)d(j) for j = 0, . . . n

There are various approaches to directional search. Most widely accepted is the re-
quirement of rather precise directional search, based on a cubic fit, gradient computations
accompanying function value computations and the Wolfe-Powell stopping test inside the
search, see e.g. [Fletcher (1987)l.

An alternative is a rather approximate directional search, based on a quadratic fit,
avoiding too many gradient computations and using the Goldstein stopping test that
admits T = 1 as soon as possible.

It is known that the rat her precise directional search gives better practical results than
the rather approximate, if it is used with conjugate directions or rank-two variable metric
met hods. There are also various theoretical reasons why the rather precise directional
search is usually prefered (see Appendix).

However, we do not propose here to use the property of conjugacy nor rank-two variable
metric. In fact, in odd-numbered iterations of the pulsar algorithm, a rather approximate
directional search might be preferable. In even-numbered iterations, when consitently
quasi-Newton directions are used, a rather approximate version of directional search might
be also advantageous. Thus, we describe here the case of using approximate directional
search that starts preferably with T = 1 - while the final choice of search algorithm must
be subject of testing and various arguments about this choice are presented in Appendix.

Being approximate, the directional search might fail to produce an essential im-
provement of the minimized function. Thus, let . i (" t j) denote not the optimal, but the
value of the step-size coefficient T at which the approximation (7) is actually stopped.
This step-size coefficient should satisfy the following double test of Goldstein (see e.g.
[Fletcher (1987)l; we use here strong inequalities in this test):

where:

Rather small values of ,B E [0.1; 0.31 are suggested for an undemanding test; $'("'j)(0) 5
0 is required with changing the sign of d(j) and thus qS(Kyj)(~) if necessary. Moreover, only
the right-hand inequality in (8) is critical. If the left-hand inequality is violated, T is
increased a finite, given number of times K ; if the left-hand inequality is still violated, the
search stops with a substantial decrease of the minimized function.

The results of directional searches determine the set of points:

For such j > 0, however, that the right-hand-side inequality in (8) is violated:

J . Sobczyk, A. Wierzbicki - 8 - Pulsar Algorithms

the following additional corrections are made:

+(K7j) := ?(K) = mjn((0.5)K, ~ l ~ (K) l l) if j > 0; (1'4

If g(") # 0, then q$'("!j)(0) = 0 for j > 0 indicates that the Jacobi search along this
coordinate produces = 0; the correction (10) is devised precisely for this case.

In order to control the diameter of the spread of points along all coordinates in an
odd-numbered iteration of a pulsar algorithm, a parameter a is introduced that results
in the points:

for j > 0. It can be shown that this parameter should be selected from the interval (n; n2)
to obtain a spread of points xiKj) that approximate the solution x 'from all sides'.

The resulting function values, new gradients and their increments as compared to the
starting point x(") are computed at the points xiK9j):

while a = 1 results in xiK7j) = and is always used for j = 0. It is advatageous to
compute also for j > 0 additionally the function values f (K j) = f(x("'j) for a = 1, select

the minimal value, compute at the corresponding point ~ (" 1 ;) the gradient g(K2) and use
it in a corresponding stopping test described later, see (15).

The data fiKlj), giKj), yiK?j) and siKj) = x("9j) a - x (~) are successively (as they are
computed) transmitted to the first processor. If a processor with II, > 1 has a nonempty
queue of directions assigned, it starts further computations for the next direction. Mean-
while, the first processor uses the data to update the approximation of the inverse hessian.
Let:

There are several alternative rules for the update of variable metric. One of them is:

(K,j) 1 1 2 if < TiK' j), Y i K ~ j) > 2 7' llya nv(Klj) =
otherwise (12)

~ (" " 4 = 7"1
v(K, j+l) - - v (K , j) + ~ v (K , j) for j = 0,1, . . . n

The update (12) modifies the inverse hessian approximation only if the current data
indicate that the eigenvalues of the matrix H-' - ~ (~ ' j) are larger than y'; thus, the
coefficient y' can be interpreted as a bound of these eigenvalues such that below them the
approximation errors are considered unimportant. Alternatively, we can use the condition
< ~ (~ 3 j) a 7 Y a (K y j) > 2 y' IIYiKtj)ll IJsbK~j)ll in this update, in which case the coefficient y'

H-1 -v(K,j)

can be interpreted as a bound on relative accuracy of I 1
llH-lll

I I in spectral norms.

J. Sobczyli, A. Wierzbicki - 9 - Pulsar Algorithms

In a sequential implementation of a variable metric algorithm, special care must be
taken that s (~) remain linearly independent for subsequent iterations; this is simply pro-
vided for by the choice of d("*j) = ej in the pulsar algorithm. In a sequential algorithm,
the starting matrix v(') must be positive-definite with not too small eigenvalues - e.g.
v(') = I - because the quasi-Newton direction (4) must be a direction of improvement
even if the inverse hessian approximation is incomplete. In the pulsar algorithm, how-
ever, the initial v(') is not needed for the determination of a direction of improvement.
Therefore, v"?' = 0 could be used as a starting matrix; we propose to use instead one
of the following alternatives. Either v"" = yl'I, where y" = is a lower bound on the
eigenvalues of the inverse hessian (p is an upper bound of hessian eigenvalues); this results
in the following property of the approximation:

where the inequalities are understood in the sense of positive-definiteness of matrix dif-
ferences. This variant will be called inverse hessian approximation 'from below'.

Or, if we have an upper bound ; on the eigenvalues of the inverse hessian (v is a lower
bound of hessian eigenvalues), we can start also the approximation 'from above' by setting
y" = ;, in which case the signs of inequalities in (14) would change. The approximation
'from above' gives usually better computational results in sequential implementations,
see [Krqglewski and Wierzbicki (1981)l. However, in the approximation 'from above' we
must change also the sign of the condition in (12) to read

or correpondingly with ((yLKj)ll replaced by (1 yiK7j)lJ IJsLK7j)ll .
If the number of n + 1 directions that need parallel processing is not an integer multiple

of P - 1, then additional directions d("*j) for j > n can be generated e.g. as some linear
combinations of the directions d("lO) and ej. The number of additional directions should
be such that all processors have assigned the same number x > of directions to be
processed. The resulting data should be used then in formulae (12), (13) for j = 0,1, ... , n'
where n' = x(P - 1) - 1. If such data does not add new information, it indicates that
the matrix H-' is already well approximated; if the data adds new information, the
approximation of H-' is improved.

Thus, the odd-numbered (divergent) iteration of the pulsar algorithm is in fact a paral-
lel Jacobi-type iteration but with data used for a rank-one variable metric approximation
of the inverse hessian matrix. The actual implementation of this approximation might
use the formulae (12), (13) either directly or in a dual (suitably applied to the matrices
B(") = (v("))-', while the data siK1j) and yLK*j) is interchanged to obtain an update for
AB(")) and appropriately factorized form.

The iteration ends when the first processor determines such 3 that corresponds to the
minimal value of f ("4 and checks whether:

(",3) 119 I I 5 &I,

1 1 ~ (~ ~ j) - x (K) ~ ~ E I /

and sets x (K+1) := x (K , j)

where e' is an assumed gradient accuracy and el' is an assumed approximate solution
accuracy. This stopping test can be applied because the algorithm actually converges

J . Sobczyk, A. Wierzbicki - 1 0 - Pulsar Algorithms

superlinearly (for non-quadratic functions with uniformly positive and bounded hessian).
If these stopping tests are positive, the iterations end; if no, then ~ (~ ' 1 = ~ (~ 7 ~ ' ")

is sent to all other processors to be used in computing new directions of improvement.
The computation of ~lg(~?j)II , the determination of), even the stopping tests might be
performed in the first processor successively as the data arrive; this limits the delay of
sending v(") to other processors after stopping approximation.

In an even-numbered (convergent) iteration of a pulsar algorithm the directional
searches are performed from various points ziKlj) (each processor might store the data
ziK~j), giK,j) related to the directions assigned to it) and not in versor directions e j , but
in quasi-Newton directions:

(for the sake of clarity of exposition, the count K is not increased here, K :# K + 1). Other
operations in an even-numbered iteration are similar as in an odd-numbered iteration;
since there are no Jacobi searches in an even-numbered iteration, only a = 1 is used in
this case.

The essential feature of an even-numbered iteration is that all points obtained
in it should rather precisely approximate the minimum of the goal function f - if it is
quadratic or if a sufficiently close neighborhood of a minimum of a non-quadratic twice
differentiable function is already reached. This convergence to the minimum by a cluster of
points, "from various sides", is advantageous: it increases the robustness of the algorithm
with respect to numerical inaccuracies, to the ill-conditioning of the optimization problem,
to local minima and even to the inaccuracies of the stopping tests of the optimization
algorithm.

An odd-numbered and an entire double iteration of the pulsar algorithm ends when
the first processor determined not only a new inverse hessian approximation but also a
new common starting point for the next iteration. This point is chosen between
Z (~ + ' V ~) as such that corresponds to the lowest f("+'?j). The stopping tests (15) are
repeated for K := K + 1.

Note that the first processor will always determine the time of an iteration of the
variable metric pulsar algorithm. Thus, an efficient implementation should aim at such
number x of directions assigned to other processors that the computational capabilities
of these processors are best used (the loads of processors are balanced). In other words,
when starting for a given n with a low number of processors P and the correspondingly
large x and then changing these numbers, the actual computing time will first decrease
with the increase of P and decrease of X, but this decrease of computing time will stop
when an optimal number x is reached: further increase of the number of processors
will not influence the execution time essentially. This optimal number x of directions
assigned to each processor will depend on the ratio of computational effort needed for the
directional search to the effort needed for so-called housekeeping operations, mainly for
inverse hessian approximation.

While the number of function evaluations f (z) needed for an approximate directional
search algorithm (see Appendix) grows usually slower than linearly with the problem
dimension n, the effort for inverse hessian approximation grows rather as n2 or even
n3, depending on implementation. Thus, the ratio of these efforts depends critically on
the effort needed for one function evaluation, which might be small for test problems of
academic character and very large for actual applications in the case of rather complicated
models which determine function values. The value x = 1 might be optimal for problems

J . Sobczyk, A. Wierzbicki - 11 - Pulsar Algorithms

of small dimension and with complicated models that determine function values; but even
for the case of complicated models, the optimal number x might grow with n.

Note that if the function f is not quadratic, then the approximation v("-') S H - I

obtained either in the odd- or even-numbered iteration of a pulsar iteration is based
on different points and data than in a sequential variable metric algorithm. Thus, it
is necessary to analyze anew the rate of convergence of such an algorithm; the results
of [Conn et al. (1991)] can be appropriately modified to conclude a superlinear conver-
gence of the rank-one variable metric parallel pulsar algorithm. Actually, a convergence
order even distinctly higher than 1 can possibly be established for quasi-Newton pulsar
algorithms (see further remarks on the convergence order of the Newton-type variant).
However, the main advantages of a parallel pulsar algorithm should relate rather to a
fast and reliable attainment of the asymptotic convergence region and to robustness with
respect to numerical inaccuracies than to an even higher convergence order.

2.2 Basic variant of Newton-type pulsar algorithm.

In a modified Newton-type parallel pulsar algorithm, instead of computing the inverse
hessian approximation, the first processor can directly compute the inverse of the hessian
matrix v(") = (v2 f (~ (" 1)) - I (at a point corresponding to the lowest function value from
the previous iteration). An efficient implementation of such an algorithm should take
into account an appropriate factorization of the matrix as well as an algebraic (symbolic)
preparation of all formulae for first- and second- order derivatives.

One of the disadvantages of Newton-type algorithms is their sensitivity to numeric
inaccuracies; however, the pulsating of results in a Newton-type pulsar algorithm can
essentially improve its robustness. Additionally, the speed of the algorithm far away from
the minimum can be also improved; close to the minimum a Newton-type algorithm is
known to be very fast anyway and a careful implementation of a parallel pulsar algorithm
should preserve the rapid convergence of a Newton-type method.

This does not mean that the convergence order p = 2 of a typical sequential Newton-
type method will be preserved. Note that the pulsar Newton type-algorithm performs
actually the following operations:

In an odd-numbered (divergent) iteration starting with a point ~ (" 1 , the Jacobi
searches along all coordinates as well as the search along a Newton-type direction is
performed:

d(",O) = - (~ (K - l)) - l ~ (w for I(> 1

d("0) =
(19)

where:

The points ziK7j) are determined similarly as in the variable metric version of a pulsar
algorithm. Parallel, the computations of (~ (" 1) - ' are performed in the first processor.

In an even-numbered (convergent) iteration, starting with many points ziK7i) that
are results of modified Jacobi and Newton-type searches in former iteration, new searches
along many Newton-type directions are performed:

J. Sobczyk, A. Wierzbicki - 12 - Pulsar Algorithms

The points ~ (~ + ' ? j) (with cr = 1) are thus determined. Parallel, the computations of
(H("+'))-' are again performed in the first processor.

Note that the essence of this algorithm is the use of (H(~-'))- ' delayed by one iteration
as compared to a sequential algorithm, in order not to wait on the time-consuming matrix
inversion (n.b. it is better to actually invert the matrix - via suitable factorization - and to
send the inverted hessian to all other processors to be used in the determination of diverse
directions for the next iteration, instead of solving an equivalent system of linear equations
which is preferable in sequential implementations). In this case, the first processor will
not determine the time of entire pulsar iteration and the issue of balancing processor loads
might be resolved differently than in a variable metric pulsar algorithm,

For this use of one-iteration-delayed data in the inverted hessian, however, we pay
in the estimate of asymptotic convergence order: it can be shown (the full description
of the convergence properties of pulsar algorithms is deferred to the next version of the
paper) that instead of p = 2, the convergence order of the pulsar algorithm is only p =

E 1.618, while counting separately single phases as iterations. If we counted both

phases of a pulsar algorithm jointly as one iteration, we could obtain p = E 2.618;
but it is known that neither convergence rates nor convergence orders are invariant under
aggregation of several iterations into a bigger one.

Note that we could substitute the directional searches in all variants of parallel pulsar
algorithms described above by the determination of a restricted step as in trust region
methods, see e.g. [Fletcher (1987)l. This possibility is discussed in the next section.

2.3 Regularized variants of pulsar algorithms.

If there are many processors in a scalably parallel architecture and the question is how to
reasonably use them, then the pulsar algorithm might use additional directions generated
as linear combinations of basic directions, as indicated above. However, the main difficulty
of nonlinear optimization for higher dimensions n is that such problems are usually badly
conditioned: the larger is n, the more probable it is that the hessian matrix H(z) has
a large conditioning index, i.e. the ratio of its largest and smallest eigenvalue. Thus,
additional computing power should be used to regularize the optimization problem.

The original problem of minimizing f (z) can be regularized in various ways. A reliable
way of such regularization is the proximal point method - a parametric imbedding into a
family of problems of minimizing the function:

f,(z) = f(z) + 0 . 5 ~ llz - a: (I011 2

where p > 0 can be interpreted as:

a regularization parameter, related to the eigenvalues of the hessian matrix;

a Lagrange multiplier for minimizing the function f (z) subject to Iz - z(")II 5
h(K), where h(") is a restriction of the step-size;

an operational parameter changed adaptively in trust region methods and restricted
step determination, depending on a comparison of a quadratic approximation of
minimized function to its actual value, see e.g. [Fletcher (1987)l.

J . Sobczyk, A. Wierzbicki - 13- Pulsar Algorithms

The latter interpretations are related to trust region methods and resticted step de-
termination. The restricted step determination - appropriately decomposed into algo-
rithmic tasks of hessian inversion or approximation performed jointly and actual step
determination performed parallel, possibly from various starting points - can be the ba-
sis of alternative variants of pulsar algorithms. However, we defer these issues for further
study and concentrate on the first interpretation of the parameter p.

An essential feature of proximal point methods is the improvement of the conditioning
index of the hessian matrix:

v fp(z) = V f (z) + p(z - ~ (" 1)

v2fp(z) = v 2 f (z) + p I

Since increasing p results in a similar increase of the eigenvalues of V2 fp(z), the ratio
of the largest and the smallest eigenvalue decreases. Thus, in a regularized parallel pulsar
Newton-type algorithm it might be useful e.g. to invert the matrix V2 fp(z) for several
values of p (while an efficient factorization algorithm used for this inversion should take
advantage of the particular form (22) of this matrix). The values of the parameter p
should be chosen from an interval that approximates (from above) the lower eigenvalues
of the matrix, p > v where v is a lower bound of hessian eigenvalues. The interval of
chosen values of p might also depend on the selected value of y" used in (13) in such a
way as to start with p = 0 or p = y" but to obtain finally p >> y". If a number 6 of
such parameter values is chosen, either one or up to 6 processors for matrix inversion or
approximation might be reserved. For example, a variable metric approximation might
either use 6 processors for parallel approximations of inverse hessian with various values
of the parameter p, or employ only one processor for this purpose.

In a regularized pulsar parallel variable metric algorithm with directional searches, the
proximal point method corresponds to a modification of the gradient increments yiK?j):

The values of gradients V f (z) used in this method to determine the Newton or quasi-
Newton search directions need not be modified - if the reference point z(") in formulae
(21) , (22) is shifted to points zLK'j) for directional searches starting from these points.

If the computational efforts needed for matrix inversion, variable metric approximation
and the directional search are comparable - which is a rather special case - then x = 1 in
the basic variant of the parallel pulsar variable metric method and at least n+2 processors
are needed. In order to increase the chances of solving an ill-conditioned problem, the
number of its regularized variants for various values of p is increased by 6 times, thus
P = (n + 2)6 processors are needed. Given a large number P processors in a parallel
architecture, the number of variants solved might be 6 = &, if each of processors is used
only once for directional search. In a more general case, when the computational efforts
are different and the processors assigned to directional search can be used x times in each
iteration, 6 = &. Therefore, if P > n + 2 and x > 1, this reserve of computational

power can be used for solving ill-conditioned optimization problems. If $& is not an
x

integer, then the reserve of computing power can be assigned to additional directions
generated as linear combinations of basic ones.

The organization of the algorithm is thus similar as in its basic version with the differ-
ence that from 1 to 6 processors might be assigned to matrix inversion or approximation.

J . Sobczyli, A. Wierzbicki - 14 - Pulsar Algorithms

It is then necessary to select best values of the goal function f obtained for various p and
modify appropriately the stopping test and the selection of the common starting point
for an odd-numbered, divergent iteration of the pulsar algorithm.

3 Computational experiments.

In order to preliminary test the potential of the concept of pulsar algorithms, a simple
computational test was performed. The simplest, basic variant of the variable metric
pulsar algorithm with x = 1 (each processor is assumed to perform only one directional
search) was simulated on a sequential computer architecture (SUN SparcStation) and the
computing times for simulated parallel processors were recorded. This rough experiment
was intended just to test the basic concepts and, in particular, the robustness of pulsar
algorithms. As a simple but demanding testing problem the [Schittkowski (1987)] problem
No. 290 was used. The minimized function in this problem is quartic, i.e. it is a quadratic
function of two variables that is additionally squared, f (x) = < x , A x > '. The problem
is demanding for Newton-type or quasi-Newton algorithms, because the hessian matrix -

converges to a zero-matrix as the solution approaches the minimal point x = 0. Thus,
a variable metric or a Newton-type algorithm must fail when it approaches the optimal
solution sufficiently close. The following Table 1 shows the comparison of results for
a sequential and a simulated pulsar parallel implementation of the symmetric rank-one
variable metric.

The results indicate that the parallel pulsar implementation is much more robust
indeed than the sequential implementation: while the sequential one failed on this problem
after 17 iteration practically without producing useful results, the parallel pulsar worked
and produced at this iteration a squared gradient norm less than it failed first after
42 iteration when producing a squared gradient norm less than

Results of sequential and pulsar parallel variants
of the rank-one symmetric variable metric for a quartic problem

Iteration number I 5 1 10 1 15 1 20 1 30 1 40 1 50

Sequential
solution norm2
gradient norm2

Pulsar ~ara l le l

I - I I I I I

These results show not only a substantially increased robustness but also an essential

solution norm2
qradient norm2

acceleration of computations per iteration; the total computing time is clearly longer in
the parallel variant when simulated on sequential computer, but the simulated time per

0.68ES00
3.623+01

iteration (assuming actually parallel execution of computations) is comparable for the
sequential and the parallel variant. Thus, the time to reach a given precision - say, a
typical demand for the gradient norm that translates to 10-l4 in the table above -

5.693-04
3.873-09

might be much smaller: for the example presented in the table above, it is reached in 8

0.72ES00
3.343+01

iterations by the parallel pulsar and never by the sequential implementation.

1.763-07
1.033-19

Another test involved n-dimensional generalizations of Rosenbrock banana function.

0.71ES00
3.323+01

In fact, there are several such generalizations - more complicated that introduce additional

5.213-11
1.473-24

-

local minima and stationary points as well as simpler ones that preserve the property of

failed

the uniqueness of the minimum; both cases were investigated. The results reported in
the following table relate to the simpler case for dimensions 8,16,32, and to the more

4.463-13
1.543-36

difficult one for dimension 20. Actually parallel computations were performed on Paragon1

failed

'Paragon is a trademark of Intell Corporation.

4.263-17
1.803-48

failed

1.483-19
1.073-55

failed

failed

J. So bczyk, A. Wierz biclii - 15 - Pulsar Algorithms

multiprocessor ~ara l le l computer.
Rosenbrock's bananna valley problem for various n:

1 number of iterations needed for accuracy in gradient norm I

- -

1 Pulsar simulated oarallel 1 43 1 36 1 58 1
I I I I

72 ~
-

I I I I

Pulsar actually parallel 1 39 1 68 1 116 1 68
Note that the observed acceleration of computations is not due to the full utilization of

Problem dimension

Seauential

computing power, because with x = 1 most "processors" were under-utilized in these tests.
The acceleration is thus due to the basic properties of the pulsating, divergent-convergent
algorithm. In the divergent phase, searches in various directions result in much better
starting points for the next phase than in a sequential implementation. In the case of
less regular functions, these searches might also account for various irregularities of the
goal function that cannot be tested in a sequential algorithm. Thus, the potential of
pulsar algorithms is considerable; clearly, it can be much better utilized than in this
simple test. Much more detailed investigation of the properties of pulsar algorithms are
thus substantiated, including testing on a wide range of examples, implementations on
actual parallel and distributed computer architectures and various variants of utilizing
the available computing power more efficiently.

4 Conclusions.

8

61

Although only very preliminary tests of simple variants of pulsar algorithms are presented
in this paper, they fully support the theoretical conjecture of a large potential of the con-
cept of a double-phased, divergent-convergent parallel pulsating algorithms for nonlinear
optimization. Beside the necessary further research on the Newton-type and quasi-Newton
pulsar algorithms for unconstrained differentiable optimization, research on applications
of this concept in constrained and nondifferentiable optimization is also intended.

A Appendix: An Algorithm of Directional Search.

16

93

Since directional search constitutes the main unit of the algorithmic phases of a pulsar
algorithm, it is important to apply an efficient version of this search. There are rather
diversified opinions in the literature on this subject. For example, an otherwise excellent
survey of optimization techniques in [Gill et al. (1981)l uses the argument that the meth-
ods of polynomial approximation, when applied for directional search, have only linear
and slow convergence rate and thus other methods are preferable. On the other hand,
since the directional search constitutes only a sub-iteration in an iterative nonlinear op-
timization algorithm, convergence rate arguments do not apply in this case, particularly
if the search is used with a Newton-type or quasi-Newton algorithm.

In [Fletcher (1987)l a rather precise directional search algorithm based on polynomial
approximation is presented as the most preferable. This algorithm uses cubic fit and
the Wolfe-Powell stopping test (a bound on the absolute value of directional derivative)
that both rely on gradient computations which are performed whenever a value of the
minimized function is computed. There are many theoretical and practical arguments
that support such a choice. If structural properties of the minimized function are uti-
lized, the computations of gradient values are seldom more expensive than computing
only several (as opposed to n) function values, see e.g. [Wierzbicki (1984)l. A precise
directional search is usually assumed in the theory of conjugate directions and rank-two

32

136

20

106 1

J . Sobczyk, A. Wierzbicki - 1 6 - Pulsar Algorithms

variable metric methods; computational experience shows best results for such methods
with rather precise search. Thus, the directional search based on a cubic fit with gradient
computations is widely accepted as a standard.

To select an efficient directional search for Newton-type met hods, however, it should
be noted that its stopping test might be rather imprecise in order to admit as soon as
possible the unit step-size that is sufficient for Newton-type methods close to the optimum.
Moreover, the unit step-size is asymptotically admissible for such methods even if the
double Goldstein stopping test is used - which is simpler than the Wolfe-Powell test.
This fact is also noted in [Fletcher (1987)], but without concluding that the Goldstein
test might be better for Newton-type methods. Gradient computations might cost only
several times as much as function computations, nevertheless they should be avoided when
not needed. Cubit fit might be substituted by quadratic fit, if high accuracy of directional
search is not needed.

Thus, for the basic variants of a pulsar algorithm the alternative of rather approximate
directional search is proposed (while the option of rather precise directional search with
cubic fit should be also tested). Recall the denotation:

where d is the search direction and the functions f , 4 are supposed to be minimized. If
d'(0) < 0, then the search is performed for T 2 0 (otherwise, we can substitute d := -d;
we consider only the case T > 0 here). An initial step-size coefficient 71 should be given; in
Newton-type or quasi-Newton methods of optimization, it is reasonable to use standard
r1 = 1. In Jacobi searches along directions e j , 71 = 1 can be also used in the first
iteration of the pulsar algorithm because of lack of better information; in further iterations,
however, either 71 = ~ (~ 1 (see (10)) or TI = ~ (" - ~ ! j) might be preferable.

After computing d(rl) there is enough data to determine a two-point quadratic ap-
proximation of 4, of the form J(r) = $'(O)r + 0.5ar2, where the coefficient a is computed
as :

If a 5 0 (if d(rl) 5 dl(0)rl) is obtained, then the quadratic approximation would have
a maximum instead of minimum and cannot be used. But this is checked by a stronger
requirement - the double-sided Goldstein test, with an accuracy coefficient ,L? E (0; 0.5):

which is modified here slightly by using strong instead of weak inequalities. If a value of
,L? not too close to 0.5 is used, then this test is rather undemanding or broad; if ,L? is close
to 0.5, then this test is demanding or narrow. In practice, ,L? = 0.20 gives a test that is
reasonably broad and sufficient for most applications; in the first, divergent phase of a
parallel pulsar algorithm, even ,L? = 0.1 can be applied.

If the Goldstein test is satified by dl = $(rl), then the search stops. If the left-hand
side inequality in (25) is violated, T is increased iteratively e.g. by substituting 71 := 271
until the left-hand side is satisfied and thus a > 0 is obtained - or an assumed number
K of goal function evaluations is utilized. In the latter case, the directional search stops
with a substantive (more than (1 - ,L?) 1$'(0)r 1) decrease of the minimized function, which

J. Sobczyk, A. Wierzbicki - 1 7 - Pulsar Algorithms

can happen only far from the optimal solution and is sufficient there. If the left-hand
side of the test (25) is satisfied but its right-hand side is violated, 7 2 is determined that
corresponds to the minimum of the quadratic approximation &r):

while r2 < TI (which is implied by the violation of the right-hand side of (25)). Then
$2 = 4(r2) is computed. The Goldstein stopping test is checked again. If the test fails,
one of the following cases is considered:

a) if 42 > 41, which might happen only in rather irregular cases, then it is reasonable
to repeat two-point quadratic approximation based on data 7 2 , 4 2 (we give preference to
the local minimum closer to T = 0 in such a case).

Otherwise:
b') put TO := 0, := 0, reorder TI and 7 2 together with corresponding values 41 and

$2 in such a way that TI < 7 2 and start a three-point quadratic approximation which
does not use the data qY(O).The data 70, 40, rl, $1, 7 2 , 4 2 in this case is such that the
approximating quadratic function has its minimum at the point:

Thus, r3 and 43 : = 4(r3) is computed and the stopping test (25) performed on this data
together with the test on the number of function values computed, see further comments.
If these tests fail, then:

b") Additionally, if $2 > 0 - which might indicate that 7 2 - TI is much larger than
r1 - 70, in which case the approximation might be not quite satisfactory - or if 73 = 7 2

- which, together with the failure of the stopping test, indicates that the approximation
is not useful any more - determine = and 44 = 4(r4).

Reorder 7; together with corresponding 4; to obtain:

set:

i = argmin di
i =O, ... 3(4)

70 := qT;._l; 71 :=Ti; 7 2 :=

and return to computing TS as in (27). The data for this approximation are chosen again
in such a way that (27) determines the minimum of the approximating function.

The stopping tests performed before the substitutions (28) are twofold. The first
is the Goldstein stopping test (25). This test might be satisfied even after only a
few goal function evaluations, if the problem is sufficiently regular. E.g. if the goal
function is sufficiently well approximated by a quadratic one and a Newton direction
d = -(V2 f (x))- lVf (x) is used, then the test (25) is usually satisfied even by TI = 1 -
moreover, this is certain for sufficiently advanced iterations of a quasi-Newton or Newton-
type method. The test (25) has been criticized on the grounds that a directional minimum
might not satisfy it if the function is far from quadratic one. However, the second stopping
test applied here takes care of such cases.

J. Sobczyk, A. Wierzbicki - 18- Pulsar Algorithms

The second stopping test is simply the bound K on the number of evaluations of the
goal function f or 4. If this bound is reached, it is necessary to check whether at all such a
value of T is found that $(T) < 0; if not, then a sequential optimization algorithm should
be stopped with an error signal that the directional minimization failed (which might
be caused e.g. by a bad scaling of the goal function or some optimization variables).
In the parallel pulsar method, the failure of one directional search does not necessitate
stopping the entire algorithm; however, a sufficient spread of points in the odd-numbered,
diverging iterations of this method is needed. Thus, the test whether 4 (~) 2 ,8rcj1(0)
is performed at the value of T where the search was stopped; if yes, the correction (10)
in the odd-numbered iterations of the pulsar algorithm is applied. The pulsar algorithm
might be stopped with an error signal e.g. if more than half directional searches fail in
its even-numbered iteration.

The approximate directional search algorithm presented here, although rather compli-
cated in its logic, combines the efficiency and speed for regular cases with robustness for
less regular ones. In a parallel pulsar variable metric or modified Newton-type algorithm,
where the main unit of algorithmic phases is the directional search, the method described
here might be preferable; but alternative methods should be also tested.

A reasonable bound of the number of goal function evaluations used as one of stopping
tests in the described method depends on the dimension n of the optimization problem
but grows slower than linearly with it ; a rule-of-thumb formula:

K = ~ ~ (1 + fi) with e.g. KO = 5 (29)

might be used to determine this parameter. Thus, the computational effort needed for
directional search might grow more slowly with n than the effort necessary for hessian
matrix inversion or approximation; clearly, the comparison of these efforts depends mostly
on the complexity of the mathematical model that determines the goal function f .

References

[Bertsekas et al. (1989)l Bertsekas D.P. and J.N. Tsitsiklis (1989) Parallel and Distributed
Computation. Prentice Hall, Englewood Cliffs.

[Carey (1989)l Carey, G.F., ed. (1989) Parallel Supercomputing: Methods, Algorithms and
Applications. Wiley, Chichester - New York.

[Chronopulos et al. (1989)l Chronopoulsos, A.T., and C.W. Gear (1989) s-step iterative
methods for symmetric linear systems. Journal of Computational and Applied Math-
ematics Vol. 25 pp. 153-168.

[Conn et al. (1991)l Conn, A.R., N.I.M. Gould and Ph.L. Toint (1991) Convergence of
quasi-Newton matrices generated by the symmetric rank-one update. Mathematical
Programming Vol. 50 pp. 177-195.

[Fletcher (1987)l Fletcher, R. (1987) Practical Methods of Optimization. Wiley, Chich-
ester - New York.

[Gill et al. (1981)l Gill, E.P., W. Murray and M.H. Wright (1981) Practical Optimization.
Academic Press, London-New York.

[Grauer et al. (1991)l Grauer, M. and D.B. Pressmar, eds. (1991) Parallel Computing and
Mathematical Optimization. Springer-Verlag, Berlin-Heidelberg.

J. Sobczyk, A. Wierzbicki - 19 - Pulsar Algorithms

[Krqglewski and Wierzbicki (1981)l Krqglewski, T. and A.P.Wierzbicki (1981) Further
properties and modifications of the rank-one variable metric method. In S.
Walukiewicz and A.P. Wierzbicki, eds.: Methods of Mathematical Programming,
PWN Warsaw.

[Nogi (1986)l Nogi, T. (1986) Parallel computation. In: Patterns and Waves - Qualitative
Analysis of Nonlinear Differential Equations, Studies in Mathematics and Applica-
tions Vol. 18 pp. 279-318.

[Paczyriski (1993)l Paczyriski, J. (1993): Models of Dynamic Discrete Nonlinear Systems
- Issues of Description Languages and Preprocessing. Report of the Institute of Au-
tomatic Control, Warsaw University of Technology.

[Ruszczyriski (1989)l Ruszczyriski, A. (1989) An augmented Lagrangian decomposition
method for block diagonal linear programming problems, Operations Research Letters
8, pp. 287-294.

[Schittkowski (1987)] Schittkowski, K. (1987) More test Examples for Nonlinear Program-
ming Codes Springer-Verlag, Berlin-Heidelberg.

[Stachurski (198 l)] Stachurski, A. (1981) Superlinear convergence of Broyden's bounded
8-class of methods, Mathematical Programming 20 pp. 196-212.

[Wierzbicki (1984)l Wierzbicki, A.P. (1984) Models and Sensitivity of Control Systems.
Elsevier - WNT, Amsterdam-Warsaw.

[Wierzbicki (1993)l Wierzbicki, A.P. (1993) Augmented Simplex - a Modified and Parallel
Version of Simplex Method Based on Multiple Criteria and Subdifferential Optimiza-
tion Approach. Report of the Institute of Automatic Control, Warsaw University of
Technology.

