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Viability in a Keynesian Model: a Preliminary 
Approach 

Jean Cartelier Katharina Miillers 

1 Presentation 

The purpose of this paper is to study an elementary dynamic Keynesian model 
by meansof the viability approach. The mathematical theory of viability1 allows 
one to raise and answer questions which cannot be solved with usual dynamic 
tools. I t  deals with the question whether for a given dynamical system, there 
can be found solutions which satisfy some a priori given constraints, and with 
the analysis of subsets of the phase space where viable evolutions, i. e., evolu- 
tions satisfying the given constraints, are possible. Equilibria are examples of 
such viable sets, but the viability approach is much more general then the equi- 
librium approach. In contrast to traditional ecodynamics where local stability 
and asympototic properties of models are the heart of the matter, the viability 
approach is concerned with contingent evolutions over time of dynamic systems. 

In section 2 we describe an elementary dynamic Keynesian model. Viability 
questions are evoked in section 3 along with some intuitive answers, and rigorous 
results and developments will be found in section 4. 

2 An elementary Keynesian Model 

2.1 The economy 

Let be a closed one-commodity economy with entrepreneurs , households (both 
reduced to representative units) and a banking system (including a centralbank). 
Entrepreneurs own the capital I<, which is a quantity of the unique commodity 
held for the sake of production, and a quantity S of the same commodity which 
is nothing but the excess of production over sales, cumulates over time. S differs 
from K in that S reveals an involuntary stockpiling. A negative S is a cumulate 

'Viability theory is due to J.P. Aubin, H. Frankowska and other mathematicians. For a 
rigorous presentation, see: J.P. Aubin, Viability Theory, Birkhaiiser, 1991. Non mathematical 
readers win content themselves with: J. P. Aubin, La mort du devin, l'e'mergence du de'miurge. 



excess of orders over production. Entrepreneurs are indebted. Total debt D is 
twofold: perpetual bonds B and short-term debt to the banking system L. 

Households "own" their personal abilities, called labour. At t ,  a quantity 
N(t)  is used by entrepreneurs in combination with I((t). As a consequence, 
households receive wages. They hold financial assets which are the counterparts 
of entrepreneurs's indebtedness. These counterparts are either direct (bonds) 
or indirect, the banking system acting as an intermediary. In the balance-sheet 
of households, L means liquidity (demand - or term - deposits). 
Banking system's unique resources are households's deposits L. It lends all the 
deposits as short-term credits L. Intermediation is supposed to  be neutral. In 
addition, the banking system determines the rate of interest i. At t ,  our very 
simple economy is described by the balance-sheets in figure 1: 

Figure 1: The economy 

Entrepreneurs 

Systeme 
bancaire 

Menages 

Production takes place according to  a continuous and twice- differentiable 
production function defined by 

with F;C,N > 0 and F;,? < 0. For the sake of illustration, we can assume a 
Cobb-Douglas function given by 

The real wage is equal to the marginal productivity of labour given by the 
term w ~ ( ( t ) ( ' - ~ ) ~ ( t ) - ( ' - ~ ) .  Keynes called this proposition: the first classical 
postulate and took it for granted. Total wage is equal to  N(t)  times the real 



wage, which is equal to wQ(t). Households consume a constant fraction c of 
their wages. We neglect payments of interest. Consumption is thus determined 
by 
(3) c ( t >  = aQ(t>, 

where a = cw. Households divide their financial assets between liquidity and 
bonds according to  Keynes's theory of liquidity preference: 

Entrepreneurs's investment is ruled by the state of long-term expectations A, 
the amount of involuntary stockpiling S and by the rate of interest i: 

2.2 The model 

Three state variables make up the desription of the dynamics of our economy. 
The first one is the capital K. Equation (5) shows the evolution of K over time. 
The second one is the involuntary stockpiling S which, incidently, is equivalent 
to  the gap between expected and realized profit. Its evolution is given by the 
differential equation 

(6) S1(t) = (1 - a)Q(t) - K1(t). 

The third state variable is entrepreneurs's debt to the banks, L. Total debt's 
evolution is defined by 

(7) D1(t) = (w - a)Q(t),  

whereas variation of L is the time derivative of equation (4): 

In order to  reduce the number of the state variables from three to two, it is 
convenient to redefine our variables as ratios to K: 

We introduce two affine functions G and T of i by 

(10) G(i) = A - ei and T( i )  = (1 - bi)(w - a). 

G(i) denotes the "animal spirits" of the Keynesian tradition (the inducement 
to  invest) and T( i )  formalizes the incentives to liquidity. We obtain finally the 
following dynamical system determinating the temporal path of the economy: 



with the initial conditions s(0) = s o  and l(0) = lo. Here, the functions q(.) and 
i(.) are considered as a priori given so that the solutions of system (11) depend 
not only on the initial condition (so, lo), but also on q(.) and i(.). In fact, they 
are actually the two regulees of our economy in a viability framework (see next 
section). Note that  the system above is decomposable because the differential 
equation for the first state s is independent from the second state I. 

2.3 A first qualitative analysis of the model 
In a first approach we assume the two functions q(.) and i(.) to be constant, and 
look for the stationary solutions and the qualitative behaviour of the dynamic 
system ( l l ) ,  which appears now in the form 

z. st ( t )  = m ~ ( t ) ~  + ( m  - G(i))s(t) - G(i) + (1 - a)q(t),  s(0) = so (12[ :. 
zz. l t ( t)  = ml(t)s(t) - G(i)l(t) + T(i)q(t), 0 )  = lo, 

where q > 0 and i 2 0. 

We start with the analysis of the first equation. The stationary points are 
given by 

Real roots exist if ( (m - G(i))2 + 4m(G(i) - (1 - a)q) 2 0, which implies a 
maximum value for q equal to q,,, = (G(i) + m)2/4m(l  - a).  For q = q,,,, 
roots are equal: s* = s** = (G(i) - m)/2m. In order to get s* = s** = 0, 
i. e., a full equilibrium, we must have G(i) = m. No demand pressure, coming 
either from investment or consumption exists when the economy evolves along 
the full equilibrium path. In this case q,,, = q* = G(i)/( l  - a) ,  which is the 
usual Keynesian multiplier formula. Condition G(i) = m is never fulfilled but 
through the banking system settling i a t  i* = ( A  - m)/e. Nothing guarantees 
such a behaviour of the banking system. 

We study now the influence of the choice of the parameters q and i on the 
position of the equilibria and on the monotonicity of the state s .  For fixed s, 
the parameter providing the equilibrium solution is given by 

(14) Q(S) = -(ms2 + (m - G(i))s - G(i)) / ( l  - a).  

This function defines a parabola dividing the s-q-plane in two monotonic zones: 
below the parabola, st(t) is negative and above, st(t) is positive (see figure 2). 
The relative position of the curve q(s) depends uniquely on G(i) and m. When 
animal spirits are strong enough, as compared with m ,  which is the intensity of 
reaction to involuntary stockpiling, the parabola's maximum is a t  the right of 
the vertical axis s = 0. It stands to the left in the opposite case. In both cases, 



Figure 2: The sign of sl(t) 

full equilibrium does not correspond to q,,,; in other words, full equilibrium 
and full employment do not coincide except for G(i) = m. 

Still fixing q and i, let us now look for the complete system (12). In the 
s-1-plane, the isoclines where sl(t) = 0 and ll(t) = 0 respectively are given by 
the two vertical lines 

and by the hyperbola 

(16) 1 = T(i)q/(G(i) - ms). 

Both isoclines are drawn on the phase diagram in figure 3. The equilibria E and 
El given by the intersection of the two isoclines are a saddle point and a sink 
respectively. But the sink El has to be discarded as economically meaningless. 
These conclusions are not what we are looking for. The description above has 
only paved the way for a study along the viability approach. 

3 Viability for an economy: a brief view 

3.1 The problem 

Dynamic properties of stationary equilibria, although important, are not the 
end of the story. Several reasons may be invoked in favour of a further analysis. 



Figure 3: Phase diagram 

The  first one is that  local stability analysis gives poor intuitions about the effec- 
tive temporal path out of equilibrium. That  E is a saddle-point suggests that  
the economy is pushed farther and farther away from equilibrium (except for 
rational expectations hypothesis), but nothing is known about the velocity of 
this process and the span of time during which economy is not too far from equi- 
librium. "In the long term, we are all dead',' Keynes reminded us. Asymptotic 
properties are not sufficient for all the economists interested by the evolution 
hic ei nunc of the economy. 

A second reason for being not really satisfied by traditional economic dy- 
namics is that  economies in the real world are normally out of equilibrium. This 
fact does not seem to  put a t  stakes the survival of our society. Rather, disequi- 
librium situations appear to  induce more or less efficient reactions of economic 
agents and to  be the condition sine qua non of the evolution (Schumpeter has 
put particular emphasis on the role of entrepreneurs in this process). 
However, common sense suggests that economy must not be too far from equi- 
librium. Limits exist beyond which adaptative or innovative reactions cease to  
be possible. The crucial point is not whether economy is or not in equilibrium 
but whether evolution away of equilibrium is or not compatible with the fun- 
damental data and ordinary rules of the economy. I t  becomes then natural t o  
specify the minimal conditions under which an economy can work and to  check 
if the dynamic evolution of the economy does not violate these conditions. Is 
it possible to  constrain effective trajectories to  evolve in a given region of the 
phase space? 



In our model, economy is described by two ratios, s and I. It seems sensible to 
admit that  limited deviations from s* and I* have not dramatic consequences 
but also that some critic values must not be passed over. Beyond these limits, 
normal working of the economy is no longer possible. Let us call constraint 
set the set defined by such limits. The viability problem consists in checking if 
there exists or not for a given dynamical system with a given constraint set for 
every point in the constraint set a t  least one trajectory starting from there and 
remaining in the constraint set over time. If for all values in the constraint set 
there exists such a trajectory, it is called a viability domain. A constraint set is 
in general not a viability domain, but there may exist a nonempty subset of the 
constraint set which satisfies the viability condition in every point, and we call 
the largest subset exhibiting this property the viability kernel of the constraint 
set. 

A third reason to adopt a viability point of view is to be found in the 
special character of economic regulation. In the great tradition of political 
economy, the adjustment of some variables to disequilibria plays a prominent 
role. The secalled "law of supply and demand" states that prices react in a 
determined direction in response to a difference beetween supply and demand in 
the market: the price of a particular commodity is assumed to vary according 
to the sign of the excess demand of this commodity. Another famous law of 
adjustment concerns the variation of the quantity in reaction to the profitability 
of its production. For instance, in Walras theory of production, the quantity 
varies according to the sign of the profit (sales minus costs). In our model, 
two variables are candidates to play this role: i and q. System (11) generates 
trajectories depending on i and q. It would seem natural to assume that q 
changes according to the sign of sl(t) or s(t) and, conversely, that i varies with 
the sign of ll(t). Despite the respectability of the tradition, we follow another 
track. Instead of reasoning with a law of adjustment a priori given, we fix 
limits to the speed of variation of the regulees but the sign of variation is not 
preassigned. These limits are more or less narrow, depending on the flexibility 
of the system. Intuitively, to more flexible economies correspond wider viability 
domains or viability kernels. Thus, i and q are supposed to vary within certain 
limits but without any a priori law of variation. 
Does it mean that we must renounce to the very notion of a law of adjustment? 
Absolutely not. On the contrary, we may hope to derive one from the study 
of the viability, which is far better than to postulate one beforehand. We shall 
give below a more explicit formulation for the viability problem. Before that ,  it 
is necessary to  give further indications about the economy we have modelled. 

3.2 Viability constraints 

A market economy keeps working only if entrepreneurs do not incur bankruptcy. 
This implies in turn that a state of confidence rules over the entire economy. 



Such a state of confidence may persist only if certain limits are not reached. 
For instance, the indebtedness of entrepreneurs must be moderate enough to  
guarantee debtors against insolvency. In the same way, the profitability of en- 
trepreneurship must be high enough to convince people to commit themselves 
in such an activity. In our model, two thresholds are significant. The first one 
is S, the maximum value for s, which is a rentability indicator. Beyond T, it is 
no longer possible for entrepreneurs to remain active, because the difference be- 
tween expected and realized profit is too big. The ratio s must not be too large 
if negative, because it would mean that entrepreneurs are not able to supply a 
sufficient fraction of the demand. We have hence the following constraint: 

The second one is a solvency indicator. The indebtedness of entrepreneurs to 
banks cannot exceed the value 7. If it were the case, creditors would loose 
confidence and entrepreneurs would go into bankruptcy. For evident reasons, 1 
must be positive: otherwise, entrepreneurs would be creditors of banks and not 
the reverse! We have then a second constraint: 

The economy is described by two state variables, s(t) = S(t)/Ii'(t) and l(t) = 
L(t) / I i ( t ) ,  which have to remain in the constraint set defined by the two thresh- 
olds (17) and (18). 
Two regulees intervene into the working of the economy: 

The first one is the production per unit of capital q(t) which depends 
within certain limits on entrepreneurs. The regulee q(t) may be interpreted 
also as a rate of utilization of capital (or of labour if it is recalled that  
q = f (n ) ) .  Due to the inertia of entrepreneurs or to a lack of flexibility of 
institutions, we admit that limits exist to the adjustment of q: 

Furthermore, q is also submitted to the constraints 

The second is the level of the rate of interest which is governed by the 
banking system. Some limits exist also to the action of the banks, so that  

Naturally, the interest rate has to be positive: 



We obtain hence the following control system 

i. st(t)  = m ~ ( t ) ~  + (m - G(i(t)))s(t) - G(i(t)) + (1 - a)q(t) 
z z .  lt(t) = ml(t)s(t) - (G(i(t)) + bit(t)/(l - bi(t)))l(t) + T(i(t))q(t) (23[ i i i. " qt(t) E [-u, u] 

iv. it(t) E [-v, v], 

under the constraints 
i. g < s(t) < S 

(24) 
ii. O 5 l(t) < i . . . 
222 .  - 9 < q(t) < T 
iv. 0 5 i(t) 

for all t 2 0. Naturally, there exists not for all initial condition (so, lo, go, io) 
in the constraint set I( = [g, S] x [i, i] x [q, i j ]  x [0, co[ a viable solution, i. e., 
a state-control solution (s(.), I(.), q(.), i(.)) of the control system (23) satisfying 
the constraints (24) a t  each instant t 2 0. 
The problem viability theory deals with is to find viable subsets D of the con- 
straint set I(, where a viable evolution is always possible, i. e., subsets D satis- 
fying the following viability properly: 

For all (so, lo,qo, io) E D there exists a state-control solution 
(s(.), I(.), q(.), i(.)) of control system (23) starting a t  (so, lo, go, io), 
and satisfying the constraints 

for all t > 0. 

In particular we will look for the largest viable subset of the constraint set 
K,  which is the viability kernel Viab(K) of I( for the control system (23). 
The viability kernel can be seen as the graph of a regulation map governing 
the evolution of those controls providing viable solutions. Whenever a solution 
(s(.), l(.), q(.), i(.)) satisfies (q(t), i(t)) E R(s(t), 1(t)) for all t 2 0, this solution 
is viable. 

The existence of viable solutions does not mean that  the economy described 
by system (23) will never collapse. For a trajectory starting in the viability 
kernel, i t  is not sure that i t  will remain in the viability kernel and hence remain 
viable over time, but one can guarantee the possibility to avoid the breakdown 
by choosing proper values a t  proper times for the regulees. In particular, we can 
consider heavy solutions, i. e., solutions regulated by controls being constant as 
long as viability is not a t  stake. Emptyness of the viability kernel would mean 



that an incompatibility exists between the dynamics derived from the behaviour 
of agents (system ( 1 1 ) )  and the general flexibility of the economy considered 
which is given by (19) and (21). 

4 Numerical results 

4.1 The problem under the mathematical point of view 
The analytical characterization of viability kernels is very difficult. However, 
they can be determined by the viability kernel algorithm [5] [8] [9], which has 
been implemented for two dimensional systems and which is in preparation 
for three dimensional ones. Our control system (23) is in fact four dimensional 
(two states - two controls), and has to be simplified in order to obtain numerical 
results. 

When looking for heavy solutions, i. e., solutions regulated by controls being 
constant as long as viability of the solution is not a t  stake, we admit a hierarchy 
between the two regulees: The evolution of the interest rate i  has more iner- 
t ia than the evolution of the relative production rate q. To simplify, we shall 
therefore assume that i l ( t )  = 0 or i  = constant. We shall hence consider the 
following three dimensional system 

i .  s l ( t )  = ms(2)' + ( m  - G( i ) )s ( t )  - G ( i )  + ( 1  - a)q(t) 
z z .  l l ( t )  = ml(t)s(t)  - G(i ) l ( t )  + T( i )q( t )  
i i i. q i ( t )  E [-U, u], 

under the constraints 
i .  5 < s( t )  5 S 

(26) { i i .  ... 0 5 i ( t )  5 i 
1 2 2 .  - I q(t)  5 Ti 

for all t  > 0, and compare the results for different - constant - interest rate i .  
For the reduced control system 

(27) { i .  s l ( t )  = ms(t)' + ( m  - G( i ) )s ( t )  - G( i )  + ( 1  - a)q(t)  
i i .  q l ( t )  E [-u, u], 

under the constraints 

(28) 
i .  s 5 s( t )  < S 

for all t  2 0, consisting only on the equation for s  and the inclusion for q, we 
can even characterize the viability kernels analytically and compute them. 

4.2 Numerical results for the two dimensional subsystem 
We consider still the two dimensional subsystem 

(29) { i .  s l ( t )  = ms(2)' + ( m  - G( i ) )s ( t )  - G( i )  + ( 1  - a)q(t)  
i i ,  q l ( t )  E [-u, u], 



Figure 4: Viability kernel together with the equilibrium parabola 

under the constraints 

(30) 
i. g 5 s(t) 5 S 

for all t 2 0. For fixed interest rate i, we want to find the viability kernel 
Viab(I<) of the constraint set I< = [s, S] x [q,T] - for the control system (29), i. e., 
the set 

Viab(I<) = {(so, go) E I<; 3 solution (s(.), q(.)) of (29) starting 

(31) in (so, go) and satisfying g 5 s(t) 5 S, 
9 l q(t) l T vt 2 01. - 

One can show [7] that for this type of control system, the viability kernel is 
limited by two trajectories starting on the respective intersection points of the 
equilibrium parabola (14) and the constraint set I< such that q increases or 
decreases maximally, i. e., 

(32) ql(t) = +u repectively ql(t) -u. 

(See figure 4. ') 

2For the computation we took the values m = 0.2 ,A = 0.25,e = 1,a = 0 . 8 , ~  = 1 , b  = 
4 , ~ = 0 . 0 1 , ~ = - 0 . 6 , S = O . 8 , q = 0 . 3 , ~ = 1 . 6 , 1 = 0 . 3 6 .  - 



Figure 5: Heavy solution and solution starting outside of the viability kernel 

The set Viab(K) can be seen as the graph of a regulation map  R : [g,z] - 
[2, d l  

(33) 9 E R(s)  (s, q) E Viab(K). 

This defines a (feedback) regulation law for the viable evolutions: a state-control 
solution (s(.), q(.)) of control system (29) is viable if and only if it satisfies the 
regulation law 

Heavy evolutions, where the control is constant as long as the viability of the 
solution is not a t  stake are of particular interest. Figure 5 shows an example 
for a heavy solution. It starts in the interior of the viability kernel regulated by 
a constant control until arriving on the boundary of the viability kernel. When 
the control q does not move, the solution leaves the viability kernel and hence 
finally the constraint set, because all solution starting from outside the viability 
kernel has t o  leave the constraint set in finite t ime per definition (31). (See 
figure 5 as well.) In this example, the control has to be increased with maximal 
velocity +u, so that  the solution can remain on the boundary of the viability 
kernel and converge t o  a viable equilibrium. 

We end this section by showing a sequence of viability kernels varying with 
different interest rate i. For this computation we took the values i = 0, i = 
0.05, i=0.10, i=0.15, i=0.20.  



Figure 6: Different viability kernels for i varying 



4.3 Analysis of the s-l-subsystem 

Since a t  the moment, we are not able to compute three dimensional viability 
kernels, we shall derive some informations about the control system (25) of the 
generalized control system 

i. sl(t) = m ~ ( t ) ~  + (m - G(i))s(t) - G(i) + (1 - a)q(t) 
z z .  l l(t) = ml(t)s(t) - G(i)l(t) + T(i)q(t), 

where q(t) E [q,ij] - for all t 2 0, 

under the constraints 

(36) 
i. g 5 s(t) 5 S 
ii. 0 5 l(t) 5 7 

for all t 2 0. The regulee q(.) is not only not fixed, but no limit on the variation 
of q(.) is imposed as in system (25). The projection of the viability kernel of the 
complete system (25) is contained in the viability kernel of the constraint set 
K = [g,?] x [0,4 for system (35), because for all viable state-control solution 
(s(.), I(-), q(.)) of (25), (s(.), I(.)) is a viable solution of (35). 

We first investigate the monotonic behaviour of the solutions of (35). 
Figure 7 shows a partition of the s-l-plane in monotonic cells for the system 
(35), i. e., in subsets of the plane where all solutions of (35) have the same 
monotonic behaviour. The two vertical lines limit the set of isoclines for the 
first equation. Easily, one derives that in the sets left of the left line and right 
of the the right line, s' is positive for all solutions of system (35), whereas i t  
can have all sign in the zone between the two lines. The two hyperbolas - the 
upper one corresponding to the parameter q, the lower one corresponding to  q 
- limit the set of isoclines for the second equation. Below the lower hyperbola, 
I' has to be positive, above the upper hyperbola negative, and between the two 
hyperbolas, I' may have all sign. Le line contained in the set ICii, where the 
sign of both s' and I' is indifferent, is the set of all equilibria of the system 
(35). Only a small part of i t  is contained in the constrained set (the cube). On 
the boundary of I<, we marked the set I<* = ] s ~ , s ]  x (7) U {S) x [O,4, where 
SH = (g(i) - ~( i )q /T ) /m - is the point where the lower hyperbola meets the line 
1 = 7. The set IC* is the subset of I<, where all solution of (35) has to leave 
the constraint set K immediately. 

Figure 8 shows the viability kernel for the generalized system. I t  is limited 
by the solution of (35) passing through the point ( sH , i )  and regulated by the 
constant (minimal) control q(t) = q. 

What happens when the interest rate i is varying? 
Figure 9 shows that, for our choice of the parameters in the computation, the 
viability kernel effectively increases in size when the interest rate i decreases. 
But, a t  the same time, the set of viable equilibria becomes smaller and smaller 



Figure 7: Monotonic cells of the generalized s-1-system 

Figure 8: Viability kernel for the generalized system 



until i = 0.025, where the only viable equilibrium (producing the maximal 
viability kernel!) is the edge point (s, i ) .  For i smaller then i o  = 0.025, the 
constraint set contains no equilibria anymore, and the viability kernel is empty. 



Figure 9: Sequence of viability kernels for i = 0.20,0.15,0.10,0.05,0.025,0.01 
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