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Abstract 

This paper discusses agents7 learning on a market. The price level evolves through a 
multivariable autoregressive model, which the agents learn in a least-squares sense. 
A theorem is stated that shows how the agents7 learning might be divided into two 
classes with respect t o  the learning convergence rate. The results are exemplified 
by the well-known hyperinflation model. Further, for the hyperinflation model some 
interesting features concerning the "coupling" between the price and the learning 
dynamics are discussed. An explicit expression is derived for how the rate of the 
agents7 learning depends upon this coupling. 



Convergence Rate of Agents' 
Learning in Macroeconomic Models 

Karl Henrik Johansson* 

1 Introduction 

One way to  introduce dynamics in macroeconomic models is to  let some variables 
depend upon agents7 expectations. The expectations can either be formed optimally 
out of given information in a stationary sense, so called rational expectations, Muth 
(1961), or they can evolve through a learning process, Bray (1982), Marcet and 
Sargent (1989a), Marcet and Sargent (1989b). In this paper we treat the second 
case. The considered models consist of two parts, see Figure 1. The first part is 
the price dynamics given by a linear stochastic difference equation. The second part 
describes the agents' learning of the price dynamics, in this case a least-squares 
learning algorithm. For certain model parameters, the limit of the learning process 
will be a rational expectation equilibrium. 

Macroeconomic models embodying agents7 learning have been dealt with in a 
great number of papers, see the survey Blume, Bray and Easley (1982). Some of 
these assume that the model structure is known by the agents, whereas in others the 
agents7 model is misspecified during learning, e. g. Townsend (1983) and Fourgeaud, 
Gourieroux and Pradel (1986), respectively. In this paper we consider the latter 
type, and in particular we use the model set-up described in Mnrcet and Sargent 
(19893). Several classical models can be rewritten to  conform with this set-up, and 
thus, the results given below apply to all these models. The results are also applied 
in an extensive analysis of a hyperinflation model. 

The main contribution of this paper is a theorem regarding the convergence rate 
of the agents7 learning. It is shown that the economic models can be divided into two 
classes with respect to  the rate of convergence. In the first class we have ordinary 
I/&-convergence, while in the second the convergence is slower. If the macroeco- 
nomic model belongs to  the first class, the agents7 learning can be interpreted as 
being "sufficiently stable" in the sense that the eigenvalues deiermining the stability 
of the learning algorithm are located deep inside the stability region. In the second 
class the learning is less stable and the convergence is slowed down. The theorem 
stated is an extension to  results given in Marcet and Sargent (1992). 

'Department of Automatic Control, Lund Institute of Technology, Sweden. The author wants to 
express his gratitude to Yuri M. Kaniovski, Luigi Marengo, Henrik M. Olsson, and Helene Tordjman 
for their comments. 
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Figure 1: A block diagram that shows the interaction between the price and the 
learning dynamics. 

Some comments are given about Cagan's classical hyperinflation model, Cagan 
(1956). By applying our theorem describing the agents' learning rate we are able to  
show new features of this model. The "coupling" between the price dynamics and 
the agents' learning dynamics is especially examined. An interesting nonintuitive 
relationship between the agents' convergence rate and this coupling is shown. It 
follows from the analysis that the hyperinflation model may belong to both classes 
described by the theorem. The coupling and the money supply model determine the 
class. Since the studied hyperinflation model is quite simple, it is possible to  derive 
explicit expressions. An economic interpretation of the results is that it can be as 
well easier as harder for the agents to learn when the coupling between the two 
dynamics is tight. It is shown that the model changes from one of these behaviors 
to  the other by a slight change of the money supply model. This nonrobustness is, 
of course, not acceptable for an economic model. 

The agents' learning is described by a leas t-squares algorithm. This algorithm 
was chosen because of its optimality for a Gaussian set-up and because it is well- 
known in the macroeconomics literature. Note, however, that much of the analysis 
done below is not specific for least-squares learning. Similar results can be stated 
for other types of learning. The references Benveniste, Metivier and Priouret (1990) 
and Ljung (1977) contain the stochastic control theory used in this paper. Hence, 
the more general learning algorithms studied in these references may give ideas of 
how much the results in this paper can be generalized. The nonrobustness of the 
hyperinflation model can be related to  the least-squares algorithm. If the agents' 
learning is modeled in a different way, the behavior of the system may change. 
Further, note that only the aggregated behavior of all agents is illustrated by the 
type of models studied here. We thus view the learning algorithm as an average of 
how the individual agents are learning or, in another sense, we study a representative 
individual, for comments on this subject see Kirman (1992). 

The remainder of this paper is organized as follows. In Section 2 we introduce a 



hyperinflation model. This is used throughout the text to  exemplify the results. A 
general model set-up is presented, and we also show how the hyperinflation model 
can be rewritten in this form. Section 3 includes a theorem on the convergence 
rate of the agents' learning. This result is applied to  the hyperinflation model in an 
example. The coupling in the hyperinflation model is also treated. The conclusions 
are given in Section 4, followed by Appendix which includes the assumptions made 
and a proof of the theorem in Section 3. 

2 Model Set-Up 

In this section we describe a general set-up for macroeconomic models with learning 
dynamics. This set-up comprehend a wide range of models. The procedure of rewrit- 
ing an economic model in this "standard form" is exemplified by the well-known 
hyperinflation model. This way of writing economic models has been developed and 
extensively used in Marcet and Sargent (1989a), Marcet and Sargent (19893)' and 
Marcet and Sargent (1992). 

We start by introducing the hyperinflation model. 

EXAM P LE-Hyperinflation Model 
The hyperinflation model describes the relation between the money supply, the price 
level, and the agents' expected inflation on a market during hyperinflation. The 
model goes back to  Cagan (1956), where it is estimated using real data. The model 
is further analyzed in Sargent and Wallace (1973) where also another estimation 
is done. The hyperinflation model has been used for theoretical studies concerning 
agents' learning rate and convergence to  rationality in a situation of hyperinflation. 
These kind of works are presented in Fourgeaud et al. (1986), Gourieroux, Laffont 
and Monfort (1982), Marcet and Sargent (1989b), and Marcet and Sargent (1992). 

Let mf be the logarithm of the nominal money demand and yt the logarithm of 
the price level, both at time t. The hyperinflation model says that real demand for 
money m,d - yt is mainly a linear function of expected inflation. We may write 

where p # 1 is a constant and it+' denotes the agents' expectation of the price level 
at time t + 1 given their information up to  time t.' The nominal money supply m,S 
is modeled by a stochastic process Zt. Since we assume the market is clearing, the 
nominal money demand equals the supply, thus 

'Note that in the model presented here, agents build their expectation upon old data and in- 
fluence future prices. This gives a natural causality to the model, so at a certain time the price 
level depends on the agents' expectation and not also that the agents' expectation at the same time 
depends on the price level. In Marcet and Sargent (1992) this is not the case. Instead, the motion of 
their model will be restricted by an algebraic equation that always must be fulfilled. Some comments 
about causality in the original problem formulation is given in Sargent and Wallace (1973). 



If we include this in ( I ) ,  we get 

and after introducing a new constant X and a new stochastic process xt in an obvious 

way 
Yt = XGt+l + xt (2) 

Based on Cagan (1956) and Sargent and Wallace (1973)) we choose to  examine the 
agents' learning for 0 < X < 1. The money supply described by x is given by a 
first-order autoregressive (AR) model driven by a white Gaussian process 

where l p l  < 1 and E{$ )  = a:. The model (2) is unknown for the agents. Instead 
their expectation Gt+1 is based upon a perceived model. Assume at  time t the money 
suppl! a is known by the agents up to  time t and the price level y is known up t o  
t - 1. 'The agents build their expectations on the misspecified time-invariant model 

where w is the least-squares residual. The expected price level is given by 

The variable 8t-1 is a least-squares estimate of 9 derived by the agents using their 
known information a t  time t .  The agents' learning is modeled by the recursive least- 
squares algorithm 

1 -1 
et = et-1 + TRt  xt-1wt 

1 2  Rt = Rt-1 + T ( ~ t - l  - Rt-1) 
(5) 

where wt = yt - Bt-l, and some initial values go and Ro are given. By introducing 
the state zt = [yt wt xtIT, it is possible to  combine (2)) (3)) and (4) into the 
multivariable AR process 

(c.f. Marcet and Sargent (1989b)). The algorithm (5) together with (6) summarize 
the evolution of the whole hyperinflation model. The model is illustrated in Figure 2, 
where the price dynamics essentially are given by (6) and the learning dynamics by 
(5). However, note that the price dynamics are given by a time-varying system, since 
it is influenced by the agents' estimates. This is not shown in the figure. 

By the example above we have seen how it is possible t o  rewrite the hyperinflation 
model in a standard form given by the multivariable first-order AR equation 
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Figure 2: A block diagram that shows the interaction in the hyperinflation model. 
The parameter X is multiplied to  the expected price yt+l, and hence, can be taken 
as a parameter of the coupling between the two dynamics. 

and the least-squares algorithm 

where cp  includes one or several of the states in (7) such that wt = yt - cpTOt-1 

becomes the prediction error similar t o  wt in the example. The vector z represents 
the state of the price dynamics and the vector e the applied shocks. The elements 
in e is assumed t o  be independent white Gaussian processes. In Marcet and Sargent 
(1989b) it is shown how other models, e . g .  a model in Bray (1983) and one in 
Bray and Savin (1986), can be written in this form. Also a version of Townsend's 
model, Townsend (1983), can be transformed t o  fit into this notation, see Marcet 
and Sargent (1989a). 

An important problem is if the agents' learning process will converge to  an 
rational equilibrium or not. This problem has been extensively studied in many 
papers, and is one of the main problems in the literature of rational expectations. 
In Marcet and Sargent (1989b) it is shown that if the assumptions in Appendix A 
hold, then Ot will converge to  a unique equilibrium O f  almost surely as t + oo for 
a large class of models described by (7) and (8). In the remainder of this paper we 
will assume that Ot + O f  almost surely and that the assumptions in Appendix A 
hold if nothing else is mentioned. 

3 Convergence Rate of Agents' Learning 

In this section we concentrate on the the agents' learning process. The convergence 
rate of the learning algorithm is discussed, the differential equation associated with 
the algorithm is introduced, and a theorem concerning the asymptotic behavior of 
the agents' estimates is given. We also continue the example in the previous section. 



Consider the agents7 learning algorithm (8) again. To analyze the behavior of 
this algorithm, it is convenient t o  introduce the associated differential equation. This 
approach was suggested in Ljung (1977), see also Ljung and Soderstrom (1983). We 
start by heuristically explaining the ideas behind it. For sufficiently large t ,  l / t  in 
the algorithm (8) ,411 be small. Thus, if we view the last terms on the right hand 
sides in (8) as corrections to  9t-l and Rtdl,  these corrections will be small if t is 
sufficiently large. Hence, for large t it is reasonable t o  assume that Bt and Rt vary 
slowly. We can then approximate them over a small time interval by their averaged 
values 9, and R,, respectively. The approximate updating rules are 

where 

E denotes the expected value with respect t o  the distribution of the states z for a 
fixed value 9,. If the assumptions in Appendix A hold, the algorithm (9) will act 
almost like (8) in a neighborhood t o  9, and R, for sufficiently large t. With a change 
of time scale this new algorithm can be interpreted as a difference approximation t o  
the differential eauations 

The discrete time variables 9 and R will asymptotically follow the trajectories Bd and 
Rd of these associated differential equations. Simulations describing the learning in 
an economic system using the differential equations instead of the original algorithm 
are shown in Marcet and Sargent (1992). 

To study the behavior of these nonlinear differential equations a t  equilibrium, 
we linearize them around their stationary point. For the differential equations (10) 
the linearized system is 

where (Of, R j )  is the stationary point, * denotes elements we are not interested in, 
and I,,, is the 7 x 7 identity matrix. The system matrix above has 7 = dim9 
eigenvalues at -1 and 7 eigenvalues determined by 



We introduce some notations. The function H denotes the last term excluding 
l l t  in the &-equation of (8) 

Define 
h(0) = lim E{H(Bt-I, zt)} = R7'f (8) 

t-oo 

This means that he(Bf) is equal to  (12). Thus, the eigenvalues of he(Bf) determines 
the stability of the linear system (11). Further, denote the covariance matrix of H 
a t  the equilibrium point by D ,  i. e .  

D = lim E{H(B~, z t ) ~ ~ ( ~ ~ , z t ) )  
t-oo 

The notation p;(A) is used for the ith eigenvalue of the matrix A, and finally 

a = max Re{p,(he(Bf 1'1 
a 

The following theorem is an extension to  a theorem stated in Marcet and Sargent 
(1992). 

THEOREM 1 
If the assumptions in Appendix A hold, then if 

where N denotes the normal distribution and the covariance matrix P satisfies the 
Lyapunov equation 

where y is arbitrary in the range (0, -a).  

Proof: The first part is proven in Benveniste et al. (1990) (see Theorem 3: n. 110) 
and the second in Appendix B. 

The convergence notations above are "weakly" and "in probability," respectively, 
see Appendix B for definitions. 

Note that in Marcet and Sargent (1992) a simulation method is suggested to  
determine the convergence rate in the second part of Theorem 1. We give an analyt- 
ical proof showing that y might be chosen arbitrary in (0, -a). The largest y in this 



interval may be interpreted as the convergence rate, but since the interval is open 
such y does not exist. 

The theorem above divides the agents' learning into two classes. In the first one 
the learning algorithm can be interpreted as being "sufficiently stable"; all real parts 
of the eigenvalues of hs(Of) are less than -112. Then the usual I / ' \ /  convergence 
holds and the estimation errors tend to be normally distributed. In the second class 
the learning process still converges, but for this case the convergence is slower than 
I/&-convergence. There is a whole range of sequences t' that satisfies t7(Ot -O f )  + 

0. 
From the discussion above it follows that the eigenvalues of hs(Of) are crucial for 

the behavior of the learning algorithm. Of course, it would be interesting to connect 
each economic model embodying learning dynamics to a certain class. However, in 
general this is not a simple task, since given a model the eigenvalues of hs(Of) are 
determined in an implicit way. Nevertheless, sometimes, as in the example below, 
we are able to derive explicit expressions ilso, as it is shown below, an economic 
model might belong to more than one class. 

Now we continue the example in the previous section. The associated differential 
equations for the hyperinflation model are derived, and it is shown how this model 
can be classified using Theorem 1. 

EXAMPLE-Hyperinflation Model (cont'd) 
In the previous part of this example we ended up with a price equation of the form 

Let us for fixed 8 introduce the covariance matrix 

then M satisfies the Lyapunov equation 

The equilibrium Of is easily derived for the hyperinflation model. Since 

and the agents' misspecified model is 

we get the unique equilibrium 
P Of = - 

1 - Xp 



In Marcet and Sargent (1989b) it is shown that 8 converges to  Of almost surely. The 
associated differential equations are given by (10) and 

To apply Theorem 1 to  the hyperinflation model he and D must be derived. 

where the last equality follows from (10) and (14). Then, 

Since yt - 8fxt-1 = wt, we get 

2 TR-T 
t+m 

lim E{x~-,.(u~/R;} D = lim E{Ry19t(yt - 9 T ~ f )  vt f ) t+m 

By taking conditional expectations and using the equality E{Y) = E{E{YIX)) 
where X denotes information (a-field) up to  time t - 1, we get 

D = lim E { X ~ ~ ) E { . ( U ~ } / R ~  = Mww/Rf 
t+m 

In Theorem 1 the agents' learning is divided into two classes. Since he is given 
by the simple expression (16), we directly see that the hyperinflation model belongs 
t o  the first class 

a < -112, if Xp < 112 

and t o  the second class 

The feature of the agents' convergence within the first class, i. e .  when the learning 
algorithm is "sufficiently stable", is given by the asymptotic covariance P (in this 
example a scalar). The smaller a the faster is the agents' convergence in the sense 
that P is smaller, see Marcet and Sargent (1992). Solving the Lyapunov equation in 
Theorem 1 gives 

Hence, equation (18) gives a measure of the convergence rate if Xp < 112, Recall the 
price evolvement in the hyperinflation model given by 

The positive parameter X can be interpreted as the coupling between the price 
dynamics and the learning dynamics, see Figure 2. This means that if X is small, 
the agents' expectations of the future price have minor influence on the price level. 



Figure 3: The asymptotic variance P shown as a function of the coupling X for two 
different money supply models. The dashed line is for p = -0.4 and the solid for 
p = 0.4. 

The price is almost completely determined by the money supply z. On the other 
hand, if X is large agents' expectations have large impact on the price level. In 
general Theorem 1 gives an implicit formula for how X influences the asymptotic 
convergence rate in the case a < -112, and in our example the explicit formula 
(18) describes this. Thus, by applying Theorem 1 to the hyperinflation model we 
show how the coupling in the model influences the convergence rate of the agents' 
learning when the learning is sufficiently stable. 

We might expect from (18) that the shape of P as a function of X highly depends 
on p. (Notice that Mww depends on p.) This is also the case. In Figure 3 P = P(X) 
is shown when a: = 1 and p = f0 .4 .  For the case when p = -0.4, P is a decreas- 
ing function (dashed). This means that the asymptotic variance of the parameter 
estimate derived by the agents is decreasing with the amount of connection in the 
hyperinflation model. An interpretation of this is that it is easier for the agents to  
learn if the coupling is higher. However, p = 0.4 gives an increasing function P 
(solid line). Hence, in contradiction to the first case, it is now harder for the agents 
to  learn when they have high influence on the price. Our conclusion from these two 
parameter choices is that the money supply model is crucial in determining if the 
agents' learning is gaining or not from a tight coupling between the price and the 
learning dynamics. 

Similar analysis as in the example above can be done for other m o d e 1 s . q ~  the same 
method expressions like (16) and (17) can be derived, and then Theorem 1 applies for 
a classification. Also, the dependency of the convergence rate on other parameters 
can be examined. Note that in general P is a matrix. Then the convergence might be 
studied by examining the trace of P ,  C p;(P),  which captures the essential feature 
of the corresponding Gaussian distribution. 

The particular model studied in this example showed that the money supply 

21n Johansson (1993) the slightly more complex hyperinflation model in Marcet and Sargent 
(1992) is considered. Numerical examples similar to the example in this paper are shown. 



model influences the agents' learning in a dramatic way. It is not only the connec- 
tion between the learning and the price dynamics which determines the learning rate. 
Especially, varying the money supply model influences the dependencies of the cou- 
pling in a qualitative way. This result might be considered in two directions. Firstly, 
if the agents are assumed to  learn, e.  g. , faster when the price am: learning dynam- 
ics are tightly connected, then we could by an obvious procedure determine which 
money supply models are reasonable by studying the covariance functions P = P(X) 
which they give. Without any economic interpretation of why these money supply 
models were chosen, this is probably an unsatisfactory approach. Secondly, the result 
can be added to  the list of criticism to  the literature discussing agents' convergence 
to  rationality. The following statement is cited from Frydman and Phelps (1983): 
"The critical fault of the [rational expectation] hypothesis is not its unrealism but 
rather its lack of robustness." For further critical reviews of the rational expectation 
hypothesis see Frydman and Phelps (1983) and Shiller (1978). 

Abok~c the agents were assumed to  be learning in a least-squares sense. If the 
agents' learning is modeled by another algorithm, the behavior of the syslem is 
different. Hence, the results shown are dependent on the combination of the price 
dynamics and the agents' learning. 

If a more complex model than in the example above is studied, explicit expres- 
sions, as these between the coupling and the money supply model, should not be 
expected. Instead only numerical examples for certain parameter settings can be 
derived. Of course, these do not give as much understanding of a model as the ex- 
pressions above gave about the relationship between the money supply, the coupling, 
and the agents' learning. 

4 Conclusions 

In this paper we have discussed agents' learning on a market. The market is such 
that the price level depends on the expectation of the agents. A quite general set-up 
based upon a first-order multivariable AR process was used for the price dynamics, 
and the agents learned according to  a least-squares learning process. In an example 
we showed how the classical hyperinflation model could be rewritten into this form. 

For the set-up described above a theorem concerning the convergence rate of the 
agents' learning was stated. It declared that considering the learning, the models can 
be divided into two classes. In the first class the convergence speed was the ordinary 
I/&, while in the second class the convergence was slower. The theorem was applied 
to  the hyperinflation model to  show a relation between thc coapling price-learning 
dynamics and the agents' learning. The relation was heavily depending on the model 
of the money supply, and for some models the relation was nonintuitive. 



A Assumptions 

We recall the modified least-squares algorithm and the assumptions given in Marcet 
and Sargent (19896). The modification of the least-squares algorithm is done for 
technical reasons to  assure convergence. 

Define a set D, that consists of the parameters 8 that make the AR process (7) 
stable, i. e. 

D, = (8 1 Ipi(T(Q))I < 1 vi) 
Also, define the open and bounded set Dl and the closed set D2  by the two relations 
D2  C D l  and 

(8,R) E D l  8 E D s  

The modified learning algorithm is given by 

This modification assures us that the estimates always stay in the set D l .  
The following assumptions are assumed to  hold. 

1. The equilibrium point is unique and belongs to  Ds. 

2. Each element in T(8) is two times differentiable and each element in V(8) is 
one time differentiable for all 8 E Ds. 

3. M which is defined similar to  (13) in Section 3 has full rank. 

4. For {et) in (7) it is true that E{letlP} < oa for all p > 1. 

5. There exists a subset R0 of the sample space such that Pr{Ro) = 1. There also 
exists two random variables Fl(w) and F2(w) and a subsequence I tk )  such that  

for all w E Ro and k = 1,2,  ... . 

6. The trajectories of the associated differential equations (10) with initial con- 
ditions (80, Ro) E D2 do not leave Dl. 



B Proof of Theorem 1 

In this appendix we prove the second part of Theorem 1 in Section 3. 
We need the definitions for almost sure convergence, convergence in probability, 

convergence in quadratic mean, and weak convergence. Recall 

DEFINITION 1 
{Ot) converges almost surely to O j  if VE > 0 and VS > 0, ~ N ( E ,  6): 

where 1 1  . 1 1  is the Euclidean norm. 

{Ot) converges in probability to O j  if VE > 0 and V6 > 0, 3 N ( ~ , 6 )  such that if 
t 2 N(E, 6) 

Pr{llOt - O j l l  > E)  < 6 

{Ot) converges in quadratic mean  to O j  if 

{Ot) converges weakly to Of if the associated sequence of probability functions fe, 
converges weakly to fe,, i. e. in all continuity points of fs,. 

We use the notations 

Recall the learning algorithm 

where O0 is given, and H and h are defined as in Section 3. Bounds for ct are 
extensively discussed in Benveniste et al. (1990) (Part 11, Section 1.3). Denote as 
earlier 

a m+ Re {~i(he(Oj))) 

We are going to show that if a E (-1/2,0) then 

where y is arbitrary in the range (0, -a).  
We call a matrix A stable if all real parts of its eigenvalues are less than zero. 

Recall the following well-known result due to  Lyapunov. 



LEMMA 1 
Assume A is a stable matrix. Then for every positive definite matrix Q there exists 
a symmetric positive definite matrix P ,  such that 

Given two vectors x  and y  introduce the inner product 

Define a second inner product from the first and the matrix P in Lemma 1. 

[ x ,  Y ]  := ( P x ,  Y )  

We then have the following lemma. 

LEMMA 2 
Assume the matrices in Lemma 1 exist, then for all x  

[Ax ,  x]  < 0  

Proof: From Lemma 1 we have 

Since 
( A ~ P X ,  X )  = ( P x ,  A X )  = [ x ,  A X ]  = [ A X ,  X ]  

we conclude that 
 AX, X ]  = - (Qx ,  x )  < 0  

Note that hs(Of)  is a stable matrix, and that hs(Of)  + y  I is also stable for all 
y  E ( 0 ,  -a). Let A = hs(8 f )  + y  I in Lemma 1 and use the corresponding P t o  define 
the inner product [., -1 we will work with. Lemma 2  gives that there exists E such 
that 

[hs(O, )(8 - O f  ), (8  - O f  ) I  < -7 [ (8 - O f  1, (8  - O f  ) ] ,  118 - O f  I I  I & (23) 

Given this E ,  introduce the function 

Consider the stochastic process { g t )  



where & = go. We are not interested in H. If 8 is close to  Bj, this algorithm is the 
same as the original one, and otherwise it is an approximation. From the assumptions 

P we know that Bt % B j .  We will show that 8 -+ B j .  Then, for sufficiently large t 
given by the definitions of almost sure convergence and in probability, (25) will act 
like (21) with probability a t  least 1 - 6. The constant S can be chosen arbitrarily 
small. Note that the algorithm (25) is dependent on both E and 6. 

The rest of the proof is outlined as follows. We show that {Bt) converges in 
quadratic mean. This implies that {&} converges in probability. This fact is then 
used for showing convergence in probability for jot}. 

To show convergence in quadratic mean, we introduce the conditional variance 

where Ft-l is the a-field generated by the sequence Ro, Bo, zo, zl , . . . , zt-1. Let us 
refer t o  the int,roductory part of the proof of Theorem 24 (p. 246) in Benveniste et 
al. (1990) for our learning algorithm. If the assumptions in Appendix A hold, we 
can state an inequality similar to  (1.10.16) in Benveniste et al. (1990) by using (23): 

where the norm used in the definition of At is the one defined above. Throughout 
the appendix C; denotes positive constants. The stochastic variable {ft) is defined 
in Benveniste et al. (1990)) where it also is shown that 

By iterating (26)) we get 

1 t 
27 

+ 2 C  :E{fi-1 - f i )  n (1 - -) 
i=l 

2 j=i+l 3 

Above as well as below, we follow the convention that n;=;(.) = 1 if i > t .  We treat 
the three terms TI, T2, and T3 separately. Before we estimate them we recall some 
inequalities: For large t we have 

which gives 



and for B < 0 

Using (28), an upper bound for TI is obtained as 

Since y E (0,1/2), we have ,!3 := 27 - 2 < 0. Thus, (29) and (30) give 

The term T3 needs more detailed investigation. Firstly, note that 

S1 can be treated like TI : 

By using (27) we get 

Further, 



thus, 

The term S4 is treated in the same way as S2 

Hence, 
IT31 < IS11 + IS21 + IS31 + < C17t-I + C18t-2Y 

To conclude, we have shown that 

For large t ,  the first term of the right hand side in (31) dominates. Thus, 

lim sup t 2 7 ~ t  5 CI9 
t-+m 

which is equal t o  say that {&) converges in quadratic mean. 
We now finally show that the convergence in quadratic mean of {&) implies 

convergence in probability of {&). Thus for sufficiently large t the algorithm (25) 
will act like (21) with probability a t  least 1 - 6. Firstly, 

implies 
P ty (e t -e f ) -o ,  t + c w ,  

or equivalently that V a  > 0 and Vp > 0, 3M(a,p)  such that 

pr{\Jty(Bt - ef)ll > a} < p/2,  t > M ( ~ , P )  



For t 2 max{N(~ ,  G), M(a,  p)) we have 

where the last inequality follows if we in the definition of almost sure convergence 
choose 6 5 p/2. Hence, we have shown that 

where 7 E (0, -a )  is arbitrary. Notice that since (0, -a )  is an open interval there 
exist no largest 7. 
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