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Abstract 

This paper proposes a new approach to introducing quantitatively measured uncertainty 
into population projections. It is to a lesser degree based on past time-series than other 
approaches, since it uses random walk models for migration, mortality and fertility, for 
which upper and lower bounds are defined. No parametric distribution is fitted to the 
observations, but the random walk is resampled from the past data. By putting bounds on 
the level that fertility can reach in the future, further substantive information is introduced 
that transcends the information derived from the observed time series. By sampling 
10.000 path of the random walks in fertility, mortality and migration, the distributions of 
population size and structure up to 2050 for Austria, Mauritius and USA are estimated. 
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1 Introduction 

1.1 The need for new projection approaches 

Recent ecological concerns and considerations of sustainable development have brought 
the notion of the "resilience" of systems to prominence in areas outside ecology itself. 
It refers to the robustness or shock absorbing capacity of a system. This concept is also 
applicable to social, economic, and political systems. In the field of social security one may 
for instance ask how robust the present system is to alternative possible future fertility, 
mortality and migration trends. An investigation of such issues requires looking at  the 
variance as well as the mean. 

Traditionally, population projections have not systematically considered the variance of 
future population sizes and age structures. Attention has focussed on a medium projec- 
tion, which is considered to be the most likely variant. When high and low variants are 
given, it is always emphasized that they should not be considered as statistical confidence 
intervals of any kind. The underlying logic and basis for alternative assumptions in the 
high and low variants remain unclear. 

Aside from demographers there seem to be three groups of persons interested in the re- 
sults of population projections: The first group consists of other scientists in the social 
and natural sciences. The recent upsurge of environmental and global change research 
has heightened the demand for population projections far into the future. A major reason 
for this demand lies in the fact that many indicators used in such studies are on a per 
capita basis, i.e. by definition require a population figure in the denominator. In other 
cases population size is assumed to have a direct effect as is done in studies on C02  emis- 
sions which combine different assumed future population trends with different assumed 
per capita emissions to assess alternative possible paths of global warming (e.g Boon- 
gaarts (1992), Birdsall (1992), Lutz (1993), Bartiaux and van Ypersele (1993)). Also 
related to global warming issues is the large group of energy demand models which is 
probably the greatest scientific consumer of population projection data (e.g. Gouse et al. 



(1992), Leontief and Sohn (1984)). The increasing sophistication of scenario approaches 
in many of these non-demographic studies has increased the demand for alternative popu- 
lation scenarios which requires an explicit consideration of the possible variance in future 
demographic rates. 

The second group of population projections users are planners and public policy makers. 
Especially in the secotors of health, education, and social security, medium- and long- 
term planning includes demographic variables as crucial components. In the past, public 
administrators and planners have been generally satisfied with one most likely popula- 
tion projection, but increasingly aiming at robust policies requires sensitivity analysis 
including the consideration of alternative demographic trends. A third group of users, 
finally, are business and the general public. In general, their demand is not too different 
from that of public planners with a somewhat shorter time horizon. But there is a very 
specific subgroup, including educational institutions and advocacy groups in the group 
of environment and family planning, that explicitly wants to use alternative population 
projections for educational and illustrative purposes. 

In summary the different groups interested in population projections seem to expect two 
different things from the demographers preparing such projections: (1) a single most likely 
projection, that can be used without further thinking about the problem of uncertainty, 
and (2) information about alternative less likely but still possible trends for the analysis 
of sensitivity and ex ante testing of the robustness of certain systems. 

How can demographers meet this twofold demand better than has been done in the 
past? We can see two possible approaches: One approach is the systematic consideration 
of alternative extreme- case scenarios based on expert opinion as recently applied by 
Lutz ((1991) for Europe and North America; (1994a) for 12 world regions). Under this 
approach experts in the fields of fertility, mortality, and migration are asked to discuss 
on the basis of their full knowledge-which goes far beyond the analysis of past trends- 
possible alternative future trends in the three components. For the actual projection these 
alternatives (two for each component) are combined into eight scenarios plus one central 
scenario combining all three means. This last scenario meets the demand for one most 
likely path the others serve the purpose of sensitivity analysis. But still this approach 
does not yet provide probabilities for the individual point scenarios. 

The other approach thus would be the explicit quantification of uncertainty by incorpo- 
rating information about vital rate variability and possibly the errors of past forecasts. 
It is evident that both forecasters and users would like to know what confidence to place 
in specific projections and what the full distribution of possible future population trends 
look like, but as yet no single technique to do this unambiguously has gained currency. 
A recent US Bureau of the Census (1989) forecast notes: "Many problems remain before 
a method can be developed for placing reliable confidence intervals around population 
projections." To further advance the discussion about probabilistic population projection 
models this paper proposes a method that combines some of the features of the different 
categories of models as will be discussed below. 



1.2 Literature 

A number of random models have been proposed for modeling uncertainty in demographic 
rates. These models fall into two categories: empirical models of forecasting success which 
measure all forms of rate variation - random and structural - and time-series models which 
analyze only the random variation in vital rates. In the first category are Keyfitz (1981) 
and Stoto (1983)) who both propose using the observed errors in past forecasts as the 
basis for statements about future variation. Empirical comparison with forecasts has the 
advantage of including all sources of forecast error, ranging from unexpected vital rates 
changes to computational errors. On the other hand, in order to apply the method to 
current forecasts, a very strong assumption needs to be made: that the errors in future 
forecasts are of the same magnitude as in the past. This is of particular concern since the 
most recent forecasts are least represented in the sample of empirical forecasts because 
their accuracy has yet to be seen. This is problematic because not only do methods 
of choosing high, low, and medium assumptions change, but so also does the potential 
variability of vital rates. Unless both rate variability and projection technology stay the 
same, it is unclear how good an indicator past errors of future uncertainty. 

The direct analysis of population trends themselves offers a distinct alternative. Starting 
with the Lee's (1974) analysis of U.S. fertility rates until today, time-series methods aim to 
define a structure to the process of changing rates, for example a random walk with drift, 
or an ARIMA. Tuljapurkar (1989) offers an overview of different stochastic models. Lee 
(1974) analyzes the structure of variation in U.S. fertility rates. Lee (1993) also examines 
U.S. fertility rates, but analyzes age-specific rates. Lee and Carter (1992) and McNown 
and Rogers (1989) both forecast age-specific mortality rates. 

Such methods produce not only a central forecast, but also the entire probability distri- 
bution, showing where fertility and mortality rates are likely to be at any future specified 
date contingent on a normal distribution of errors. To date, there have been few attempts 
to use random rates in making projections [ Notable exceptions include Cohen's (1986) 
work on Sweden and Lee and Tuljapurkar (19xx)I Time-series analysis to date - particu- 
larly of fertility trends - has not been particularly convincing, because results have varied 
so much with model specification. Furthermore, since the models are relatively difficult 
to understand, it is almost impossible for a potential user to decide which specification 
he or she has more confidence in. 

Keyfitz (1989), tried to combat the complexity of time series models, by incorporating 
uncertainty into projections using Monte Carlo techniques to simulate vital rate fluctua- 
tions. While claiming to be model-free, however, Keyfitz was of course relying on some 
specification in making his random trials. In particular, the distribution of fertility and 
migration were assumed to be i.i.d., with distributions equal to their historical distribu- 
tions. Life expectancy was assumed to grow at a constant, if randomly chosen rate, for 
the entire sample period. 

In this paper we try to follow in the examples of both Keyfitz and the time-series analysts. 
We use random draws, incorporating the bootstrap of Keyfitz, but rather than drawing 
levels or constant rates of change we specify processes by which the vital rates evolve and 



sample historic differences, either multiplicative or additive. This means that we are able 
to include the historical information from the data in the distribution as Keyfitz does, 
while maintaining the link between future rates and the rates at the point of forecast that 
time-series analysts have achieved. 

The Model 

Forecast models in general - and population forecasts/projections in particular, are usu- 
ally based on the principle of constancy. The distinction between models - whether they 
be complex ARIMA models or fixed-rate age structured population models - is what they 
choose to hold constant. 

In projecting a vital rate, the most naive guess for the future would be constancy at 
present levels. A more educated guess - in the sense of incorporating more information - 
would take into account the recent trends. And an even more sophisticated guess would 
include information about the changeability in the trend. 

How can one measure past variance and include it in our forecast? One way is to fit model 
probability distributions to empirical data, by estimating a parametric distribution. The 
approach taken here is to create an empirical distribution and sample from it at random. 
This is similar to the idea of a bootstrap sample. Our motivation for using the empirical 
sample instead of some parametric one is that we have no basis for arguing for any 
particular parametric shape. For example, it would be difficult to argue, on theoretical 
grounds, that the distribution for changes in fertility rate should be unimodal or bimodal, 
or whether it should be symmetric or asymetric. In the absence of theory, then, we let 
the data speak for themselves. 

A number of random models have been proposed for modeling the evolution of demo- 
graphic rates. Both Keyfitz' (1989) model and the one presented here fit into more general 
frameworks of random population models. Keyfitz' model corresponds to what has been 
called the "IID Model" in Tuljapurkar (1989, page 231) or a "white noise" process in Lee 
(1974, page 610). Our model corresponds to either the "Markov Model" (Tuljapurkar, 
page 231)) or a "random walk process" (Lee, page 613). 

2.1 The Projection Model 

We start with the basic data from the starting year t = 0. Let N,f resp. N," the female 
resp. male population at age x, where x = 0,. . . ,100. 

Let 1; be the number of survivals from life-table valid for the spring-off year normalized 
to 1; = 1. Here s stands for the sex: s = f for females and s = m for males. 

Let a,  be the person-years lived by those who die in the interval [x,x + I]. We set 
a0 = 0.12; a1 = 0.37; a, = 0.5 for 2 5 x 5 100 and define as usual the death probabilities 



qx and the lived person years L, as 

The person-years lived for ages 100 and older are defined as 

which comes from setting ploo = q g g .  

As is well known, 1, may be regained from all probabilities qy by 

Let F, be the age-specific fertility rates in the starting year , i.e. the number of babies 
born to a woman of age x divided by the average female population of that age. 

Denote by fo the total fertility rate (TFR) 

2.1.1 The Cohort Component Model 

The basic equation 

reads here (for females) 

Nf (t + 1) = Sf Nf (t) + 0.49 . ft . P . Nf (t) + g{ . Gf 

where 

Ns(t) is the vector of the population of sex s in year t ,  i.e. 



Ss is the [I01 x 1011 survivorship matrix 

where sz are the age-group specific survival probabilities 

jt is the total fertility rate in year t; 

P is the [I01 x 1011 matrix 

where p, is the probability that (in the spring-off year) a woman, given that she 
gives birth, is of age x, i.e. (p, = f o  ); 

gf are the total net migrations; 

G" is the vector of probabilities Gz, that a migrating person of sex s has age x 

The values G: are calculated from the age-specific net migrations M," of the spring- 
off year by 

with gg = Ex M:. 

The model for males (which is dependent on the model for females, but not vice-versa) is 

Nm(t  + 1) = SmNm(t )  + 0.51 . jt P . N~ (t) + 97 . Gm. (3) 



2.1.2 Multiplicative Changes in Mortality and Fertility 

In the following, a model of muliplicative changes of the death probabilities q, is consid- 
ered: Let r be some factor and set 

Using the quantities q:(r) for the calculation of the 1,'s and the L,'s we get 

The life expectancy eo at birth pertaining to this mortality pattern is calculated according 
to the formula 

The life expectancies for the spring-off year are of course eQ(1) resp. er(1).  

Since the factors r influence the survorships by 

the survivorship matrix (2) is a function of r too: SS = SS(r). 

We will also adopt a multiplicative structure for the age-specific fertility rates: 

We assume that the probabilities p, are constant over time, i.e. given that we know an 
estimate f of the TFR in some year, the age-specific fertilities in that year are 

The final model, which contains the multiplicative factors rs is 

Assuming that {ri}, {r?}, { ft}, {gi}, {g;} are stochastic processes, with knownprob- 
abilistic structure, one sees that Nf (t) and Nm(t)  are stochasticvector processes, with 
distributions being completely specified by the starting values and by the joint distribu- 
tion of {pi}, { ry  }, { ft}, {gi}, {gr}. In the next section, the specification of these processes 
will be discussed in detail. 



2.2 The structure of Vital Rate Variation 

We model the randomness in fertility, mortality and migration rates independently. Al- 
though fertility and mortality were inversely-related in pre-transition societies like the 
pre-industrial England of Malthus, we are not aware of any evidence of covariation of 
vital rates in post-transition populations. 

As mentioned, the input data that constitute our time series are the total fertility rate, 
life expectancy at birth, and annual net migration. We let each set of age specific rates 
vary according to a single index parameter. Age-specific rates are calculated using fixed 
schedules for fertility and mortality. As the TFR and life-expectancy vary, we adjust all 
age-specific rates by a const ant multiplier. 

In the following sections we explain, and attempt to justify, the structure of the stochastic 
processes specified for each vital rate. 

2.2.1 Fert i l i ty 

When dealing with any model of variability in fertility rates over time we need to decide 
if the magnitude of fertility change is proportional to the current level or of fixed additive 
size. Here we look at the theoretical and empirical arguments. We conclude that the 
multiplicative model is a better choice. 

Having decided that the fertility level in year t will be a simple function of the level of 
the previous year, t - 1, and some random change, the simplest two models that offer 
themselves are the additive and multiplicative random walks: 

Both of these are stationary markov processes, where 6 is a random variable of additive 
change, E is a random variable for multiplicative change, and ft is the level of fertility in 
year t. 

The data can tell us which specification is more appropriate. The choice between an 
additive and a multiplicative specification boils down to a test for heteroskedacity as is 
common in regression analysis. One simple way is to plot the ordered TFR values against 
the absolute changes and then against the proportional changes and to check by eye if 
there is a pattern. An arithmetic way of doing this is to divide the ordered sample in two 
halves and see how the average change in the lower half compares to the average change 
in the upper half. 

We see in table 1 concerning U.S. fertility the mean absolute difference is about one-and- 
a- half times bigger for the larger TFRs than for the smaller TFRs. The mean proportional 
change, however, is virtually the same despite the change in TFR  value. These results 
support our theoretical argument for a multiplicative model. The same test was performed 
using Japanese fertility rates 1960-1989 (with a cut-off level at 1.88) and Austrian fertility 



Table 1: Average change in U.S. fertility rates 1917- 1988, 
by type of change and fertility level 

T F R  < 2.54 TFR > 2.54 
Number of years 36 35 

Mean absolute change: ( f t+ l  - f t )  0.075 0.112 
Mean proportional change: (9) 1.038 1.035 

rates 1953-1992 (with a cut-off level at 2.05) and resulted in similar findings (more so in 
Ausatria than inm Japan), hence supporting the multiplicative assumption. 

We detrend fertility in our projection model. Extrapolation of fertility trends, which have 
in the long-term been declining, implies that women will soon have no children.' On 
the other hand, extrapolation of the recent short-term upswing in fertility rates in some 
countries would result in monotonic increases in fertility. 

Although in the last century fertility rates have shown a net decline, in the more recent 
past say since the end of the baby-boom they have oscillated in an apparently random 
fashion. The theory of the demographic transition, where fertility follows a logistic-like 
path from a high plateau in natural fertility populations to a low plateau in fertility- 
controlling populations, also, cautions us against extrapolating from a trend across the 
two regimes. Furthermore, even since fertility control, which was well established in the 
time of the first big world-wide dip in fertility in the great depression, there seem to be 
two distinctly different dynamics pre- and post-baby boom. We intentionally include only 
the post-baby boom period, which we see as basically trendless. In fact, since the 1970s 
fertility rates have declined in Austria from 1.87 to 1.50, in the United States they have 
risen slightly from 1.879 to 1.9321 [ note these numbers refer to different time periods], 
and even in Mauritius, rates have oscillated and risen recently. 

Because of the lack of clear trend in the data, we feel that in the near future fertility rates 
are as likely to fall as they are to rise. We therefore detrend the empirically estimated 
distributions in such a manner as to preserve the observed variance. 

Bounds on fert i l i ty 

Because there is a significant body of analysis of fertility determinants and scientific 
information from surveys, etc., which is very relevant for future fertility levels but does 
not enter our model as defined by the detrended bootstrap, it was decided to set bounds 
on future fertility levels which are derived from substantive reasoning. In this we follow 
the choices made for extreme fertility values in the recent scenario population projections 
conducted by IIASA's Population Project. The reasoning for these choices is given in two 
books (Future Demographic Trends in Europe and North America: What can we assume 
today? edited by W. Lutz, 1991; and The Future of World Population: What can we 
assume today? edited by W. Lutz, 1994) and cannot be summarized here. 

The lower limits chosen for total fertility rates are 1.3 for Austria, 1.4 for the USA, and 

'For example, Keyfitz(l989) notes that in the case of Canada, "extrapolation from the last 30 years 
would give zero births within the first quarter of the 21st centry." p. iii. 

9 



1.5 for Mauritius. The upper limits were 2.1 for Austria, 2.3 for the USA, and 2.5 for 
Mauritius. The range within which fertility variation is allowed is greatest in Mauritius 
with 1.0 children because less seems to be known about the fertility determinants than in 
Austria, which has a range of only 0.8 children. Whenever the random walk of fertility 
rates hits a bound, it will be thrown back in the next step by giving the randomly-drawn 
stepsize a sign that will bring it back into the range. In practice, trial runs without the 
bounds show that trends based purely on the randomness of past variation hardly go 
beyond the bounds. In the very long run, however, the bounds force the average fertility 
assumed towards the arithmetic mean of the two bounds, while originally average fertility 
is closer to the starting value. This is exactly our intention because the mean of the two 
extremes is also considered the most likely value (the central scenario) in the assumptions 
of the IIASA scenarios. 

2.2.2 Mortality 

The goal of the mortality model is similar to the fertility model in that we would like to 
incorporate the same amount of variance in the forecast period as in the sample period. 
Unlike fertility, however, we assume a trend in mortality. The expectation of life at birth 
is assumed to increase monotonically at either the same rate as the sample period, or at a 
slower rate (e.g., one-half the speed of recent mortality improvements.) Slowing the rate 
of increase requires a transformation of the emprical distribution. We prefer subtracting 
a constant from each sample value, as this changes the mean rate of increase while leaving 
the variance of the distribution as it was observed. 

Expectation of life at birth is chosen as the demographic variable to be modeled. It has 
the advantage of being widely available in data, well-known, and easily convertible into 
life table values. Keyfitz (1989) simply changes all age-specific mortality rates by an equal 
proportion. We do the same. 

Letting y be a random variable representing the proportional change in e(0) from one 
time period to the next, 

The justification for an additive random-walk with a strong linear trend is not physio- 
logically based but rather reflects the strong linear trend in the historical data. There 
are alternative approaches, such as linear extrapolation of age-specific rates, and these 
result in a life expectancy increase of only half the magnitude of the linear extrapola- 
tion of life expectancy itself. There seems to be little theoretical support for linearly 
extrapolating the age-specific mortality rates rather than life expectancy itself as both 
are arbitrary statistical measures. Our choice of life expectancy is predicated mainly on 
the easy availability of life expectancy data as opposed to time series of age-specific rates. 



2.2.3 Migration 

The markovian assumption that the current period fertility and mortality rates would 
depend in part on the previous period rates seems less suitable for modeling migration. 

Time series of migration levels show that policy interventions play a great role in deter- 
mining migration levels. We are not then modeling large scale social phenomena, as we 
do with migration and fertility rates, but rather the political system and its interaction 
with the economy and international migration pressures. In this context, it is reasonable 
to assume that drastic change, of the sort seen in the pure independence model, is not so 
easy to dismiss. Accordingly, we model migration not as random walk, but as a simple 
random draw. Letting gt be the total number of migrants in a time period, we have 

where 6 is a level of migration selected at random from recent history. The implication 
of the model is that expected net migration in any time period is the average of the 
migration during the sample p e r i ~ d . ~  

2.2.4 Summary 

We can summarize our method in the following four assumptions: 

Future rates of change are based on data from the past. 

Mortality, fertility, and migration are not intercorrelated. 

Mortality and fertility rates depend only on the most recent year's rates (Markovian 
assumption). 

Migration levels are independent from one year to the next. 

2.3 Estimating the resampling distribution 

Once the model has been designed, one has to specify the occurring probability distri- 
butions. In our case, one has to specify the distribution of {rJ}, {ry }, { ft }, {g{} and 

'The U.S.  Census bureau until recently did not include migration in their forecasts. This was due not 
only to the link between migration levels and political currents, but because net migration statistics were 
considered unreliable due to illegal immigration and the lack of record keeping on emigration. "Because 
changes in these factors are not particularly amenable to quantitative analysis, the assumption has always 
been made in Census Bureau projections that trends in future international migration levels could no t  
be predicted." (U.S .  Bureau of Census (1989), page 25-26) [emphasis added] The U.S.  Census' latest 
projection includes a scenario-based approach to international migration. 

3From the standpoint of uncertainty, the migration model contains the undesirable feature that we 
are as uncertain about next year's migration as migration in the year 2023, an alternative would be to 
this is an issue we will discuss later on. 



Let us first discuss the processes {rt). Equation (4) establishes a one-to-one correspon- 
dance between the factors r and the life expectancy e(r). This correspondance is nonlinear 
and concave, its shape for Mauritius 1990 is shown in Figure 1. 

Fig. 1: The relation r I+ ef (r) (females, Mauritius) 

It is therefore possible to model the life expectancy processes {ei) and {e;") and calculate 
the factors r/ and r;" from them by inverting the corresponding relations. 

We modelled {e:) and {e r )  as additive random walks, { ft) as a multiplicative, truncated 
random walk with Markov dependencies and lg/} resp. {g;") as i.i.d. processes. 

For the random walk processes we need to specify the distribution of the increment process 
{qt), for the i.i.d. process, the distribution itself has to be determined. 

We did not want to make an additional assumption by specifying a parametric class of 
distributions, but used the "bootstrap idea": Instead offitting a distribution, we take the 
empirical distribution of the past data as the sampling distribution for the future data. 

f f Here is how it was done. Let e-, , e-,, . . . , el, be the recorded life expectancy data of the 
past T years. The empirical distribution of the differences puts mass 1/(T - 1) on each 

f f of the differences e-, - e-,-,; t = 1,. . . T - 1. The model for the life-expectancy is 

where {qt) is independently identically distributed according to the forementioned empir- 
ical distribution. The process {e;") is constructed similarly. Figure 2 shows the past data 
,Is and five typical trajectories of the life expectancy process (females) for Mauritius. 
Here the lower resp. upper truncation point was set to 1.5 resp. 2.5. 



Fig. 2: Five trajectories of process of (female) life expectancies 
modelled as additive random walk (Mauritius) 

2.3.1 Resampling a random walk with Markov dependencies 

Since the fertility process was modelled as multiplicative random walk with Markov de- 
pendencies, we took the differences of the logarithms of subsequent past total fertilities 
as the basis of our considerations. To eliminate the trend, the differences are addidively 
corrected to  have mean zero: 

The emprical transition distribution is obtained by putting mass l / (T - 1) on each of the 
pairs (d-t, d-t+l). Here is a picture of the emprical transition density: 

Fig. 3: The empirical transition of the logarithmic total fertility rates (Austria) 



How can the process of differences be simulated according to this empirical transition? 
Suppose that ft and ft-1 are the current and the previous simulated values of the fertility 
process. Let tt = log( f t )  - log( ft-1). The idea is that the new difference tt+1 should be 
with high probabilty a past difference, say d-,, for which d-,-l is close to &. Define the 
weights w(.) on the past differences such that w-, is proportional to exp(-y(& - d-,)2)), 
where the weights are normalized to 1 and y is an appropriate smoothing factor. Then 
choose the old difference d-, with probability w-,. If we set the parameter y equal to 
0, we get an equal distribution over all past differences and we model a pure random 
walk. If we set y very large, we will just reproduce the past trajectory. For our bootstrap 
simulation, we have chosen y such that the serial correlation of tt coincides with the serial 
correlation of the past differences d-,. (The value of y was 5000 for Austria). 

The final simulated value for ft+l is ft . exp(d-,). Here are five typical trajectories: 

Fig. 4: Five trajectories of the total fertility process 
modelled as a multiplicative truncated random walk with Markov dependencies 

(Austria) 

Finally, the total net migration processes (9:) and {g r )  are modelled jointly: 
f f  f Let g-I ,g-,, . . . ,g-T and gT;, gT2,. . . ,gTT the past total net migration data. The emprical 

joint distribution puts mass l /T  on each of the pairs (g!,,g;). The projected process 
(g/, 9;") is i.i.d. distributed with the empicrical joint distribution. 



Fig. 5: Five trajectories of the (female) net migration process 
modelled as i.i.d. process (USA) 

Results 

The method as described above has been applied to three very different countries, Austria, 
the USA, and Mauritius. These three countries from three different continents, however, 
have one important characteristic in common: They all have completed their process of 
demographic transition, i.e., a fertility transition has followed the mortality transition 
and fertility rates are now fluctuating at levels around or below replacement level. The 
completion of the fertility transition was an important criterion for picking the countries 
because it is only after this transition that the assumption of fertility fluctuations without 
a clear trend makes sense. 

As described earlier, the time series considered for the three countries are of different 
length (ranging from 17 to 20 years). Also different bounds have been set for fertility (see 
section 2.2.1). 

In the following we will discuss the projection results in terms of total population size 
and projected old age dependency ratio for the three countries individually and compare 
them to other projections for these countries. 

To allow a direct comparison with other projections, the tables below show our lo%, 50% 
and 90% quantiles together with the projection published by the world bank (WB) as 
well as the three UN scenarios (low: UN1, middle: UNm and high: UNh). 

Austria: 

The Austrian census of 1991 provided us with a starting population for the projection of 
7.82 million inhabitants. For 2025 our projections based on the bootstrap as described 
above shown a range of between 8.00 and 8.42 covering 80% of the projected cases with 



the median at 8.42 million. For 2050 this range is naturally wider because of increased 
uncertainty with time. While the median is almost identical, the lower decile is at 7.44 
million and the higher at 9.32 million. 

Table 2: Total ~ o ~ u l a t i o n  for Austria 

This projection clearly gives higher total population figures than the World Bank, which 
does not consider recent immigration and also tends to be lower than the UN projection, 
which also assumes lower immigration and lower increases in life expectancy. The official 
population projection of the Austrian Statistical Office projects 8.2 million by 2025 under 
the medium variant, 7.9 under the low immigration variant and 8.5 under the high immi- 
gration variant. For mortality and fertility assumptions only one specific path is assumed 
under these assumptions. Another set of alternative scenarios projections produced by 
IIASA (Prinz and Lutz 1994) for the Council of Europe combines widely differing assump- 
tions on mortality, fertility and migration. Under these projections the central scenario 
yields 7.9 million in 2030 and 7.6 million by 2050. The most extreme values result from the 
combinations of low fertility, high mortality and low immigration (6.7 million in 2030 and 
5.4 in 2050) on the one side and high fertility, low mortality, and high immigration (9.1 
million in 2030 and 10.1 in 2050). The other scenarios lie within this range of extremes. 

Hence for Austria, the total population size projected according to our probabilistic boot- 
strap model tends to be somewhat higher than the UN and the World Bank because of 
higher immigration, and also a bit higher than the national projections due to slightly 
quicker improvements in mortality resulting from our method. The IIASA scenarios cover 
a wider range than our deciles, but the likelihood of these extreme scenarios are explicitly 
more at the order of 1% than 10%. 

As to the age structure resulting from the projections, Figure 6 indicates how little the 
variation in the old age dependency ratio is over time. It will almost certainly increase 
from presently 24.9% to between 36% and 40% by 2030, and even 60% and 76% by 2050. 
This low degree of future variability is due to the fact that the trend of this ratio, at least 
over the next 40 years, is largely a function of the cohort sizes of people already born. 
Uncertainty increases visibly only beyond 2030. Another reason for this amazingly low 
variance is the fact that our bootstrap method does not yield very high variability with 
respect to future mortality trends, because the past trend increased so smoothly. But 
generally, other population projections confirm this pattern of a high degree of certainty 
of significant increases in the old age dependency ratio around 2020 in Western European 
low fertility populations. 



Fig 6: The deciles of the projected oadr-rates (Austria) 

USA: 

For the United States of America our probabilistic bootstrap- based projections yield a 
median total population size of 323 million in 2025 and 391 million in 2050. For 2025 this 
is approximately the same result as given by the UN medium variant. The low variant 
gives 302 million, the high one 346 million. The only projection given by the World Bank, 
however, is significantly lower and estimates only 324 million by 2050. 

Table 3: Total population (USA) 

Table 4: Old age dependency ratio (USA) 

Figure 7 plots the distribution of projected total population sizes for the USA. It opens 
in a trumpet-like manner, much more so than that of the old age dependency ratio (see 
Figure 6 for Austria above). Uncertainty seems to increase regularly with time. While in 
the first 25 years or so it is only the uncertainty in fertility, mortality and migration rates 



that matters, beyond that it is also the uncertainty in the size of the cohorts to which 
future rates will be applied. 

Fig. 7: The deciles of the projected total population process (USA) 

As in Austria the old age dependency ratio will certainly increase further in the USA. But 
the increase will be very irregular. For the next 20-25 years the ratio is expected to stay 
almost constant on average and also shows very little random variation. By 2030 it will 
already have increased from presently 21% to around 30%. This rapid increase over the 
next 25 to 50 years also shows amazingly little variation. It is only after 2040 that random 
variation begins to play a major role, i.e., when uncertainty about cohort size is added 
to the uncertainty about mortality, which dominates the picture during the first decades. 
As in Austria past mortality trends, from which the sample was drawn, improved rather 
regularly, hence inducing only little random variation in the projection. 

Mauritius: 

The Indian Ocean island of Mauritius has an amazing demographic history. During the 
1960s it had one of the world's most rapid rates of population growth which resulted from 
formidable increases in life expectancy combined with continued high or even somewhat 
increasing fertility. Then during the late 1960s and early 1970s Mauritius experienced 
what was probably the world's most rapid fertility decline (see analysis in Lutz 199413). 
Since the late 1970s the Total Fertility Rate in Mauritius is below 3.0 and even reached 
sub-replacement level in the mid-1980s. But due to the very high growth rates in the 
recent past, the age structure of Mauritius is still very young. This resulted in the fact 
that during the late 1980s the population of Mauritius was still growing at a rate of more 
than 1% per year despite fertility rates below replacement level, because rapidly increasing 
numbers of young women entered the prime reproductive ages. Hence Mauritius is a very 
good example for the momentum of population growth. 



Our projection model applied to Mauritius also shows that the population will most likely 
increase further from the 1.05 million in 1990 to around 1.5 million in 2050. This median 
trend is very close to that projected by the UN and the World Bank. The 80% probability 
range in 2050 extends from 1.24 to 1.68. This means a higher degree of uncertainty in 
Mauritius than in the USA and Austria. The range between the 10th and 90th percentiles 
is in Mauritius 29% of the median level in 2050. In Austria it is 22% and in the USA 
only 12%. In Mauritius this higher uncertainty is due to the greater empirically-observed 
changes in fertility and mortality during the observation period from which the bootstrap 
was drawn. In Austria the uncertainty is mostly due to irregularity in migration streams. 

Table 5: Total population (Mauritius) 
1 1  10% 1 50% /0 90% '01 WB 11 UN1 I UNm I UNh I 

Table 6: Old age dependency ratio (Mauritius) 
11 10% 1 50% '0 90% 1 

The old age dependency ratio in Mauritius shows a pattern similar to that in Austria 
and the USA. It is also close to constant with little variation for the next 20-25 years 
and increases sharply thereafter. Because of the young age structure in Mauritius the 
dependency ratio presently is still extremely low (only 9.6%) but by 2050 it is likely to 
increase to a level (median 47%) that is higher than that in the USA in that year. This 
also illustrates the fact that aging in high fertility countries that have a rapid fertility 
decline will be a much more dramatic phenomenon than in Europe and North America. 

4 Summary and Discussion 

This paper proposes a new approach to introducing quantitatively-measured uncertainty 
into population projections. As most similar approaches, it is also based on the informa- 
tion provided by past time series, but to a lesser degree. For fertility and migration, it 
does not take into account the past trends but only the past variation, i.e., the size of the 
steps by which fertility, mortality and migration changed in the past. By putting bounds 
on the level that fertility can reach in the future, further substantive information was 
introduced that transcends the information derived from time series analysis. Hence this 
approach lies somewhere between a set of scenarios to which no probability distribution 
can be attached, and a probabilistic model based entirely on time series. 



Much more work needs to be done on this issue in the future. This paper only suggests 
one ~ossibility of combining the attractive features of both approaches. With respect to 
fertility, the ~roposed combination of information on "step- height" from the past and 
information on level from external substantive expertise makes a flexible and promising 
model. As far as mortality is concerned, the model is less satisfactory. The empirical 
bootstrap has not been detrended because clearly further improvements in mortality are 
expected. But the trend has been halved by setting every second step to zero, because 
it is also unlikely that improvement will continue at  such a rapid pace as observed in 
the past. An undesirable consequence of this, together with the smoothness of the past 
trend, is that very little mortality variation is introduced into the model. Substantive 
considerations, such as the uncertainty whether we are approaching a biological limit to 
life or not, imply a much higher degree of uncertainty in the future than the bootstrap 
sample in our model suggests. Here is clearly room for further improvement. As to 
migration, very little substantive theory exists as to how future migration levels should 
be. For this reason the chosen sampling of past absolute levels of migration seems to be 
a straightforward and empirically-based choice. 
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Random Walks with Markov dependencies 

Let {qt ) be a sequence of i.i.d. random variables. The stochastic process {zt ) is called an 
(additive) random walk, if 

Zt+l = Zt + qt. 

A nonnegative process {zt) is called a multiplicative random walk, if {log zt) is an additive 
random walk. 

The process {zt) is called a truncated random walk, if 

if x > b  
a s x s b  

x < a 
a resp. b are the lower resp. upper truncation points. 

A nonnegative process {zt ) is called a truncated multiplicative random walk, if {log zt ) 
is a truncated random walk. 

A process {zt) is called a random walk with Markov dependencies (RWMD), if the steps 
{qt) stem from a homogeneous ergodic Markov process. 

Since an i.i.d. sequence is a special case of a homogeneous ergodic Markov process, random 
walks with Markov dependencies are generalizations of ordinary random walks. 

A pure random walk can never be stationary, since V a r ( ~ t + ~ )  = Var(zt) + Var(qt) > 
Var(zt) unless qt is identically zero. 

A truncated random walk or RWMD however has a unique stationary distribution. In 
particular, the following properties hold: 

If {qt) is ergodic, then {zt) is ergodic. 

Irrepective of the starting value, zt converges exponentially fast to the unique sta- 
tionary distribution. 

A small perturbation of the increment process {qt) leads to a small perturbation in 
the stationary distribution of zt 

The proof will be illustrated under the condition, that for each pair ~ 1 ~ x 2  one may find 
a pair qil) and qi2 such that and and suppose that 0 < 6 5 P{T,I!') > b - a and qj2) > 

(2) b - alqt(l), = XI, qt-2} for all t .  Consider the two sequences 



started at z i l )  resp. z i2) .  We will prove that for all t 

where E denotes the expectation. 

For the proof set A = {q l1)  > b - a and qi2) > b - a )  and notice that 

Here we have used the inequality 

From inequality ( 7 )  we may draw two different conclusions. First, choosing different 

starting values for qj l )  and qj2) and assuming that by ergodicity E ( I ~ ! ' )  - q1(2)~),  one sees 
that also 

E(lz j1)  - zi2) l )  -+ 0 .  

Secondly, if qj l )  andqj2), then 

which implies that 

We see that due to the truncation, the process { z i l ) }  is closed to { A 2 ) ) ,  for all t ,  if the 
{qt(')) is closed to {q j2 ) ) .  Without the truncation, 2 )  and 2 )  would drift away 
as t -+ m. Thus, a slight misspecification of the step process { q t )  does not lead to a 
dramatic error for larger t for the model with truncation. 


